/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_neon_DEFINED #define SkNx_neon_DEFINED #include <arm_neon.h> namespace { // ARMv8 has vrndmq_f32 to floor 4 floats. Here we emulate it: // - roundtrip through integers via truncation // - subtract 1 if that's too big (possible for negative values). // This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big. AI static float32x4_t armv7_vrndmq_f32(float32x4_t v) { auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); auto too_big = vcgtq_f32(roundtrip, v); return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1))); } template <> class SkNx<2, float> { public: AI SkNx(float32x2_t vec) : fVec(vec) {} AI SkNx() {} AI SkNx(float val) : fVec(vdup_n_f32(val)) {} AI SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; } AI static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); } AI void store(void* ptr) const { vst1_f32((float*)ptr, fVec); } AI static void Store3(void* dst, const SkNx& a, const SkNx& b, const SkNx& c) { float32x2x3_t abc = {{ a.fVec, b.fVec, c.fVec, }}; vst3_f32((float*) dst, abc); } AI SkNx invert() const { float32x2_t est0 = vrecpe_f32(fVec), est1 = vmul_f32(vrecps_f32(est0, fVec), est0); return est1; } AI SkNx operator - () const { return vneg_f32(fVec); } AI SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); } AI SkNx operator / (const SkNx& o) const { #if defined(SK_CPU_ARM64) return vdiv_f32(fVec, o.fVec); #else float32x2_t est0 = vrecpe_f32(o.fVec), est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0), est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1); return vmul_f32(fVec, est2); #endif } AI SkNx operator==(const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); } AI SkNx operator <(const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); } AI SkNx operator >(const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); } AI SkNx operator<=(const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); } AI SkNx operator>=(const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); } AI SkNx operator!=(const SkNx& o) const { return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec))); } AI static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); } AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); } AI SkNx abs() const { return vabs_f32(fVec); } AI SkNx rsqrt() const { float32x2_t est0 = vrsqrte_f32(fVec); return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); } AI SkNx sqrt() const { #if defined(SK_CPU_ARM64) return vsqrt_f32(fVec); #else float32x2_t est0 = vrsqrte_f32(fVec), est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0), est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); return vmul_f32(fVec, est2); #endif } AI float operator[](int k) const { SkASSERT(0 <= k && k < 2); union { float32x2_t v; float fs[2]; } pun = {fVec}; return pun.fs[k&1]; } AI bool allTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) && vget_lane_u32(v,1); } AI bool anyTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) || vget_lane_u32(v,1); } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbsl_f32(vreinterpret_u32_f32(fVec), t.fVec, e.fVec); } float32x2_t fVec; }; template <> class SkNx<4, float> { public: AI SkNx(float32x4_t vec) : fVec(vec) {} AI SkNx() {} AI SkNx(float val) : fVec(vdupq_n_f32(val)) {} AI SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } AI static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); } AI void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); } AI static void Load2(const void* ptr, SkNx* x, SkNx* y) { float32x4x2_t xy = vld2q_f32((const float*) ptr); *x = xy.val[0]; *y = xy.val[1]; } AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { float32x4x4_t rgba = vld4q_f32((const float*) ptr); *r = rgba.val[0]; *g = rgba.val[1]; *b = rgba.val[2]; *a = rgba.val[3]; } AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { float32x4x4_t rgba = {{ r.fVec, g.fVec, b.fVec, a.fVec, }}; vst4q_f32((float*) dst, rgba); } AI SkNx invert() const { float32x4_t est0 = vrecpeq_f32(fVec), est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); return est1; } AI SkNx operator - () const { return vnegq_f32(fVec); } AI SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); } AI SkNx operator / (const SkNx& o) const { #if defined(SK_CPU_ARM64) return vdivq_f32(fVec, o.fVec); #else float32x4_t est0 = vrecpeq_f32(o.fVec), est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0), est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1); return vmulq_f32(fVec, est2); #endif } AI SkNx operator==(const SkNx& o) const {return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec));} AI SkNx operator <(const SkNx& o) const {return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec));} AI SkNx operator >(const SkNx& o) const {return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec));} AI SkNx operator<=(const SkNx& o) const {return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec));} AI SkNx operator>=(const SkNx& o) const {return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec));} AI SkNx operator!