/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This is a GPU-backend specific test. It relies on static intializers to work #include "SkTypes.h" #if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS #include "GrAutoLocaleSetter.h" #include "GrContextFactory.h" #include "GrContextPriv.h" #include "GrDrawOpTest.h" #include "GrDrawingManager.h" #include "GrPipeline.h" #include "GrRenderTargetContextPriv.h" #include "GrTest.h" #include "GrXferProcessor.h" #include "SkChecksum.h" #include "SkRandom.h" #include "Test.h" #include "ops/GrDrawOp.h" #include "effects/GrConfigConversionEffect.h" #include "effects/GrPorterDuffXferProcessor.h" #include "effects/GrXfermodeFragmentProcessor.h" #include "gl/GrGLGpu.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramBuilder.h" /* * A dummy processor which just tries to insert a massive key and verify that it can retrieve the * whole thing correctly */ static const uint32_t kMaxKeySize = 1024; class GLBigKeyProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { // pass through GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder; if (args.fInputColor) { fragBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor); } else { fragBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor); } } static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) { for (uint32_t i = 0; i < kMaxKeySize; i++) { b->add32(i); } } private: typedef GrGLSLFragmentProcessor INHERITED; }; class BigKeyProcessor : public GrFragmentProcessor { public: static std::unique_ptr<GrFragmentProcessor> Make() { return std::unique_ptr<GrFragmentProcessor>(new BigKeyProcessor); } const char* name() const override { return "Big Ole Key"; } GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLBigKeyProcessor; } std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); } private: BigKeyProcessor() : INHERITED(kBigKeyProcessor_ClassID, kNone_OptimizationFlags) { } virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GLBigKeyProcessor::GenKey(*this, caps, b); } bool onIsEqual(const GrFragmentProcessor&) const override { return true; } GR_DECLARE_FRAGMENT_PROCESSOR_TEST typedef GrFragmentProcessor INHERITED; }; GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor); #if GR_TEST_UTILS std::unique_ptr<GrFragmentProcessor> BigKeyProcessor::TestCreate(GrProcessorTestData*) { return BigKeyProcessor::Make(); } #endif ////////////////////////////////////////////////////////////////////////////// class BlockInputFragmentProcessor : public GrFragmentProcessor { public: static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) { return std::unique_ptr<GrFragmentProcessor>(new BlockInputFragmentProcessor(std::move(fp))); } const char* name() const override { return "Block Input"; } GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLFP; } std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(this->childProcessor(0).clone()); } private: class GLFP : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { this->emitChild(0, args); } private: typedef GrGLSLFragmentProcessor INHERITED; }; BlockInputFragmentProcessor(std::unique_ptr<GrFragmentProcessor> child) : INHERITED(kBlockInputFragmentProcessor_ClassID, kNone_OptimizationFlags) { this->registerChildProcessor(std::move(child)); } void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {} bool onIsEqual(const GrFragmentProcessor&) const override { return true; } typedef GrFragmentProcessor INHERITED; }; ////////////////////////////////////////////////////////////////////////////// /* * Begin test code */ static const int kRenderTargetHeight = 1; static const int kRenderTargetWidth = 1; static sk_sp<GrRenderTargetContext> random_render_target_context(GrContext* context, SkRandom* random, const GrCaps* caps) { GrSurfaceOrigin origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; int sampleCnt = random->nextBool() ? caps->getSampleCount(2, kRGBA_8888_GrPixelConfig) : 1; // Above could be 0 if msaa isn't supported. sampleCnt = SkTMax(1, sampleCnt); sk_sp<GrRenderTargetContext> renderTargetContext(context->makeDeferredRenderTargetContext( SkBackingFit::kExact, kRenderTargetWidth, kRenderTargetHeight, kRGBA_8888_GrPixelConfig, nullptr, sampleCnt, GrMipMapped::kNo, origin)); return