/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include <functional> #include <initializer_list> #include <vector> #include "SkAutoPixmapStorage.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkColorSpacePriv.h" #include "SkData.h" #include "SkImageEncoder.h" #include "SkImageGenerator.h" #include "SkImage_Base.h" #include "SkImagePriv.h" #include "SkMakeUnique.h" #include "SkPicture.h" #include "SkPictureRecorder.h" #include "SkRRect.h" #include "SkSerialProcs.h" #include "SkStream.h" #include "SkSurface.h" #include "SkUtils.h" #include "Test.h" #include "Resources.h" #include "sk_pixel_iter.h" #include "sk_tool_utils.h" #if SK_SUPPORT_GPU #include "GrContextPriv.h" #include "GrGpu.h" #include "GrResourceCache.h" #include "GrTest.h" #include "GrTexture.h" #endif using namespace sk_gpu_test; SkImageInfo read_pixels_info(SkImage* image) { if (as_IB(image)->onImageInfo().colorSpace()) { return SkImageInfo::MakeS32(image->width(), image->height(), image->alphaType()); } return SkImageInfo::MakeN32(image->width(), image->height(), image->alphaType()); } static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA, SkImage* b) { const int widthA = subsetA ? subsetA->width() : a->width(); const int heightA = subsetA ? subsetA->height() : a->height(); REPORTER_ASSERT(reporter, widthA == b->width()); REPORTER_ASSERT(reporter, heightA == b->height()); // see https://bug.skia.org/3965 //REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque()); SkAutoPixmapStorage pmapA, pmapB; pmapA.alloc(read_pixels_info(a)); pmapB.alloc(read_pixels_info(b)); const int srcX = subsetA ? subsetA->x() : 0; const int srcY = subsetA ? subsetA->y() : 0; REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY)); REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0)); const size_t widthBytes = widthA * 4; for (int y = 0; y < heightA; ++y) { REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes)); } } static void draw_image_test_pattern(SkCanvas* canvas) { canvas->clear(SK_ColorWHITE); SkPaint paint; paint.setColor(SK_ColorBLACK); canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint); } static sk_sp<SkImage> create_image() { const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRaster(info)); draw_image_test_pattern(surface->getCanvas()); return surface->makeImageSnapshot(); } static sk_sp<SkData> create_image_data(SkImageInfo* info) { *info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); const size_t rowBytes = info->minRowBytes(); sk_sp<SkData> data(SkData::MakeUninitialized(rowBytes * info->height())); { SkBitmap bm; bm.installPixels(*info, data->writable_data(), rowBytes); SkCanvas canvas(bm); draw_image_test_pattern(&canvas); } return data; } static sk_sp<SkImage> create_data_image() { SkImageInfo info; sk_sp<SkData> data(create_image_data(&info)); return SkImage::MakeRasterData(info, std::move(data), info.minRowBytes()); } #if SK_SUPPORT_GPU // not gpu-specific but currently only used in GPU tests static sk_sp<SkImage> create_image_large(int maxTextureSize) { const SkImageInfo info = SkImageInfo::MakeN32(maxTextureSize + 1, 32, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRaster(info)); surface->getCanvas()->clear(SK_ColorWHITE); SkPaint paint; paint.setColor(SK_ColorBLACK); surface->getCanvas()->drawRect(SkRect::MakeXYWH(4000, 2, 28000, 30), paint); return surface->makeImageSnapshot(); } static sk_sp<SkImage> create_picture_image() { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clear(SK_ColorCYAN); return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10), nullptr, nullptr, SkImage::BitDepth::kU8, SkColorSpace::MakeSRGB()); }; #endif // Want to ensure that our Release is called when the owning image is destroyed struct RasterDataHolder { RasterDataHolder() : fReleaseCount(0) {} sk_sp<SkData> fData; int fReleaseCount; static void Release(const void* pixels, void* context) { RasterDataHolder* self = static_cast<RasterDataHolder*>(context); self->fReleaseCount++; self->fData.reset(); } }; static sk_sp<SkImage> create_rasterproc_image(RasterDataHolder* dataHolder) { SkASSERT(dataHolder); SkImageInfo info; dataHolder->fData = create_image_data(&info); return SkImage::MakeFromRaster(SkPixmap(info, dataHolder->fData->data(), info.minRowBytes()), RasterDataHolder::Release, dataHolder); } static sk_sp<SkImage> create_codec_image() { SkImageInfo info; sk_sp<SkData> data(create_image_data(&info)); SkBitmap bitmap; bitmap.installPixels(info, data->writable_data(), info.minRowBytes()); sk_sp<SkData> src(sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG, 