=(const SkNx& o) const { return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); } AI static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); } AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); } AI SkNx abs() const { return vabsq_f32(fVec); } AI SkNx floor() const { #if defined(SK_CPU_ARM64) return vrndmq_f32(fVec); #else return armv7_vrndmq_f32(fVec); #endif } AI SkNx rsqrt() const { float32x4_t est0 = vrsqrteq_f32(fVec); return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); } AI SkNx sqrt() const { #if defined(SK_CPU_ARM64) return vsqrtq_f32(fVec); #else float32x4_t est0 = vrsqrteq_f32(fVec), est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0), est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); return vmulq_f32(fVec, est2); #endif } AI float operator[](int k) const { SkASSERT(0 <= k && k < 4); union { float32x4_t v; float fs[4]; } pun = {fVec}; return pun.fs[k&3]; } AI bool allTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1) && vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3); } AI bool anyTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1) || vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3); } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec); } float32x4_t fVec; }; #if defined(SK_CPU_ARM64) AI static Sk4f SkNx_fma(const Sk4f& f, const Sk4f& m, const Sk4f& a) { return vfmaq_f32(a.fVec, f.fVec, m.fVec); } #endif // It's possible that for our current use cases, representing this as // half a uint16x8_t might be better than representing it as a uint16x4_t. // It'd make conversion to Sk4b one step simpler. template <> class SkNx<4, uint16_t> { public: AI SkNx(const uint16x4_t& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {} AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) { fVec = (uint16x4_t) { a,b,c,d }; } AI static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); } AI void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); } AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { uint16x4x4_t rgba = vld4_u16((const uint16_t*)ptr); *r = rgba.val[0]; *g = rgba.val[1]; *b = rgba.val[2]; *a = rgba.val[3]; } AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) { uint16x4x3_t rgba = vld3_u16((const uint16_t*)ptr); *r = rgba.val[0]; *g = rgba.val[1]; *b = rgba.val[2]; } AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { uint16x4x4_t rgba = {{ r.fVec, g.fVec, b.fVec, a.fVec, }}; vst4_u16((uint16_t*) dst, rgba); } AI SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return vand_u16(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return vorr_u16(fVec, o.fVec); } AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } AI static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); } AI uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { uint16x4_t v; uint16_t us[4]; } pun = {fVec}; return pun.us[k&3]; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbsl_u16(fVec, t.fVec, e.fVec); } uint16x4_t fVec; }; template <> class SkNx<8, uint16_t> { public: AI SkNx(const uint16x8_t& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {} AI static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); } AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) { fVec = (uint16x8_t) { a,b,c,d, e,f,g,h }; } AI void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); } AI SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return vandq_u16(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return vorrq_u16(fVec, o.fVec); } AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); } AI uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 8); union { uint16x8_t v; uint16_t us[8]; } pun = {fVec}; return pun.us[k&7]; } AI SkNx mulHi(const SkNx& m) const { uint32x4_t hi = vmull_u16(vget_high_u16(fVec), vget_high_u16(m.fVec)); uint32x4_t