/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBuffer.h" #include "SkNx.h" #include "SkOnce.h" #include "SkPath.h" #include "SkPathRef.h" #include "SkPathPriv.h" #include "SkSafeMath.h" // Conic weights must be 0 < weight <= finite static bool validate_conic_weights(const SkScalar weights[], int count) { for (int i = 0; i < count; ++i) { if (weights[i] <= 0 || !SkScalarIsFinite(weights[i])) { return false; } } return true; } ////////////////////////////////////////////////////////////////////////////// SkPathRef::Editor::Editor(sk_sp<SkPathRef>* pathRef, int incReserveVerbs, int incReservePoints) { if ((*pathRef)->unique()) { (*pathRef)->incReserve(incReserveVerbs, incReservePoints); } else { SkPathRef* copy = new SkPathRef; copy->copy(**pathRef, incReserveVerbs, incReservePoints); pathRef->reset(copy); } fPathRef = pathRef->get(); fPathRef->callGenIDChangeListeners(); fPathRef->fGenerationID = 0; SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);) } ////////////////////////////////////////////////////////////////////////////// SkPathRef::~SkPathRef() { // Deliberately don't validate() this path ref, otherwise there's no way // to read one that's not valid and then free its memory without asserting. this->callGenIDChangeListeners(); sk_free(fPoints); SkDEBUGCODE(fPoints = nullptr;) SkDEBUGCODE(fVerbs = nullptr;) SkDEBUGCODE(fVerbCnt = 0x9999999;) SkDEBUGCODE(fPointCnt = 0xAAAAAAA;) SkDEBUGCODE(fPointCnt = 0xBBBBBBB;) SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;) SkDEBUGCODE(fEditorsAttached = 0x7777777;) } static SkPathRef* gEmpty = nullptr; SkPathRef* SkPathRef::CreateEmpty() { static SkOnce once; once([]{ gEmpty = new SkPathRef; gEmpty->computeBounds(); // Avoids races later to be the first to do this. }); return SkRef(gEmpty); } static void transform_dir_and_start(const SkMatrix& matrix, bool isRRect, bool* isCCW, unsigned* start) { int inStart = *start; int rm = 0; if (isRRect) { // Degenerate rrect indices to oval indices and remember the remainder. // Ovals have one index per side whereas rrects have two. rm = inStart & 0b1; inStart /= 2; } // Is the antidiagonal non-zero (otherwise the diagonal is zero) int antiDiag; // Is the non-zero value in the top row (either kMScaleX or kMSkewX) negative int topNeg; // Are the two non-zero diagonal or antidiagonal values the same sign. int sameSign; if (matrix.get(SkMatrix::kMScaleX) != 0) { antiDiag = 0b00; if (matrix.get(SkMatrix::kMScaleX) > 0) { topNeg = 0b00; sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b01 : 0b00; } else { topNeg = 0b10; sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b00 : 0b01; } } else { antiDiag = 0b01; if (matrix.get(SkMatrix::kMSkewX) > 0) { topNeg = 0b00; sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b01 : 0b00; } else { topNeg = 0b10; sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b00 : 0b01; } } if (sameSign != antiDiag) { // This is a rotation (and maybe scale). The direction is unchanged. // Trust me on the start computation (or draw yourself some pictures) *start = (inStart + 4 - (topNeg | antiDiag)) % 4; SkASSERT(*start < 4); if (isRRect) { *start = 2 * *start + rm; } } else { // This is a mirror (and maybe scale). The direction is reversed. *isCCW = !*isCCW; // Trust me on the start computation (or draw yourself some pictures) *start = (6 + (topNeg | antiDiag) - inStart) % 4; SkASSERT(*start < 4); if (isRRect) { *start = 2 * *start + (rm ? 0 : 1); } } } void SkPathRef::CreateTransformedCopy(sk_sp<SkPathRef>* dst, const SkPathRef& src, const SkMatrix& matrix) { SkDEBUGCODE(src.validate();) if (matrix.isIdentity()) { if (dst->get() != &src) { src.ref(); dst->reset(const_cast<SkPathRef*>(&src)); SkDEBUGCODE((*dst)->validate();) } return; } if (!