/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAddIntersections.h" #include "SkOpCoincidence.h" #include "SkOpEdgeBuilder.h" #include "SkPathOpsCommon.h" #include "SkPathWriter.h" static SkOpSegment* findChaseOp(SkTDArray<SkOpSpanBase*>& chase, SkOpSpanBase** startPtr, SkOpSpanBase** endPtr) { while (chase.count()) { SkOpSpanBase* span; chase.pop(&span); // OPTIMIZE: prev makes this compatible with old code -- but is it necessary? *startPtr = span->ptT()->prev()->span(); SkOpSegment* segment = (*startPtr)->segment(); bool done = true; *endPtr = nullptr; if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done)) { *startPtr = last->start(); *endPtr = last->end(); #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return last->segment(); } if (done) { continue; } int winding; bool sortable; const SkOpAngle* angle = AngleWinding(*startPtr, *endPtr, &winding, &sortable); if (!angle) { return nullptr; } if (winding == SK_MinS32) { continue; } int sumMiWinding, sumSuWinding; if (sortable) { segment = angle->segment(); sumMiWinding = segment->updateWindingReverse(angle); if (sumMiWinding == SK_MinS32) { SkASSERT(segment->globalState()->debugSkipAssert()); return nullptr; } sumSuWinding = segment->updateOppWindingReverse(angle); if (sumSuWinding == SK_MinS32) { SkASSERT(segment->globalState()->debugSkipAssert()); return nullptr; } if (segment->operand()) { SkTSwap<int>(sumMiWinding, sumSuWinding); } } SkOpSegment* first = nullptr; const SkOpAngle* firstAngle = angle; while ((angle = angle->next()) != firstAngle) { segment = angle->segment(); SkOpSpanBase* start = angle->start(); SkOpSpanBase* end = angle->end(); int maxWinding = 0, sumWinding = 0, oppMaxWinding = 0, oppSumWinding = 0; if (sortable) { segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding, &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); } if (!segment->done(angle)) { if (!first && (sortable || start->starter(end)->windSum() != SK_MinS32)) { first = segment; *startPtr = start; *endPtr = end; } // OPTIMIZATION: should this also add to the chase? if (sortable) { (void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding, oppSumWinding, angle); } } } if (first) { #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return first; } } return nullptr; } static bool bridgeOp(SkOpContourHead* contourList, const SkPathOp op, const int xorMask, const int xorOpMask, SkPathWriter* simple) { bool unsortable = false; do { SkOpSpan* span = FindSortableTop(contourList); if (!span) { break; } SkOpSegment* current = span->segment(); SkOpSpanBase* start = span->next(); SkOpSpanBase* end = span; SkTDArray<SkOpSpanBase*> chase; do { if (current->activeOp(start, end, xorMask, xorOpMask, op)) { do { if (!unsortable && current->done()) { break; } SkASSERT(unsortable || !current->done()); SkOpSpanBase* nextStart = start; SkOpSpanBase* nextEnd = end; SkOpSegment* next = current->findNextOp(&chase, &nextStart, &nextEnd, &unsortable, op, xorMask, xorOpMask); if (!next) { if (!unsortable && simple->hasMove() && current->verb() != SkPath::kLine_Verb && !simple->isClosed()) { if (!current->addCurveTo(start, end, simple)) { return false; } if (!simple->isClosed()) { SkPathOpsDebug::ShowActiveSpans(contourList); } } break; } #if DEBUG_FLOW SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, current->debugID(), start->pt().fX, start->pt().fY, end->pt().fX, end->pt().fY); #endif if (!current->addCurveTo(start, end, simple)) { return false; } current = next; start = nextStart; end = nextEnd; } while (!simple->isClosed() && (!unsortable || !start->starter(end)->done())); if (current->activeWinding(start, end) && !simple->isClosed()) { SkOpSpan* spanStart = start->starter(end); if (!spanStart->done()) { if (!current->addCurveTo(start, end, simple)) { return false; } current->markDone(spanStart); } } simple->finishContour(); } else { SkOpSpanBase* last = current->markAndChaseDone(start, end); if (last && !last->chased()) { last->setChased(true); SkASSERT(!SkPathOpsDebug::ChaseContains(chase, last)); *chase.append() = last; #if DEBUG_WINDING SkDebugf("%s chase.append id=%d", __FUNCTION__, last->segment()->debugID()); if (!last->final()) { SkDebugf(" windSum=%d", last->upCast()->windSum()); } SkDebugf("\n"); #endif } } current = findChaseOp(chase, &start, &end); SkPathOpsDebug::ShowActiveSpans(contourList); if (!current) { break; } } while (true); } while (true); return true; } // diagram of why this simplifcation is possible is here: // https://skia.org/dev/present/pathops link at bottom of the page // https://drive.google.com/file/d/0BwoLUwz9PYkHLWpsaXd0UDdaN00/view?usp=sharing static const SkPathOp