100)); return SkImage::MakeFromEncoded(std::move(src)); } #if SK_SUPPORT_GPU static sk_sp<SkImage> create_gpu_image(GrContext* context) { const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info)); draw_image_test_pattern(surface->getCanvas()); return surface->makeImageSnapshot(); } #endif static void test_encode(skiatest::Reporter* reporter, SkImage* image) { const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10); sk_sp<SkData> origEncoded = image->encodeToData(); REPORTER_ASSERT(reporter, origEncoded); REPORTER_ASSERT(reporter, origEncoded->size() > 0); sk_sp<SkImage> decoded(SkImage::MakeFromEncoded(origEncoded)); if (!decoded) { ERRORF(reporter, "failed to decode image!"); return; } REPORTER_ASSERT(reporter, decoded); assert_equal(reporter, image, nullptr, decoded.get()); // Now see if we can instantiate an image from a subset of the surface/origEncoded decoded = SkImage::MakeFromEncoded(origEncoded, &ir); REPORTER_ASSERT(reporter, decoded); assert_equal(reporter, image, &ir, decoded.get()); } DEF_TEST(ImageEncode, reporter) { test_encode(reporter, create_image().get()); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, ctxInfo) { test_encode(reporter, create_gpu_image(ctxInfo.grContext()).get()); } #endif DEF_TEST(Image_MakeFromRasterBitmap, reporter) { const struct { SkCopyPixelsMode fCPM; bool fExpectSameAsMutable; bool fExpectSameAsImmutable; } recs[] = { { kIfMutable_SkCopyPixelsMode, false, true }, { kAlways_SkCopyPixelsMode, false, false }, { kNever_SkCopyPixelsMode, true, true }, }; for (auto rec : recs) { SkPixmap pm; SkBitmap bm; bm.allocN32Pixels(100, 100); auto img = SkMakeImageFromRasterBitmap(bm, rec.fCPM); REPORTER_ASSERT(reporter, img->peekPixels(&pm)); const bool sameMutable = pm.addr32(0, 0) == bm.getAddr32(0, 0); REPORTER_ASSERT(reporter, rec.fExpectSameAsMutable == sameMutable); REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameMutable); bm.notifyPixelsChanged(); // force a new generation ID bm.setImmutable(); img = SkMakeImageFromRasterBitmap(bm, rec.fCPM); REPORTER_ASSERT(reporter, img->peekPixels(&pm)); const bool sameImmutable = pm.addr32(0, 0) == bm.getAddr32(0, 0); REPORTER_ASSERT(reporter, rec.fExpectSameAsImmutable == sameImmutable); REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameImmutable); } } // Test that image encoding failures do not break picture serialization/deserialization. DEF_TEST(Image_Serialize_Encoding_Failure, reporter) { auto surface(SkSurface::MakeRasterN32Premul(100, 100)); surface->getCanvas()->clear(SK_ColorGREEN); sk_sp<SkImage> image(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image); SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(100, 100); canvas->drawImage(image, 0, 0); sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); REPORTER_ASSERT(reporter, picture); REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0); bool was_called = false; SkSerialProcs procs; procs.fImageProc = [](SkImage*, void* called) { *(bool*)called = true; return SkData::MakeEmpty(); }; procs.fImageCtx = &was_called; REPORTER_ASSERT(reporter, !was_called); auto data = picture->serialize(&procs); REPORTER_ASSERT(reporter, was_called); REPORTER_ASSERT(reporter, data && data->size() > 0); auto deserialized = SkPicture::MakeFromData(data->data(), data->size()); REPORTER_ASSERT(reporter, deserialized); REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0); } // Test that a draw that only partially covers the drawing surface isn't // interpreted as covering the entire drawing surface (i.e., exercise one of the // conditions of SkCanvas::wouldOverwriteEntireSurface()). DEF_TEST(Image_RetainSnapshot, reporter) { const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0); SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2); auto surface(SkSurface::MakeRaster(info)); surface->getCanvas()->clear(0xFF00FF00); SkPMColor pixels[4]; memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2); const size_t dstRowBytes = 2 * sizeof(SkPMColor); sk_sp<SkImage> image1(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0)); for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) { REPORTER_ASSERT(reporter, pixels[i] == green); } SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); paint.setColor(SK_ColorRED); surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint); sk_sp<SkImage> image2(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0)); REPORTER_ASSERT(reporter, pixels[0] == green); REPORTER_ASSERT(reporter, pixels[1] == green); REPORTER_ASSERT(reporter, pixels[2] == green); REPORTER_ASSERT(reporter, pixels[3] == red); } ///////////////////////////////////////////////////////////////////////////////////////////////// static