/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SKSL_IRGENERATOR #define SKSL_IRGENERATOR #include "SkSLErrorReporter.h" #include "ast/SkSLASTBinaryExpression.h" #include "ast/SkSLASTBlock.h" #include "ast/SkSLASTBreakStatement.h" #include "ast/SkSLASTCallSuffix.h" #include "ast/SkSLASTContinueStatement.h" #include "ast/SkSLASTDiscardStatement.h" #include "ast/SkSLASTDoStatement.h" #include "ast/SkSLASTEnum.h" #include "ast/SkSLASTExpression.h" #include "ast/SkSLASTExpressionStatement.h" #include "ast/SkSLASTExtension.h" #include "ast/SkSLASTForStatement.h" #include "ast/SkSLASTFunction.h" #include "ast/SkSLASTIdentifier.h" #include "ast/SkSLASTIfStatement.h" #include "ast/SkSLASTInterfaceBlock.h" #include "ast/SkSLASTModifiersDeclaration.h" #include "ast/SkSLASTPrefixExpression.h" #include "ast/SkSLASTReturnStatement.h" #include "ast/SkSLASTSection.h" #include "ast/SkSLASTStatement.h" #include "ast/SkSLASTSuffixExpression.h" #include "ast/SkSLASTSwitchStatement.h" #include "ast/SkSLASTTernaryExpression.h" #include "ast/SkSLASTVarDeclaration.h" #include "ast/SkSLASTVarDeclarationStatement.h" #include "ast/SkSLASTWhileStatement.h" #include "ir/SkSLBlock.h" #include "ir/SkSLExpression.h" #include "ir/SkSLExtension.h" #include "ir/SkSLFunctionDefinition.h" #include "ir/SkSLInterfaceBlock.h" #include "ir/SkSLModifiers.h" #include "ir/SkSLModifiersDeclaration.h" #include "ir/SkSLProgram.h" #include "ir/SkSLSection.h" #include "ir/SkSLSymbolTable.h" #include "ir/SkSLStatement.h" #include "ir/SkSLType.h" #include "ir/SkSLTypeReference.h" #include "ir/SkSLVarDeclarations.h" namespace SkSL { /** * Performs semantic analysis on an abstract syntax tree (AST) and produces the corresponding * (unoptimized) intermediate representation (IR). */ class IRGenerator { public: IRGenerator(const Context* context, std::shared_ptr<SymbolTable> root, ErrorReporter& errorReporter); void convertProgram(Program::Kind kind, const char* text, size_t length, SymbolTable& types, std::vector<std::unique_ptr<ProgramElement>>* result); /** * If both operands are compile-time constants and can be folded, returns an expression * representing the folded value. Otherwise, returns null. Note that unlike most other functions * here, null does not represent a compilation error. */ std::unique_ptr<Expression> constantFold(const Expression& left, Token::Kind op, const Expression& right) const; Program::Inputs fInputs; const Program::Settings* fSettings; const Context& fContext; private: /** * Prepare to compile a program. Resets state, pushes a new symbol table, and installs the * settings. */ void start(const Program::Settings* settings); /** * Performs cleanup after compilation is complete. */ void finish(); void pushSymbolTable(); void popSymbolTable(); std::unique_ptr<VarDeclarations> convertVarDeclarations(const ASTVarDeclarations& decl, Variable::Storage storage); void convertFunction(const ASTFunction& f); std::unique_ptr<Statement> convertStatement(const ASTStatement& statement); std::unique_ptr<Expression> convertExpression(const ASTExpression& expression); std::unique_ptr<ModifiersDeclaration> convertModifiersDeclaration( const ASTModifiersDeclaration& m); const Type* convertType(const ASTType& type); std::unique_ptr<Expression> call(int offset, const FunctionDeclaration& function, std::vector<std::unique_ptr<Expression>> arguments); int callCost(const FunctionDeclaration& function, const std::vector<std::unique_ptr<Expression>>& arguments); std::unique_ptr<Expression> call(int offset, std::unique_ptr<Expression> function, std::vector<std::unique_ptr<Expression>> arguments); int coercionCost(const Expression& expr, const Type& type); std::unique_ptr<Expression> coerce(std::unique_ptr<Expression> expr, const