renderTargetContext; } #if GR_TEST_UTILS static void set_random_xpf(GrPaint* paint, GrProcessorTestData* d) { paint->setXPFactory(GrXPFactoryTestFactory::Get(d)); } static std::unique_ptr<GrFragmentProcessor> create_random_proc_tree(GrProcessorTestData* d, int minLevels, int maxLevels) { SkASSERT(1 <= minLevels); SkASSERT(minLevels <= maxLevels); // Return a leaf node if maxLevels is 1 or if we randomly chose to terminate. // If returning a leaf node, make sure that it doesn't have children (e.g. another // GrComposeEffect) const float terminateProbability = 0.3f; if (1 == minLevels) { bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability); if (terminate) { std::unique_ptr<GrFragmentProcessor> fp; while (true) { fp = GrFragmentProcessorTestFactory::Make(d); SkASSERT(fp); if (0 == fp->numChildProcessors()) { break; } } return fp; } } // If we didn't terminate, choose either the left or right subtree to fulfill // the minLevels requirement of this tree; the other child can have as few levels as it wants. // Also choose a random xfer mode. if (minLevels > 1) { --minLevels; } auto minLevelsChild = create_random_proc_tree(d, minLevels, maxLevels - 1); std::unique_ptr<GrFragmentProcessor> otherChild(create_random_proc_tree(d, 1, maxLevels - 1)); SkBlendMode mode = static_cast<SkBlendMode>(d->fRandom->nextRangeU(0, (int)SkBlendMode::kLastMode)); std::unique_ptr<GrFragmentProcessor> fp; if (d->fRandom->nextF() < 0.5f) { fp = GrXfermodeFragmentProcessor::MakeFromTwoProcessors(std::move(minLevelsChild), std::move(otherChild), mode); SkASSERT(fp); } else { fp = GrXfermodeFragmentProcessor::MakeFromTwoProcessors(std::move(otherChild), std::move(minLevelsChild), mode); SkASSERT(fp); } return fp; } static void set_random_color_coverage_stages(GrPaint* paint, GrProcessorTestData* d, int maxStages, int maxTreeLevels) { // Randomly choose to either create a linear pipeline of procs or create one proc tree const float procTreeProbability = 0.5f; if (d->fRandom->nextF() < procTreeProbability) { std::unique_ptr<GrFragmentProcessor> fp(create_random_proc_tree(d, 2, maxTreeLevels)); if (fp) { paint->addColorFragmentProcessor(std::move(fp)); } } else { int numProcs = d->fRandom->nextULessThan(maxStages + 1); int numColorProcs = d->fRandom->nextULessThan(numProcs + 1); for (int s = 0; s < numProcs;) { std::unique_ptr<GrFragmentProcessor> fp(GrFragmentProcessorTestFactory::Make(d)); SkASSERT(fp); // finally add the stage to the correct pipeline in the drawstate if (s < numColorProcs) { paint->addColorFragmentProcessor(std::move(fp)); } else { paint->addCoverageFragmentProcessor(std::move(fp)); } ++s; } } } static void set_random_state(GrPaint* paint, SkRandom* random) { if (random->nextBool()) { paint->setDisableOutputConversionToSRGB(true); } if (random->nextBool()) { paint->setAllowSRGBInputs(true); } } #endif #if !GR_TEST_UTILS bool GrDrawingManager::ProgramUnitTest(GrContext*, int) { return true; } #else bool GrDrawingManager::ProgramUnitTest(GrContext* context, int maxStages, int maxLevels) { GrDrawingManager* drawingManager = context->contextPriv().drawingManager(); GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); sk_sp<GrTextureProxy> proxies[2]; // setup dummy textures { GrSurfaceDesc dummyDesc; dummyDesc.fFlags = kRenderTarget_GrSurfaceFlag; dummyDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; dummyDesc.fWidth = 34; dummyDesc.fHeight = 18; dummyDesc.fConfig = kRGBA_8888_GrPixelConfig; proxies[0] = proxyProvider->createProxy(dummyDesc, SkBackingFit::kExact, SkBudgeted::kNo); } { GrSurfaceDesc dummyDesc; dummyDesc.fFlags = kNone_GrSurfaceFlags; dummyDesc.fOrigin = kTopLeft_GrSurfaceOrigin; dummyDesc.fWidth = 16; dummyDesc.fHeight = 22; dummyDesc.fConfig = kAlpha_8_GrPixelConfig; proxies[1] = proxyProvider->createProxy(dummyDesc, SkBackingFit::kExact, SkBudgeted::kNo); } if (!proxies[0] || !proxies[1]) { SkDebugf("Could not allocate dummy textures"); return false; } // dummy scissor state GrScissorState scissor; SkRandom random; static const int NUM_TESTS = 1024; for (int t = 0; t < NUM_TESTS; t++) { // setup