void make_bitmap_mutable(SkBitmap* bm) { bm->allocN32Pixels(10, 10); } static void make_bitmap_immutable(SkBitmap* bm) { bm->allocN32Pixels(10, 10); bm->setImmutable(); } DEF_TEST(image_newfrombitmap, reporter) { const struct { void (*fMakeProc)(SkBitmap*); bool fExpectPeekSuccess; bool fExpectSharedID; bool fExpectLazy; } rec[] = { { make_bitmap_mutable, true, false, false }, { make_bitmap_immutable, true, true, false }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) { SkBitmap bm; rec[i].fMakeProc(&bm); sk_sp<SkImage> image(SkImage::MakeFromBitmap(bm)); SkPixmap pmap; const bool sharedID = (image->uniqueID() == bm.getGenerationID()); REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID); const bool peekSuccess = image->peekPixels(&pmap); REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess); const bool lazy = image->isLazyGenerated(); REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy); } } /////////////////////////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "SkBitmapCache.h" /* * This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image. * We cache it for performance when drawing into a raster surface. * * A cleaner test would know if each drawImage call triggered a read-back from the gpu, * but we don't have that facility (at the moment) so we use a little internal knowledge * of *how* the raster version is cached, and look for that. */ DEF_GPUTEST_FOR_RENDERING_CONTEXTS(c, reporter, ctxInfo) { SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext())); const uint32_t uniqueID = image->uniqueID(); const auto desc = SkBitmapCacheDesc::Make(image.get()); auto surface(SkSurface::MakeRaster(info)); // now we can test drawing a gpu-backed image into a cpu-backed surface { SkBitmap cachedBitmap; REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap)); } surface->getCanvas()->drawImage(image, 0, 0); { SkBitmap cachedBitmap; if (SkBitmapCache::Find(desc, &cachedBitmap)) { REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID); REPORTER_ASSERT(reporter, cachedBitmap.isImmutable()); REPORTER_ASSERT(reporter, cachedBitmap.getPixels()); } else { // unexpected, but not really a bug, since the cache is global and this test may be // run w/ other threads competing for its budget. SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n"); } } image.reset(nullptr); { SkBitmap cachedBitmap; REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap)); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeTextureImage, reporter, contextInfo) { GrContext* context = contextInfo.grContext(); sk_gpu_test::TestContext* testContext = contextInfo.testContext(); GrContextFactory otherFactory; ContextInfo otherContextInfo = otherFactory.getContextInfo(contextInfo.type()); testContext->makeCurrent(); std::function<sk_sp<SkImage>()> imageFactories[] = { create_image, create_codec_image, create_data_image, // Create an image from a picture. create_picture_image, // Create a texture image. [context] { return create_gpu_image(context); }, // Create a texture image in a another GrContext. [otherContextInfo] { auto restore = otherContextInfo.testContext()->makeCurrentAndAutoRestore(); sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext()); otherContextInfo.grContext()->flush(); return otherContextImage; } }; sk_sp<SkColorSpace> dstColorSpaces[] ={ nullptr, SkColorSpace::MakeSRGB(), }; for (auto& dstColorSpace : dstColorSpaces) { for (auto factory : imageFactories) { sk_sp<SkImage> image(factory()); if (!image) { ERRORF(reporter, "Error creating image."); continue; } sk_sp<SkImage> texImage(image->makeTextureImage(context, dstColorSpace.get())); if (!texImage) { GrContext* imageContext = as_IB(image)->context(); // We expect to fail if image comes from a different GrContext. if (!image->isTextureBacked() || imageContext == context) { ERRORF(reporter, "makeTextureImage failed."); } continue; } if (!texImage->isTextureBacked()) { ERRORF(reporter, "makeTextureImage returned non-texture image."); continue; } if (image->isTextureBacked()) { GrSurfaceProxy* origProxy = as_IB(image)->peekProxy(); GrSurfaceProxy* copyProxy = as_IB(texImage)->peekProxy(); if (origProxy->underlyingUniqueID() != copyProxy->underlyingUniqueID()) { ERRORF(reporter, "makeTextureImage made unnecessary texture