Overview ======== SkSL ("Skia Shading Language") is a variant of GLSL which is used as Skia's internal shading language. SkSL is, at its heart, a single standardized version of GLSL which avoids all of the various version and dialect differences found in GLSL "in the wild", but it does bring a few of its own changes to the table. Skia uses the SkSL compiler to convert SkSL code to GLSL, GLSL ES, or SPIR-V before handing it over to the graphics driver. Differences from GLSL ===================== * Precision modifiers are not used. 'float', 'int', and 'uint' are always high precision. New types 'half', 'short', and 'ushort' are medium precision (we do not use low precision). * Vector types are named <base type><columns>, so float2 instead of vec2 and bool4 instead of bvec4 * Matrix types are named <base type><columns>x<rows>, so float2x3 instead of mat2x3 and double4x4 instead of dmat4 * "@if" and "@switch" are static versions of if and switch. They behave exactly the same as if and switch in all respects other than it being a compile-time error to use a non-constant expression as a test. * GLSL caps can be referenced via the syntax 'sk_Caps.<name>', e.g. sk_Caps.sampleVariablesSupport. The value will be a constant boolean or int, as appropriate. As SkSL supports constant folding and branch elimination, this means that an 'if' statement which statically queries a cap will collapse down to the chosen branch, meaning that: if (sk_Caps.externalTextureSupport) do_something(); else do_something_else(); will compile as if you had written either 'do_something();' or 'do_something_else();', depending on whether that cap is enabled or not. * no #version statement is required, and it will be ignored if present * the output color is sk_FragColor (do not declare it) * use sk_Position instead of gl_Position. sk_Position is in device coordinates rather than normalized coordinates. * use sk_PointSize instead of gl_PointSize * use sk_VertexID instead of gl_VertexID * use sk_InstanceID instead of gl_InstanceID * the fragment coordinate is sk_FragCoord, and is always relative to the upper left. * you do not need to include ".0" to make a number a float (meaning that "float2x, y) * 4" is perfectly legal in SkSL, unlike GLSL where it would often have to be expressed "float2x, y) * 4.0". There is no performance penalty for this, as the number is converted to a float at compile time) * type suffixes on numbers (1.0f, 0xFFu) are both unnecessary and unsupported * creating a smaller vector from a larger vector (e.g. float2float31))) is intentionally disallowed, as it is just a wordier way of performing a swizzle. Use swizzles instead. * Use texture() instead of textureProj(), e.g. texture(sampler2D, float3 is equivalent to GLSL's textureProj(sampler2D, float3 * some built-in functions and one or two rarely-used language features are not yet supported (sorry!) SkSL is still under development, and is expected to diverge further from GLSL over time. SkSL Fragment Processors ======================== An extension of SkSL allows for the creation of fragment processors in pure SkSL. The program defines its inputs similarly to a normal SkSL program (with 'in' and 'uniform' variables), but the 'main()' function represents only this fragment processor's portion of the overall fragment shader. Within an '.fp' fragment processor file: * C++ code can be embedded in sections of the form: @section_name { <arbitrary C++ code> } Supported section are: @header (in the .h file, outside the class declaration) @headerEnd (at the end of the .h file) @class (in the .h file, inside the class declaration) @cpp (in the .cpp file) @cppEnd (at the end of the .cpp file) @constructorParams (extra parameters to the constructor, comma-separated) @constructor (replaces the default constructor) @initializers (constructor initializer list, comma-separated) @emitCode (extra code for the emitCode function) @fields (extra private fields, each terminated with a semicolon) @make (replaces the default Make function) @clone (replaces the default clone() function) @setData(<pdman>) (extra code for the setData function, where <pdman> is the name of the GrGLSLProgramDataManager) @test(<testData>) (the body of the TestCreate function, where <testData> is the name of the GrProcessorTestData* parameter) @coordTransform(<sampler>) (the matrix to attach to the named sampler2D's GrCoordTransform) @samplerParams(<sampler>) (the sampler params to attach to the named sampler2D) * global 'in' variables represent data passed to the fragment processor at construction time. These variables become constructor parameters and are stored in fragment processor fields. float2 map to SkPoints, and float4 map to SkRects (in x, y, width, height) order. * 'uniform' variables become, as one would expect, top-level uniforms. By default they do not have any data provided to them; you will need to provide them with data via the @setData section. * 'in uniform' variables are uniforms that are automatically wired up to fragment processor constructor parameters * the 'sk_TransformedCoords2D' array provides access to 2D transformed coordinates. sk_TransformedCoords2D[0] is equivalent to calling fragBuilder->ensureCoords2D(args.fTransformedCoords[0]) (and the result is cached, so you need not worry about using the value repeatedly). * Uniform variables support an additional 'when' layout key. 'layout(when=foo) uniform int x;' means that this uniform will only be emitted when the 'foo' expression is true. * 'in' variables support an additional 'key' layout key. 'layout(key) uniform int x;' means that this uniform should be included in the program's key. Matrix variables additionally support 'key=identity', which causes the key to consider only whether or not the matrix is an identity matrix. * 'float4' / 'half4' variables support an additional 'ctype' layout key, providing the type they should be represented as from within the C++ code. Currently the only two supported ctypes are 'SkRect' and 'SkPMColor'.