gOpInverse[kReverseDifference_SkPathOp + 1][2][2] = { // inside minuend outside minuend // inside subtrahend outside subtrahend inside subtrahend outside subtrahend {{ kDifference_SkPathOp, kIntersect_SkPathOp }, { kUnion_SkPathOp, kReverseDifference_SkPathOp }}, {{ kIntersect_SkPathOp, kDifference_SkPathOp }, { kReverseDifference_SkPathOp, kUnion_SkPathOp }}, {{ kUnion_SkPathOp, kReverseDifference_SkPathOp }, { kDifference_SkPathOp, kIntersect_SkPathOp }}, {{ kXOR_SkPathOp, kXOR_SkPathOp }, { kXOR_SkPathOp, kXOR_SkPathOp }}, {{ kReverseDifference_SkPathOp, kUnion_SkPathOp }, { kIntersect_SkPathOp, kDifference_SkPathOp }}, }; static const bool gOutInverse[kReverseDifference_SkPathOp + 1][2][2] = { {{ false, false }, { true, false }}, // diff {{ false, false }, { false, true }}, // sect {{ false, true }, { true, true }}, // union {{ false, true }, { true, false }}, // xor {{ false, true }, { false, false }}, // rev diff }; #if DEBUG_T_SECT_LOOP_COUNT #include "SkMutex.h" SK_DECLARE_STATIC_MUTEX(debugWorstLoop); SkOpGlobalState debugWorstState(nullptr, nullptr SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr) SkDEBUGPARAMS(nullptr)); void ReportPathOpsDebugging() { debugWorstState.debugLoopReport(); } extern void (*gVerboseFinalize)(); #endif bool OpDebug(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result SkDEBUGPARAMS(bool skipAssert) SkDEBUGPARAMS(const char* testName)) { SkSTArenaAlloc<4096> allocator; // FIXME: add a constant expression here, tune SkOpContour contour; SkOpContourHead* contourList = static_cast<SkOpContourHead*>(&contour); SkOpGlobalState globalState(contourList, &allocator SkDEBUGPARAMS(skipAssert) SkDEBUGPARAMS(testName)); SkOpCoincidence coincidence(&globalState); #if DEBUG_DUMP_VERIFY #ifndef SK_DEBUG const char* testName = "release"; #endif if (SkPathOpsDebug::gDumpOp) { SkPathOpsDebug::DumpOp(one, two, op, testName); } #endif op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()]; SkPath::FillType fillType = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()] ? SkPath::kInverseEvenOdd_FillType : SkPath::kEvenOdd_FillType; SkScalar scaleFactor = SkTMax(ScaleFactor(one), ScaleFactor(two)); SkPath scaledOne, scaledTwo; const SkPath* minuend, * subtrahend; if (scaleFactor > SK_Scalar1) { ScalePath(one, 1.f / scaleFactor, &scaledOne); minuend = &scaledOne; ScalePath(two, 1.f / scaleFactor, &scaledTwo); subtrahend = &scaledTwo; } else { minuend = &one; subtrahend = &two; } if (op == kReverseDifference_SkPathOp) { SkTSwap(minuend, subtrahend); op = kDifference_SkPathOp; } #if DEBUG_SORT SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault; #endif // turn path into list of segments SkOpEdgeBuilder builder(*minuend, contourList, &globalState); if (builder.unparseable()) { return false; } const int xorMask = builder.xorMask(); builder.addOperand(*subtrahend); if (!builder.finish()) { return false; } #if DEBUG_DUMP_SEGMENTS contourList->dumpSegments("seg", op); #endif const int xorOpMask = builder.xorMask(); if (!SortContourList(&contourList, xorMask == kEvenOdd_PathOpsMask, xorOpMask == kEvenOdd_PathOpsMask)) { result->reset(); result->setFillType(fillType); return true; } // find all intersections between segments SkOpContour* current = contourList; do { SkOpContour* next = current; while (AddIntersectTs(current, next, &coincidence) && (next = next->next())) ; } while ((current = current->next())); #if DEBUG_VALIDATE globalState.setPhase(SkOpPhase::kWalking); #endif bool success = HandleCoincidence(contourList, &coincidence); #if DEBUG_COIN globalState.debugAddToGlobalCoinDicts(); #endif if (!success) { return false; } #if DEBUG_ALIGNMENT contourList->dumpSegments("aligned"); #endif // construct closed contours result->reset(); result->setFillType(fillType); SkPathWriter wrapper(*result); if (!bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper)) { return false; } wrapper.assemble(); // if some edges could not be resolved, assemble remaining #if DEBUG_T_SECT_LOOP_COUNT { SkAutoMutexAcquire autoM(debugWorstLoop); if (!gVerboseFinalize) { gVerboseFinalize = &ReportPathOpsDebugging; } debugWorstState.debugDoYourWorst(&globalState); } #endif if (scaleFactor > 1) { ScalePath(*result, scaleFactor, result); } return true; } bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) { #if DEBUG_DUMP_VERIFY if (SkPathOpsDebug::gVerifyOp) { if (!OpDebug(one, two, op, result SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr))) { SkPathOpsDebug::ReportOpFail(one, two, op); return false; } SkPathOpsDebug::VerifyOp(one, two, op, *result); return true; } #endif return OpDebug(one, two, op, result SkDEBUGPARAMS(true) SkDEBUGPARAMS(nullptr)); }