(*dst)->unique()) { dst->reset(new SkPathRef); } if (dst->get() != &src) { (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count()); sk_careful_memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t)); (*dst)->fConicWeights = src.fConicWeights; } SkASSERT((*dst)->countPoints() == src.countPoints()); SkASSERT((*dst)->countVerbs() == src.countVerbs()); SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count()); // Need to check this here in case (&src == dst) bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt); /* * Here we optimize the bounds computation, by noting if the bounds are * already known, and if so, we just transform those as well and mark * them as "known", rather than force the transformed path to have to * recompute them. * * Special gotchas if the path is effectively empty (<= 1 point) or * if it is non-finite. In those cases bounds need to stay empty, * regardless of the matrix. */ if (canXformBounds) { (*dst)->fBoundsIsDirty = false; if (src.fIsFinite) { matrix.mapRect(&(*dst)->fBounds, src.fBounds); if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { (*dst)->fBounds.setEmpty(); } } else { (*dst)->fIsFinite = false; (*dst)->fBounds.setEmpty(); } } else { (*dst)->fBoundsIsDirty = true; } (*dst)->fSegmentMask = src.fSegmentMask; // It's an oval only if it stays a rect. bool rectStaysRect = matrix.rectStaysRect(); (*dst)->fIsOval = src.fIsOval && rectStaysRect; (*dst)->fIsRRect = src.fIsRRect && rectStaysRect; if ((*dst)->fIsOval || (*dst)->fIsRRect) { unsigned start = src.fRRectOrOvalStartIdx; bool isCCW = SkToBool(src.fRRectOrOvalIsCCW); transform_dir_and_start(matrix, (*dst)->fIsRRect, &isCCW, &start); (*dst)->fRRectOrOvalIsCCW = isCCW; (*dst)->fRRectOrOvalStartIdx = start; } SkDEBUGCODE((*dst)->validate();) } static bool validate_verb_sequence(const uint8_t verbs[], int vCount) { // verbs are stored backwards, but we need to visit them in logical order to determine if // they form a valid sequence. bool needsMoveTo = true; bool invalidSequence = false; for (int i = vCount - 1; i >= 0; --i) { switch (verbs[i]) { case SkPath::kMove_Verb: needsMoveTo = false; break; case SkPath::kLine_Verb: case SkPath::kQuad_Verb: case SkPath::kConic_Verb: case SkPath::kCubic_Verb: invalidSequence |= needsMoveTo; break; case SkPath::kClose_Verb: needsMoveTo = true; break; default: return false; // unknown verb } } return !invalidSequence; } // Given the verb array, deduce the required number of pts and conics, // or if an invalid verb is encountered, return false. static bool deduce_pts_conics(const uint8_t verbs[], int vCount, int* ptCountPtr, int* conicCountPtr) { // When there is at least one verb, the first is required to be kMove_Verb. if (0 < vCount && verbs[vCount-1] != SkPath::kMove_Verb) { return false; } SkSafeMath safe; int ptCount = 0; int conicCount = 0; for (int i = 0; i < vCount; ++i) { switch (verbs[i]) { case SkPath::kMove_Verb: case SkPath::kLine_Verb: ptCount = safe.addInt(ptCount, 1); break; case SkPath::kConic_Verb: conicCount += 1; // fall-through case SkPath::kQuad_Verb: ptCount = safe.addInt(ptCount, 2); break; case SkPath::kCubic_Verb: ptCount = safe.addInt(ptCount, 3); break; case SkPath::kClose_Verb: break; default: return false; } } if (!safe) { return false; } *ptCountPtr = ptCount; *conicCountPtr = conicCount; return true; } SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) { std::unique_ptr<SkPathRef> ref(new SkPathRef); int32_t packed; if (!buffer->readS32(&packed)) { return nullptr; } ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1; uint8_t segmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF; int32_t verbCount, pointCount, conicCount; if (!buffer->readU32(&(ref->fGenerationID)) || !buffer->readS32(&verbCount) || (verbCount < 0) || !buffer->readS32(&pointCount) || (pointCount < 0) || !buffer->readS32(&conicCount) || (conicCount < 0)) { return nullptr; } uint64_t pointSize64 = sk_64_mul(pointCount, sizeof(SkPoint)); uint64_t conicSize64 = sk_64_mul(conicCount, sizeof(SkScalar)); if (!SkTFitsIn<size_t>(pointSize64) || !SkTFitsIn<size_t>(conicSize64)) { return nullptr; } size_t verbSize = verbCount * sizeof(uint8_t); size_t pointSize = SkToSizeT(pointSize64); size_t conicSize = SkToSizeT(conicSize64); { uint64_t requiredBufferSize = sizeof(SkRect); requiredBufferSize += verbSize; requiredBufferSize += pointSize; requiredBufferSize += conicSize; if (buffer->available() < requiredBufferSize) { return nullptr; } } ref->resetToSize(verbCount, pointCount, conicCount); SkASSERT(verbCount == ref->countVerbs()); SkASSERT(pointCount == ref->countPoints()); SkASSERT(conicCount == ref->fConicWeights.count()); if (!buffer->read(ref->verbsMemWritable(), verbSize) || !buffer->read(ref->fPoints, pointSize) || !buffer->read(ref->fConicWeights.begin(), conicSize) || !buffer->read(&ref->fBounds, sizeof(SkRect))) { return nullptr; } // Check that the verbs are valid, and imply the correct number of pts and conics { int pCount, cCount; if (!validate_verb_sequence(ref->verbsMemBegin(), ref->countVerbs())) { return nullptr; } if (!deduce_pts_conics(ref->verbsMemBegin(), ref->countVerbs(), &pCount, &cCount) || pCount != ref->countPoints() || cCount != ref->fConicWeights.count()) { return nullptr; } if (!validate_conic_weights(ref->fConicWeights.begin(), ref->fConicWeights.count())) { return nullptr; } // Check that the bounds match the serialized bounds. SkRect bounds; if (ComputePtBounds(&bounds, *ref) != SkToBool(ref->fIsFinite) || bounds != ref->fBounds) { return nullptr; } } ref->fBoundsIsDirty = false; // resetToSize clears fSegmentMask and fIsOval ref->fSegmentMask = segmentMask; return ref.release(); } void SkPathRef::Rewind(sk_sp<SkPathRef>* pathRef) { if ((*pathRef)->unique()) { SkDEBUGCODE((*pathRef)->validate();) (*pathRef)->callGenIDChangeListeners(); (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite (*pathRef)->fVerbCnt = 0; (*pathRef)->fPointCnt = 0; (*pathRef)->fFreeSpace = (*pathRef)->currSize(); (*pathRef)->fGenerationID = 0; (*pathRef)->fConicWeights.rewind(); (*pathRef)->fSegmentMask = 0; (*pathRef)->fIsOval = false; (*pathRef)->fIsRRect = false; SkDEBUGCODE((*pathRef)->validate();) } else { int oldVCnt = (*pathRef)->countVerbs(); int oldPCnt = (*pathRef)->countPoints(); pathRef->reset(new SkPathRef); (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); } } bool SkPathRef::operator== (const SkPathRef& ref) const { SkDEBUGCODE(this->validate();) SkDEBUGCODE(ref.validate();) // We explicitly check fSegmentMask as a quick-reject. We could skip it, // since it is only a cache of info in the fVerbs, but its a fast way to // notice a difference if (fSegmentMask != ref.fSegmentMask) { return false; } bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; #ifdef SK_RELEASE if (genIDMatch) { return true; } #endif if (fPointCnt != ref.fPointCnt || fVerbCnt != ref.fVerbCnt) { SkASSERT(!genIDMatch); return false; } if (0 == ref.fVerbCnt) { SkASSERT(0 == ref.fPointCnt); return true; } SkASSERT(this->verbsMemBegin() && ref.verbsMemBegin()); if (0 != memcmp(this->verbsMemBegin(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t))) { SkASSERT(!genIDMatch); return false; } SkASSERT(this->points() && ref.points()); if (0 != memcmp(this->points(), ref.points(), ref.fPointCnt * sizeof(SkPoint))) { SkASSERT(!genIDMatch); return false; } if (fConicWeights != ref.fConicWeights) { SkASSERT(!genIDMatch); return false; } return true; } void SkPathRef::writeToBuffer(SkWBuffer* buffer) const { SkDEBUGCODE(this->validate();) SkDEBUGCODE(size_t beforePos = buffer->pos();) // Call getBounds() to ensure (as a side-effect) that fBounds // and fIsFinite are computed. const SkRect& bounds = this->getBounds(); int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | (fSegmentMask << kSegmentMask_SerializationShift); buffer->write32(packed); // TODO: write gen ID here. Problem: We don't know if we're cross process or not from // SkWBuffer. Until this is fixed we write 0. buffer->write32(0); buffer->write32(fVerbCnt); buffer->write32(fPointCnt); buffer->write32(fConicWeights.count()); buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t)); buffer->write(fPoints, fPointCnt * sizeof(SkPoint)); buffer->write(fConicWeights.begin(), fConicWeights.bytes()); buffer->write(&bounds, sizeof(bounds)); SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); } uint32_t SkPathRef::writeSize() const { return uint32_t(5 * sizeof(uint32_t) + fVerbCnt * sizeof(uint8_t) + fPointCnt * sizeof(SkPoint) + fConicWeights.bytes() + sizeof(SkRect)); } void SkPathRef::copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints) { SkDEBUGCODE(this->validate();) this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(), additionalReserveVerbs, additionalReservePoints); sk_careful_memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt*sizeof(uint8_t)); sk_careful_memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint)); fConicWeights = ref.fConicWeights; fBoundsIsDirty = ref.fBoundsIsDirty; if (!fBoundsIsDirty) { fBounds = ref.fBounds; fIsFinite = ref.fIsFinite; } fSegmentMask = ref.fSegmentMask; fIsOval = ref.fIsOval; fIsRRect = ref.fIsRRect; fRRectOrOvalIsCCW = ref.fRRectOrOvalIsCCW; fRRectOrOvalStartIdx = ref.fRRectOrOvalStartIdx; SkDEBUGCODE(this->validate();) } void SkPathRef::interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const { const SkScalar* inValues = &ending.getPoints()->fX; SkScalar* outValues = &out->getPoints()->fX; int count = out->countPoints() * 2; for (int index = 0; index < count; ++index) { outValues[index] = outValues[index] * weight + inValues[index] * (1 - weight); } out->fBoundsIsDirty = true; out->fIsOval = false; out->fIsRRect = false; } SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights) { // This value is just made-up for now. When count is 4, calling memset was much // slower than just writing the loop. This seems odd, and hopefully in the // future this will appear to have been a fluke... static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16; SkDEBUGCODE(this->validate();) int pCnt; bool dirtyAfterEdit = true; switch (verb) { case SkPath::kMove_Verb: pCnt = numVbs; dirtyAfterEdit = false; break; case SkPath::kLine_Verb: fSegmentMask |= SkPath::kLine_SegmentMask; pCnt = numVbs; break; case SkPath::kQuad_Verb: fSegmentMask |= SkPath::kQuad_SegmentMask; pCnt = 2 * numVbs; break; case SkPath::kConic_Verb: fSegmentMask |= SkPath::kConic_SegmentMask; pCnt = 2 * numVbs; break; case SkPath::kCubic_Verb: fSegmentMask |= SkPath::kCubic_SegmentMask; pCnt = 3 * numVbs; break; case SkPath::kClose_Verb: SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); pCnt = 0; dirtyAfterEdit = false; break; case SkPath::kDone_Verb: SkDEBUGFAIL("growForRepeatedVerb called for kDone"); // fall through default: SkDEBUGFAIL("default should not be reached"); pCnt = 0; dirtyAfterEdit = false; } size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint); this->makeSpace(space); SkPoint* ret = fPoints + fPointCnt; uint8_t* vb = fVerbs - fVerbCnt; // cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to // be 0, the compiler will remove the test/branch entirely. if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) { memset(vb - numVbs, verb, numVbs); } else { for (int i = 0; i < numVbs; ++i) { vb[~i] = verb; } } fVerbCnt += numVbs; fPointCnt += pCnt; fFreeSpace -= space; fBoundsIsDirty = true; // this also invalidates fIsFinite if (dirtyAfterEdit) { fIsOval = false; fIsRRect = false; } if (SkPath::kConic_Verb == verb) { SkASSERT(weights); *weights = fConicWeights.append(numVbs); } SkDEBUGCODE(this->validate();) return