/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPictureShader.h" #include "SkArenaAlloc.h" #include "SkBitmap.h" #include "SkBitmapProcShader.h" #include "SkCanvas.h" #include "SkColorSpaceXformCanvas.h" #include "SkImage.h" #include "SkImageShader.h" #include "SkMatrixUtils.h" #include "SkPicture.h" #include "SkPictureImageGenerator.h" #include "SkReadBuffer.h" #include "SkResourceCache.h" #if SK_SUPPORT_GPU #include "GrCaps.h" #include "GrColorSpaceInfo.h" #include "GrContext.h" #include "GrFragmentProcessor.h" #endif namespace { static unsigned gBitmapSkaderKeyNamespaceLabel; struct BitmapShaderKey : public SkResourceCache::Key { public: BitmapShaderKey(sk_sp<SkColorSpace> colorSpace, uint32_t shaderID, const SkRect& tile, SkShader::TileMode tmx, SkShader::TileMode tmy, const SkSize& scale, const SkMatrix& localMatrix, SkTransferFunctionBehavior blendBehavior) : fColorSpace(std::move(colorSpace)) , fTile(tile) , fTmx(tmx) , fTmy(tmy) , fScale(scale) , fBlendBehavior(blendBehavior) { for (int i = 0; i < 9; ++i) { fLocalMatrixStorage[i] = localMatrix[i]; } static const size_t keySize = sizeof(fColorSpace) + sizeof(fTile) + sizeof(fTmx) + sizeof(fTmy) + sizeof(fScale) + sizeof(fLocalMatrixStorage) + sizeof(fBlendBehavior); // This better be packed. SkASSERT(sizeof(uint32_t) * (&fEndOfStruct - (uint32_t*)&fColorSpace) == keySize); this->init(&gBitmapSkaderKeyNamespaceLabel, MakeSharedID(shaderID), keySize); } static uint64_t MakeSharedID(uint32_t shaderID) { uint64_t sharedID = SkSetFourByteTag('p', 's', 'd', 'r'); return (sharedID << 32) | shaderID; } private: // TODO: there are some fishy things about using CS sk_sps in the key: // - false negatives: keys are memcmp'ed, so we don't detect equivalent CSs // (SkColorspace::Equals) // - we're keeping the CS alive, even when the client releases it // // Ideally we'd be using unique IDs or some other weak ref + purge mechanism // when the CS is deleted. sk_sp<SkColorSpace> fColorSpace; SkRect fTile; SkShader::TileMode fTmx, fTmy; SkSize fScale; SkScalar fLocalMatrixStorage[9]; SkTransferFunctionBehavior fBlendBehavior; SkDEBUGCODE(uint32_t fEndOfStruct;) }; struct BitmapShaderRec : public SkResourceCache::Rec { BitmapShaderRec(const BitmapShaderKey& key, SkShader* tileShader) : fKey(key) , fShader(SkRef(tileShader)) {} BitmapShaderKey fKey; sk_sp<SkShader> fShader; size_t fBitmapBytes; const Key& getKey() const override { return fKey; } size_t bytesUsed() const override { // Just the record overhead -- the actual pixels are accounted by SkImageCacherator. return sizeof(fKey) + sizeof(SkImageShader); } const char* getCategory() const override { return "bitmap-shader"; } SkDiscardableMemory* diagnostic_only_getDiscardable() const override { return nullptr; } static bool Visitor(const SkResourceCache::Rec& baseRec, void* contextShader) { const BitmapShaderRec& rec = static_cast<const BitmapShaderRec&>(baseRec); sk_sp<SkShader>* result = reinterpret_cast<sk_sp<SkShader>*>(contextShader); *result = rec.fShader; // The bitmap shader is backed by an image generator, thus it can always re-generate its // pixels if discarded. return true; } }; static int32_t gNextID = 1; uint32_t next_id() { int32_t id; do { id = sk_atomic_inc(&gNextID); } while (id == SK_InvalidGenID); return static_cast<uint32_t>(id); } } // namespace SkPictureShader::SkPictureShader(sk_sp<SkPicture> picture, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix, const SkRect* tile, sk_sp<SkColorSpace> colorSpace) : INHERITED(localMatrix) , fPicture(std::move(picture)) , fTile(tile ? *tile : fPicture->cullRect()) , fTmx(tmx) , fTmy(tmy) , fColorSpace(std::move(colorSpace)) , fUniqueID(next_id()) , fAddedToCache(false) {} SkPictureShader::~SkPictureShader() { if (fAddedToCache.load()) { SkResourceCache::PostPurgeSharedID(BitmapShaderKey::MakeSharedID(fUniqueID)); } } sk_sp<SkShader> SkPictureShader::Make(sk_sp<SkPicture> picture, TileMode tmx, TileMode tmy, const SkMatrix* localMatrix, const SkRect* tile) { if (!picture || picture->cullRect().isEmpty() || (tile && tile->isEmpty())) { return SkShader::MakeEmptyShader(); } return sk_sp<SkShader>(new SkPictureShader(std::move(picture), tmx, tmy, localMatrix, tile, nullptr)); } sk_sp<SkFlattenable> SkPictureShader::CreateProc(SkReadBuffer& buffer) { SkMatrix lm; buffer.readMatrix(&lm); TileMode mx = (TileMode)buffer.read32(); TileMode my = (TileMode)buffer.read32(); SkRect tile; buffer.readRect(&tile); sk_sp<SkPicture> picture; bool didSerialize = buffer.readBool(); if (didSerialize) { picture = SkPicture::MakeFromBuffer(buffer); } return SkPictureShader::Make(picture, mx, my, &lm, &tile); } void SkPictureShader::flatten(SkWriteBuffer& buffer) const { buffer.writeMatrix(this->getLocalMatrix()); buffer.write32(fTmx); buffer.write32(fTmy); buffer.writeRect(fTile); buffer.writeBool(true); fPicture->flatten(buffer); } sk_sp<SkShader> SkPictureShader::refBitmapShader(const SkMatrix& viewMatrix, const SkMatrix* localM, SkColorSpace* dstColorSpace, const int maxTextureSize) const { SkASSERT(fPicture && !fPicture->cullRect().isEmpty()); SkMatrix m; m.setConcat(viewMatrix, this->getLocalMatrix()); if (localM) { m.preConcat(*localM); } // Use a rotation-invariant scale SkPoint scale; // // TODO: replace this with decomposeScale() -- but beware LayoutTest rebaselines! // if (!SkDecomposeUpper2x2(m, nullptr, &scale, nullptr)) { // Decomposition failed, use an approximation. scale.set(SkScalarSqrt(m.getScaleX() * m.getScaleX() + m.getSkewX() * m.getSkewX()), SkScalarSqrt(m.getScaleY() * m.getScaleY() + m.getSkewY() * m.getSkewY())); } SkSize scaledSize = SkSize::Make(SkScalarAbs(scale.x() * fTile.width()), SkScalarAbs(scale.y() * fTile.height())); // Clamp the tile size to about 4M pixels static const SkScalar kMaxTileArea = 2048 * 2048; SkScalar tileArea = scaledSize.width() * scaledSize.height(); if (tileArea > kMaxTileArea) { SkScalar clampScale = SkScalarSqrt(kMaxTileArea / tileArea); scaledSize.set(scaledSize.width() * clampScale, scaledSize.height() * clampScale); } #if SK_SUPPORT_GPU // Scale down the tile size if larger than maxTextureSize for GPU Path or it should fail on create texture if (maxTextureSize) { if (scaledSize.width() > maxTextureSize || scaledSize.height() > maxTextureSize) { SkScalar downScale = maxTextureSize / SkMaxScalar(scaledSize.width(), scaledSize.height()); scaledSize.set(SkScalarFloorToScalar(scaledSize.width() * downScale), SkScalarFloorToScalar(scaledSize.height() * downScale)); } } #endif const SkISize tileSize = scaledSize.toCeil(); if (tileSize.isEmpty()) { return SkShader::MakeEmptyShader(); } // The actual scale, compensating for rounding & clamping. const SkSize tileScale = SkSize::Make(SkIntToScalar(tileSize.width()) / fTile.width(), SkIntToScalar(tileSize.height()) / fTile.height()); // |fColorSpace| will only be set when using an SkColorSpaceXformCanvas to do pre-draw xforms. // This canvas is strictly for legacy mode. A non-null |dstColorSpace| indicates that we // should perform color correct rendering and xform at draw time. SkASSERT(!fColorSpace || !dstColorSpace); sk_sp<SkColorSpace> keyCS = dstColorSpace ? sk_ref_sp(dstColorSpace) : fColorSpace; SkTransferFunctionBehavior blendBehavior = dstColorSpace ? SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore; sk_sp<SkShader> tileShader; BitmapShaderKey key(std::move(keyCS), fUniqueID, fTile, fTmx, fTmy, tileScale, this->getLocalMatrix(), blendBehavior); if (!SkResourceCache::Find(key, BitmapShaderRec::Visitor, &tileShader)) { SkMatrix tileMatrix; tileMatrix.setRectToRect(fTile, SkRect::MakeIWH(tileSize.width(), tileSize.height()), SkMatrix::kFill_ScaleToFit); sk_sp<SkImage> tileImage = SkImage::MakeFromGenerator( SkPictureImageGenerator::Make(tileSize, fPicture, &tileMatrix, nullptr, SkImage::BitDepth::kU8, sk_ref_sp(dstColorSpace))); if (!tileImage) { return nullptr; } if (fColorSpace) { tileImage = tileImage->makeColorSpace(fColorSpace, SkTransferFunctionBehavior::kIgnore); } SkMatrix shaderMatrix = this->getLocalMatrix(); shaderMatrix.preScale(1 / tileScale.width(), 1 / tileScale.height()); tileShader = tileImage->makeShader(fTmx, fTmy, &shaderMatrix); SkResourceCache::Add(new BitmapShaderRec(key, tileShader.get())); fAddedToCache.store(true); } return tileShader; } bool SkPictureShader::onIsRasterPipelineOnly(const SkMatrix& ctm) const { return SkImageShader::IsRasterPipelineOnly(ctm, kN32_SkColorType, kPremul_SkAlphaType, fTmx, fTmy, this->getLocalMatrix()); } bool SkPictureShader::onAppendStages(const StageRec& rec) const { // Keep bitmapShader alive by using alloc instead of stack memory auto& bitmapShader = *rec.fAlloc->make<sk_sp<SkShader>>(); bitmapShader = this->refBitmapShader(rec.fCTM, rec.fLocalM, rec.fDstCS); return bitmapShader && as_SB(bitmapShader)->appendStages(rec); } ///////////////////////////////////////////////////////////////////////////////////////// SkShaderBase::Context* SkPictureShader::onMakeContext(const ContextRec& rec, SkArenaAlloc* alloc) const { sk_sp<SkShader> bitmapShader(this->refBitmapShader(*rec.fMatrix, rec.fLocalMatrix, rec.fDstColorSpace)); if (!bitmapShader) { return nullptr; } PictureShaderContext* ctx = alloc->make<PictureShaderContext>(*this, rec, std::move(bitmapShader), alloc); if (nullptr == ctx->fBitmapShaderContext) { ctx = nullptr; } return ctx; } sk_sp<SkShader> SkPictureShader::onMakeColorSpace(SkColorSpaceXformer* xformer) const { sk_sp<SkColorSpace> dstCS = xformer->dst(); if (SkColorSpace::Equals(dstCS.get(), fColorSpace.get())) { return sk_ref_sp(const_cast<SkPictureShader*>(this)); } return sk_sp<SkPictureShader>(new SkPictureShader(fPicture, fTmx, fTmy, &this->getLocalMatrix(), &fTile, std::move(dstCS))); } ///////////////////////////////////////////////////////////////////////////////////////// SkPictureShader::PictureShaderContext::PictureShaderContext( const SkPictureShader& shader, const ContextRec& rec, sk_sp<SkShader> bitmapShader, SkArenaAlloc* alloc) : INHERITED(shader, rec) , fBitmapShader(std::move(bitmapShader)) { fBitmapShaderContext = as_SB(fBitmapShader)->makeContext(rec, alloc); //if fBitmapShaderContext is null, we are invalid } uint32_t SkPictureShader::PictureShaderContext::getFlags() const { SkASSERT(fBitmapShaderContext); return fBitmapShaderContext->getFlags(); } void SkPictureShader::PictureShaderContext::shadeSpan(int x, int y, SkPMColor dstC[], int count) { SkASSERT(fBitmapShaderContext); fBitmapShaderContext->shadeSpan(x, y, dstC, count); } #ifndef SK_IGNORE_TO_STRING void SkPictureShader::toString(SkString* str) const { static const char* gTileModeName[SkShader::kTileModeCount] = { "clamp", "repeat", "mirror" }; str->appendf("PictureShader: [%f:%f:%f:%f] ", fPicture->cullRect().fLeft, fPicture->cullRect().fTop, fPicture->cullRect().fRight, fPicture->cullRect().fBottom); str->appendf("(%s, %s)", gTileModeName[fTmx], gTileModeName[fTmy]); this->INHERITED::toString(str); } #endif #if SK_SUPPORT_GPU std::unique_ptr<GrFragmentProcessor> SkPictureShader::asFragmentProcessor( const GrFPArgs& args) const { int maxTextureSize = 0; if (args.fContext) { maxTextureSize = args.fContext->caps()->maxTextureSize(); } sk_sp<SkShader> bitmapShader(this->refBitmapShader(*args.fViewMatrix, args.fLocalMatrix, args.fDstColorSpaceInfo->colorSpace(), maxTextureSize)); if (!bitmapShader) { return nullptr; } return as_SB(bitmapShader) ->asFragmentProcessor(GrFPArgs(args.fContext, args.fViewMatrix, args.fFilterQuality, args.fDstColorSpaceInfo)); } #endif