random render target(can fail) sk_sp<GrRenderTargetContext> renderTargetContext(random_render_target_context( context, &random, context->caps())); if (!renderTargetContext) { SkDebugf("Could not allocate renderTargetContext"); return false; } GrPaint paint; GrProcessorTestData ptd(&random, context, renderTargetContext.get(), proxies); set_random_color_coverage_stages(&paint, &ptd, maxStages, maxLevels); set_random_xpf(&paint, &ptd); set_random_state(&paint, &random); GrDrawRandomOp(&random, renderTargetContext.get(), std::move(paint)); } // Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes) drawingManager->flush(nullptr); // Validate that GrFPs work correctly without an input. sk_sp<GrRenderTargetContext> renderTargetContext(context->makeDeferredRenderTargetContext( SkBackingFit::kExact, kRenderTargetWidth, kRenderTargetHeight, kRGBA_8888_GrPixelConfig, nullptr)); if (!renderTargetContext) { SkDebugf("Could not allocate a renderTargetContext"); return false; } int fpFactoryCnt = GrFragmentProcessorTestFactory::Count(); for (int i = 0; i < fpFactoryCnt; ++i) { // Since FP factories internally randomize, call each 10 times. for (int j = 0; j < 10; ++j) { GrProcessorTestData ptd(&random, context, renderTargetContext.get(), proxies); GrPaint paint; paint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc)); auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &ptd); auto blockFP = BlockInputFragmentProcessor::Make(std::move(fp)); paint.addColorFragmentProcessor(std::move(blockFP)); GrDrawRandomOp(&random, renderTargetContext.get(), std::move(paint)); drawingManager->flush(nullptr); } } return true; } #endif static int get_glprograms_max_stages(const sk_gpu_test::ContextInfo& ctxInfo) { GrContext* context = ctxInfo.grContext(); GrGLGpu* gpu = static_cast<GrGLGpu*>(context->contextPriv().getGpu()); int maxStages = 6; if (kGLES_GrGLStandard == gpu->glStandard()) { // We've had issues with driver crashes and HW limits being exceeded with many effects on // Android devices. We have passes on ARM devices with the default number of stages. // TODO When we run ES 3.00 GLSL in more places, test again #ifdef SK_BUILD_FOR_ANDROID if (kARM_GrGLVendor != gpu->ctxInfo().vendor()) { maxStages = 1; } #endif // On iOS we can exceed the maximum number of varyings. http://skbug.com/6627. #ifdef SK_BUILD_FOR_IOS maxStages = 3; #endif } if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType || ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) { // On Angle D3D we will hit a limit of out variables if we use too many stages. maxStages = 3; } return maxStages; } static int get_glprograms_max_levels(const sk_gpu_test::ContextInfo& ctxInfo) { // A full tree with 5 levels (31 nodes) may cause a program that exceeds shader limits // (e.g. uniform or varying limits); maxTreeLevels should be a number from 1 to 4 inclusive. int maxTreeLevels = 4; // On iOS we can exceed the maximum number of varyings. http://skbug.com/6627. #ifdef SK_BUILD_FOR_IOS maxTreeLevels = 2; #endif if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType || ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) { // On Angle D3D we will hit a limit of out variables if we use too many stages. maxTreeLevels = 2; } return maxTreeLevels; } static void test_glprograms(skiatest::Reporter* reporter, const sk_gpu_test::ContextInfo& ctxInfo) { int maxStages = get_glprograms_max_stages(ctxInfo); if (maxStages == 0) { return; } int maxLevels = get_glprograms_max_levels(ctxInfo); if (maxLevels == 0) { return; } REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest(ctxInfo.grContext(), maxStages, maxLevels)); } DEF_GPUTEST(GLPrograms, reporter, options) { // Set a locale that would cause shader compilation to fail because of , as decimal separator. // skbug 3330 #ifdef SK_BUILD_FOR_WIN GrAutoLocaleSetter als("sv-SE"); #else GrAutoLocaleSetter als("sv_SE.UTF-8"); #endif // We suppress prints to avoid spew GrContextOptions opts = options; opts.fSuppressPrints = true; sk_gpu_test::GrContextFactory debugFactory(opts); skiatest::RunWithGPUTestContexts(test_glprograms, &skiatest::IsRenderingGLContextType, reporter, opts); } #endif