Type& type); std::unique_ptr<Block> convertBlock(const ASTBlock& block); std::unique_ptr<Statement> convertBreak(const ASTBreakStatement& b); std::unique_ptr<Expression> convertNumberConstructor( int offset, const Type& type, std::vector<std::unique_ptr<Expression>> params); std::unique_ptr<Expression> convertCompoundConstructor( int offset, const Type& type, std::vector<std::unique_ptr<Expression>> params); std::unique_ptr<Expression> convertConstructor(int offset, const Type& type, std::vector<std::unique_ptr<Expression>> params); std::unique_ptr<Statement> convertContinue(const ASTContinueStatement& c); std::unique_ptr<Statement> convertDiscard(const ASTDiscardStatement& d); std::unique_ptr<Statement> convertDo(const ASTDoStatement& d); std::unique_ptr<Statement> convertSwitch(const ASTSwitchStatement& s); std::unique_ptr<Expression> convertBinaryExpression(const ASTBinaryExpression& expression); std::unique_ptr<Extension> convertExtension(const ASTExtension& e); std::unique_ptr<Statement> convertExpressionStatement(const ASTExpressionStatement& s); std::unique_ptr<Statement> convertFor(const ASTForStatement& f); std::unique_ptr<Expression> convertIdentifier(const ASTIdentifier& identifier); std::unique_ptr<Statement> convertIf(const ASTIfStatement& s); std::unique_ptr<Expression> convertIndex(std::unique_ptr<Expression> base, const ASTExpression& index); std::unique_ptr<InterfaceBlock> convertInterfaceBlock(const ASTInterfaceBlock& s); Modifiers convertModifiers(const Modifiers& m); std::unique_ptr<Expression> convertPrefixExpression(const ASTPrefixExpression& expression); std::unique_ptr<Statement> convertReturn(const ASTReturnStatement& r); std::unique_ptr<Section> convertSection(const ASTSection& e); std::unique_ptr<Expression> getCap(int offset, String name); std::unique_ptr<Expression> getArg(int offset, String name); std::unique_ptr<Expression> convertSuffixExpression(const ASTSuffixExpression& expression); std::unique_ptr<Expression> convertTypeField(int offset, const Type& type, StringFragment field); std::unique_ptr<Expression> convertField(std::unique_ptr<Expression> base, StringFragment field); std::unique_ptr<Expression> convertSwizzle(std::unique_ptr<Expression> base, StringFragment fields); std::unique_ptr<Expression> convertTernaryExpression(const ASTTernaryExpression& expression); std::unique_ptr<Statement> convertVarDeclarationStatement(const ASTVarDeclarationStatement& s); std::unique_ptr<Statement> convertWhile(const ASTWhileStatement& w); void convertEnum(const ASTEnum& e); std::unique_ptr<Block> applyInvocationIDWorkaround(std::unique_ptr<Block> main); // returns a statement which converts sk_Position from device to normalized coordinates std::unique_ptr<Statement> getNormalizeSkPositionCode(); void fixRectSampling(std::vector<std::unique_ptr<Expression>>& arguments); void checkValid(const Expression& expr); void markWrittenTo(const Expression& expr, bool readWrite); void getConstantInt(const Expression& value, int64_t* out); Program::Kind fKind; const FunctionDeclaration* fCurrentFunction; std::unordered_map<String, Program::Settings::Value> fCapsMap; std::shared_ptr<SymbolTable> fRootSymbolTable; std::shared_ptr<SymbolTable> fSymbolTable; // holds extra temp variable declarations needed for the current function std::vector<std::unique_ptr<Statement>> fExtraVars; int fLoopLevel; int fSwitchLevel; // count of temporary variables we have created int fTmpCount; ErrorReporter& fErrors; int fInvocations; std::vector<std::unique_ptr<ProgramElement>>* fProgramElements; Variable* fSkPerVertex; Variable* fRTAdjust; Variable* fRTAdjustInterfaceBlock; int fRTAdjustFieldIndex; friend class AutoSymbolTable; friend class AutoLoopLevel; friend class AutoSwitchLevel; friend class Compiler; }; } #endif