lo = vmull_u16( vget_low_u16(fVec), vget_low_u16(m.fVec)); return { vcombine_u16(vshrn_n_u32(lo,16), vshrn_n_u32(hi,16)) }; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u16(fVec, t.fVec, e.fVec); } uint16x8_t fVec; }; template <> class SkNx<4, uint8_t> { public: typedef uint32_t __attribute__((aligned(1))) unaligned_uint32_t; AI SkNx(const uint8x8_t& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { fVec = (uint8x8_t){a,b,c,d, 0,0,0,0}; } AI static SkNx Load(const void* ptr) { return (uint8x8_t)vld1_dup_u32((const unaligned_uint32_t*)ptr); } AI void store(void* ptr) const { return vst1_lane_u32((unaligned_uint32_t*)ptr, (uint32x2_t)fVec, 0); } AI uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { uint8x8_t v; uint8_t us[8]; } pun = {fVec}; return pun.us[k&3]; } // TODO as needed uint8x8_t fVec; }; template <> class SkNx<8, uint8_t> { public: AI SkNx(const uint8x8_t& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint8_t val) : fVec(vdup_n_u8(val)) {} AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h) { fVec = (uint8x8_t) { a,b,c,d, e,f,g,h }; } AI static SkNx Load(const void* ptr) { return vld1_u8((const uint8_t*)ptr); } AI void store(void* ptr) const { vst1_u8((uint8_t*)ptr, fVec); } AI uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 8); union { uint8x8_t v; uint8_t us[8]; } pun = {fVec}; return pun.us[k&7]; } uint8x8_t fVec; }; template <> class SkNx<16, uint8_t> { public: AI SkNx(const uint8x16_t& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {} AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) { fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p }; } AI static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); } AI void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); } AI SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); } AI SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); } AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); } AI SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); } AI uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 16); union { uint8x16_t v; uint8_t us[16]; } pun = {fVec}; return pun.us[k&15]; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u8(fVec, t.fVec, e.fVec); } uint8x16_t fVec; }; template <> class SkNx<4, int32_t> { public: AI SkNx(const int32x4_t& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(int32_t v) { fVec = vdupq_n_s32(v); } AI SkNx(int32_t a, int32_t b, int32_t c, int32_t d) { fVec = (int32x4_t){a,b,c,d}; } AI static SkNx Load(const void* ptr) { return vld1q_s32((const int32_t*)ptr); } AI void store(void* ptr) const { return vst1q_s32((int32_t*)ptr, fVec); } AI int32_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { int32x4_t v; int32_t is[4]; } pun = {fVec}; return pun.is[k&3]; } AI SkNx operator + (const SkNx& o) const { return vaddq_s32(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return vsubq_s32(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return vmulq_s32(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return vandq_s32(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return vorrq_s32(fVec, o.fVec); } AI SkNx operator ^ (const SkNx& o) const { return veorq_s32(fVec, o.fVec); } AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } AI SkNx operator == (const SkNx& o) const { return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec)); } AI SkNx operator < (const SkNx& o) const { return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec)); } AI SkNx operator > (const SkNx& o) const { return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec)); } AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_s32(a.fVec, b.fVec); } AI static SkNx Max(const SkNx& a, const SkNx& b) { return vmaxq_s32(a.fVec, b.fVec); } // TODO as needed AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_s32(vreinterpretq_u32_s32(fVec), t.fVec, e.fVec); } AI SkNx abs() const { return vabsq_s32(fVec); } int32x4_t fVec; }; template <> class SkNx<4, uint32_t> { public: AI SkNx(const uint32x4_t& vec) : fVec(vec) {} AI SkNx() {} AI SkNx(uint32_t v) { fVec = vdupq_n_u32(v); } AI SkNx(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { fVec = (uint32x4_t){a,b,c,d}; } AI static SkNx Load(const void* ptr) { return vld1q_u32((const uint32_t*)ptr); } AI void store(void* ptr) const { return vst1q_u32((uint32_t*)ptr, fVec); } AI uint32_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { uint32x4_t v; uint32_t