ret; } SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { SkDEBUGCODE(this->validate();) int pCnt; bool dirtyAfterEdit = true; switch (verb) { case SkPath::kMove_Verb: pCnt = 1; dirtyAfterEdit = false; break; case SkPath::kLine_Verb: fSegmentMask |= SkPath::kLine_SegmentMask; pCnt = 1; break; case SkPath::kQuad_Verb: fSegmentMask |= SkPath::kQuad_SegmentMask; pCnt = 2; break; case SkPath::kConic_Verb: fSegmentMask |= SkPath::kConic_SegmentMask; pCnt = 2; break; case SkPath::kCubic_Verb: fSegmentMask |= SkPath::kCubic_SegmentMask; pCnt = 3; break; case SkPath::kClose_Verb: pCnt = 0; dirtyAfterEdit = false; break; case SkPath::kDone_Verb: SkDEBUGFAIL("growForVerb called for kDone"); // fall through default: SkDEBUGFAIL("default is not reached"); dirtyAfterEdit = false; pCnt = 0; } SkSafeMath safe; int newPointCnt = safe.addInt(fPointCnt, pCnt); int newVerbCnt = safe.addInt(fVerbCnt, 1); if (!safe) { SK_ABORT("cannot grow path"); } size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint); this->makeSpace(space); this->fVerbs[~fVerbCnt] = verb; SkPoint* ret = fPoints + fPointCnt; fVerbCnt = newVerbCnt; fPointCnt = newPointCnt; fFreeSpace -= space; fBoundsIsDirty = true; // this also invalidates fIsFinite if (dirtyAfterEdit) { fIsOval = false; fIsRRect = false; } if (SkPath::kConic_Verb == verb) { *fConicWeights.append() = weight; } SkDEBUGCODE(this->validate();) return ret; } uint32_t SkPathRef::genID() const { SkASSERT(!fEditorsAttached); static const uint32_t kMask = (static_cast<int64_t>(1) << SkPathPriv::kPathRefGenIDBitCnt) - 1; if (!fGenerationID) { if (0 == fPointCnt && 0 == fVerbCnt) { fGenerationID = kEmptyGenID; } else { static int32_t gPathRefGenerationID; // do a loop in case our global wraps around, as we never want to return a 0 or the // empty ID do { fGenerationID = (sk_atomic_inc(&gPathRefGenerationID) + 1) & kMask; } while (fGenerationID <= kEmptyGenID); } } return fGenerationID; } void SkPathRef::addGenIDChangeListener(GenIDChangeListener* listener) { if (nullptr == listener || this == gEmpty) { delete listener; return; } *fGenIDChangeListeners.append() = listener; } // we need to be called *before* the genID gets changed or zerod void SkPathRef::callGenIDChangeListeners() { for (int i = 0; i < fGenIDChangeListeners.count(); i++) { fGenIDChangeListeners[i]->onChange(); } // Listeners get at most one shot, so whether these triggered or not, blow them away. fGenIDChangeListeners.deleteAll(); } SkRRect SkPathRef::getRRect() const { const SkRect& bounds = this->getBounds(); SkVector radii[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; Iter iter(*this); SkPoint pts[4]; uint8_t verb = iter.next(pts); SkASSERT(SkPath::kMove_Verb == verb); while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { if (SkPath::kConic_Verb == verb) { SkVector v1_0 = pts[1] - pts[0]; SkVector v2_1 = pts[2] - pts[1]; SkVector dxdy; if (v1_0.fX) { SkASSERT(!v2_1.fX && !v1_0.fY); dxdy.set(SkScalarAbs(v1_0.fX), SkScalarAbs(v2_1.fY)); } else if (!v1_0.fY) { SkASSERT(!v2_1.fX || !v2_1.fY); dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v2_1.fY)); } else { SkASSERT(!v2_1.fY); dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v1_0.fY)); } SkRRect::Corner corner = pts[1].fX == bounds.fLeft ? pts[1].fY == bounds.fTop ? SkRRect::kUpperLeft_Corner : SkRRect::kLowerLeft_Corner : pts[1].fY == bounds.fTop ? SkRRect::kUpperRight_Corner : SkRRect::kLowerRight_Corner; SkASSERT(!radii[corner].fX && !radii[corner].fY); radii[corner] = dxdy; } else { SkASSERT((verb == SkPath::kLine_Verb && (!(pts[1].fX - pts[0].fX) || !