us[4]; } pun = {fVec}; return pun.us[k&3]; } AI SkNx operator + (const SkNx& o) const { return vaddq_u32(fVec, o.fVec); } AI SkNx operator - (const SkNx& o) const { return vsubq_u32(fVec, o.fVec); } AI SkNx operator * (const SkNx& o) const { return vmulq_u32(fVec, o.fVec); } AI SkNx operator & (const SkNx& o) const { return vandq_u32(fVec, o.fVec); } AI SkNx operator | (const SkNx& o) const { return vorrq_u32(fVec, o.fVec); } AI SkNx operator ^ (const SkNx& o) const { return veorq_u32(fVec, o.fVec); } AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } AI SkNx operator == (const SkNx& o) const { return vceqq_u32(fVec, o.fVec); } AI SkNx operator < (const SkNx& o) const { return vcltq_u32(fVec, o.fVec); } AI SkNx operator > (const SkNx& o) const { return vcgtq_u32(fVec, o.fVec); } AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u32(a.fVec, b.fVec); } // TODO as needed AI SkNx mulHi(const SkNx& m) const { uint64x2_t hi = vmull_u32(vget_high_u32(fVec), vget_high_u32(m.fVec)); uint64x2_t lo = vmull_u32( vget_low_u32(fVec), vget_low_u32(m.fVec)); return { vcombine_u32(vshrn_n_u64(lo,32), vshrn_n_u64(hi,32)) }; } AI SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u32(fVec, t.fVec, e.fVec); } uint32x4_t fVec; }; template<> AI /*static*/ Sk4i SkNx_cast<int32_t, float>(const Sk4f& src) { return vcvtq_s32_f32(src.fVec); } template<> AI /*static*/ Sk4f SkNx_cast<float, int32_t>(const Sk4i& src) { return vcvtq_f32_s32(src.fVec); } template<> AI /*static*/ Sk4f SkNx_cast<float, uint32_t>(const Sk4u& src) { return SkNx_cast<float>(Sk4i::Load(&src)); } template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) { return vqmovn_u32(vcvtq_u32_f32(src.fVec)); } template<> AI /*static*/ Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) { return vcvtq_f32_u32(vmovl_u16(src.fVec)); } template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) { uint32x4_t _32 = vcvtq_u32_f32(src.fVec); uint16x4_t _16 = vqmovn_u32(_32); return vqmovn_u16(vcombine_u16(_16, _16)); } template<> AI /*static*/ Sk4u SkNx_cast<uint32_t, uint8_t>(const Sk4b& src) { uint16x8_t _16 = vmovl_u8(src.fVec); return vmovl_u16(vget_low_u16(_16)); } template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint8_t>(const Sk4b& src) { return vreinterpretq_s32_u32(SkNx_cast<uint32_t>(src).fVec); } template<> AI /*static*/ Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) { return vcvtq_f32_s32(SkNx_cast<int32_t>(src).fVec); } template<> AI /*static*/ Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) { Sk8f ab, cd; SkNx_split(src, &ab, &cd); Sk4f a,b,c,d; SkNx_split(ab, &a, &b); SkNx_split(cd, &c, &d); return vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec), (uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0], vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec), (uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]; } template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, int32_t>(const Sk8i& src) { Sk4i a, b; SkNx_split(src, &a, &b); uint16x4_t a16 = vqmovun_s32(a.fVec); uint16x4_t b16 = vqmovun_s32(b.fVec); return vqmovn_u16(vcombine_u16(a16, b16)); } template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) { return vget_low_u16(vmovl_u8(src.fVec)); } template<> AI /*static*/ Sk8h SkNx_cast<uint16_t, uint8_t>(const Sk8b& src) { return vmovl_u8(src.fVec); } template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) { return vmovn_u16(vcombine_u16(src.fVec, src.fVec)); } template<> AI /*static*/ Sk8b SkNx_cast<uint8_t, uint16_t>(const Sk8h& src) { return vqmovn_u16(src.fVec); } template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, int32_t>(const Sk4i& src) { uint16x4_t _16 = vqmovun_s32(src.fVec); return vqmovn_u16(vcombine_u16(_16, _16)); } template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint32_t>(const Sk4u& src) { uint16x4_t _16 = vqmovn_u32(src.fVec); return vqmovn_u16(vcombine_u16(_16, _16)); } template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint16_t>(const Sk4h& src) { return vreinterpretq_s32_u32(vmovl_u16(src.fVec)); } template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, int32_t>(const Sk4i& src) { return vmovn_u32(vreinterpretq_u32_s32(src.fVec)); } template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint32_t>(const Sk4u& src) { return vreinterpretq_s32_u32(src.fVec); } AI static Sk4i Sk4f_round(const Sk4f& x) { return vcvtq_s32_f32((x + 0.5f).fVec); } } // namespace #endif//SkNx_neon_DEFINED