(pts[1].fY - pts[0].fY))) || verb == SkPath::kClose_Verb); } } SkRRect rrect; rrect.setRectRadii(bounds, radii); return rrect; } /////////////////////////////////////////////////////////////////////////////// SkPathRef::Iter::Iter() { #ifdef SK_DEBUG fPts = nullptr; fConicWeights = nullptr; #endif // need to init enough to make next() harmlessly return kDone_Verb fVerbs = nullptr; fVerbStop = nullptr; } SkPathRef::Iter::Iter(const SkPathRef& path) { this->setPathRef(path); } void SkPathRef::Iter::setPathRef(const SkPathRef& path) { fPts = path.points(); fVerbs = path.verbs(); fVerbStop = path.verbsMemBegin(); fConicWeights = path.conicWeights(); if (fConicWeights) { fConicWeights -= 1; // begin one behind } // Don't allow iteration through non-finite points. if (!path.isFinite()) { fVerbStop = fVerbs; } } uint8_t SkPathRef::Iter::next(SkPoint pts[4]) { SkASSERT(pts); if (fVerbs == fVerbStop) { return (uint8_t) SkPath::kDone_Verb; } // fVerbs points one beyond next verb so decrement first. unsigned verb = *(--fVerbs); const SkPoint* srcPts = fPts; switch (verb) { case SkPath::kMove_Verb: pts[0] = srcPts[0]; srcPts += 1; break; case SkPath::kLine_Verb: pts[0] = srcPts[-1]; pts[1] = srcPts[0]; srcPts += 1; break; case SkPath::kConic_Verb: fConicWeights += 1; // fall-through case SkPath::kQuad_Verb: pts[0] = srcPts[-1]; pts[1] = srcPts[0]; pts[2] = srcPts[1]; srcPts += 2; break; case SkPath::kCubic_Verb: pts[0] = srcPts[-1]; pts[1] = srcPts[0]; pts[2] = srcPts[1]; pts[3] = srcPts[2]; srcPts += 3; break; case SkPath::kClose_Verb: break; case SkPath::kDone_Verb: SkASSERT(fVerbs == fVerbStop); break; } fPts = srcPts; return (uint8_t) verb; } uint8_t SkPathRef::Iter::peek() const { const uint8_t* next = fVerbs - 1; return next <= fVerbStop ? (uint8_t) SkPath::kDone_Verb : *next; } bool SkPathRef::isValid() const { if (static_cast<ptrdiff_t>(fFreeSpace) < 0) { return false; } if (reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) < 0) { return false; } if ((nullptr == fPoints) != (nullptr == fVerbs)) { return false; } if (nullptr == fPoints && 0 != fFreeSpace) { return false; } if (nullptr == fPoints && fPointCnt) { return false; } if (nullptr == fVerbs && fVerbCnt) { return false; } if (this->currSize() != fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt) { return false; } if (fIsOval || fIsRRect) { // Currently we don't allow both of these to be set, even though ovals are ro if (fIsOval == fIsRRect) { return false; } if (fIsOval) { if (fRRectOrOvalStartIdx >= 4) { return false; } } else { if (fRRectOrOvalStartIdx >= 8) { return false; } } } if (!fBoundsIsDirty && !fBounds.isEmpty()) { bool isFinite = true; Sk2s leftTop = Sk2s(fBounds.fLeft, fBounds.fTop); Sk2s rightBot = Sk2s(fBounds.fRight, fBounds.fBottom); for (int i = 0; i < fPointCnt; ++i) { Sk2s point = Sk2s(fPoints[i].fX, fPoints[i].fY); #ifdef SK_DEBUG if (fPoints[i].isFinite() && ((point < leftTop).anyTrue() || (point > rightBot).anyTrue())) { SkDebugf("bounds: %f %f %f %f\n", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); for (int j = 0; j < fPointCnt; ++j) { if (i == j) { SkDebugf("*"); } SkDebugf("%f %f\n", fPoints[j].fX, fPoints[j].fY); } } #endif if (fPoints[i].isFinite() && (point < leftTop).anyTrue() && !(point > rightBot).anyTrue()) return false; if (!fPoints[i].isFinite()) { isFinite = false; } } if (SkToBool(fIsFinite) != isFinite) { return false; } } #ifdef SK_DEBUG_PATH uint32_t mask = 0; for (int i = 0; i < fVerbCnt; ++i) { switch (fVerbs[~i]) { case SkPath::kMove_Verb: break; case SkPath::kLine_Verb: mask |= SkPath::kLine_SegmentMask; break; case SkPath::kQuad_Verb: mask |= SkPath::kQuad_SegmentMask; break; case SkPath::kConic_Verb: mask |= SkPath::kConic_SegmentMask; break; case SkPath::kCubic_Verb: mask |= SkPath::kCubic_SegmentMask; break; case SkPath::kClose_Verb: break; case SkPath::kDone_Verb: SkDEBUGFAIL("Done verb shouldn't be recorded."); break; default: SkDEBUGFAIL("Unknown Verb"); break; } } if (mask != fSegmentMask) { return false; } #endif // SK_DEBUG_PATH return true; }