copy."); } } if (image->width() != texImage->width() || image->height() != texImage->height()) { ERRORF(reporter, "makeTextureImage changed the image size."); } if (image->alphaType() != texImage->alphaType()) { ERRORF(reporter, "makeTextureImage changed image alpha type."); } } context->flush(); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeNonTextureImage, reporter, contextInfo) { GrContext* context = contextInfo.grContext(); std::function<sk_sp<SkImage>()> imageFactories[] = { create_image, create_codec_image, create_data_image, create_picture_image, [context] { return create_gpu_image(context); }, }; SkColorSpace* legacyColorSpace = nullptr; for (auto factory : imageFactories) { sk_sp<SkImage> image = factory(); if (!image->isTextureBacked()) { REPORTER_ASSERT(reporter, image->makeNonTextureImage().get() == image.get()); if (!(image = image->makeTextureImage(context, legacyColorSpace))) { continue; } } auto rasterImage = image->makeNonTextureImage(); if (!rasterImage) { ERRORF(reporter, "makeNonTextureImage failed for texture-backed image."); } REPORTER_ASSERT(reporter, !rasterImage->isTextureBacked()); assert_equal(reporter, image.get(), nullptr, rasterImage.get()); } } DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_drawAbandonedGpuImage, reporter, contextInfo) { auto context = contextInfo.grContext(); auto image = create_gpu_image(context); auto info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info)); image->getTexture()->abandon(); surface->getCanvas()->drawImage(image, 0, 0); } #endif class EmptyGenerator : public SkImageGenerator { public: EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {} }; DEF_TEST(ImageEmpty, reporter) { const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType); SkPixmap pmap(info, nullptr, 0); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator( skstd::make_unique<EmptyGenerator>())); } DEF_TEST(ImageDataRef, reporter) { SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); size_t rowBytes = info.minRowBytes(); size_t size = info.computeByteSize(rowBytes); sk_sp<SkData> data = SkData::MakeUninitialized(size); REPORTER_ASSERT(reporter, data->unique()); sk_sp<SkImage> image = SkImage::MakeRasterData(info, data, rowBytes); REPORTER_ASSERT(reporter, !data->unique()); image.reset(); REPORTER_ASSERT(reporter, data->unique()); } static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) { for (int i = 0; i < count; ++i) { if (pixels[i] != expected) { return false; } } return true; } static void image_test_read_pixels(skiatest::Reporter* reporter, SkImage* image) { if (!image) { ERRORF(reporter, "Failed to create image!"); return; } const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE); const SkPMColor notExpected = ~expected; const int w = 2, h = 2; const size_t rowBytes = w * sizeof(SkPMColor); SkPMColor pixels[w*h]; SkImageInfo info; info = SkImageInfo::MakeUnknown(w, h); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0)); // out-of-bounds should fail info = SkImageInfo::MakeN32Premul(w, h); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0)); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h)); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0)); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height())); // top-left should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0)); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); // bottom-right should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, image->width() - w, image->height() - h)); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); // partial top-left should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1)); REPORTER_ASSERT(reporter, pixels[3] == expected); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected)); // partial bottom-right should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, image->width() - 1, image->height() - 1)); REPORTER_ASSERT(reporter, pixels[0] == expected); REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected)); } DEF_TEST(ImageReadPixels, reporter) { sk_sp<SkImage> image(create_image()); image_test_read_pixels(reporter, image.get()); image = create_data_image(); image_test_read_pixels(reporter, image.get()); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); image_test_read_pixels(reporter, image.get()); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); image_test_read_pixels(reporter, image.get()); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, ctxInfo) { image_test_read_pixels(reporter, create_gpu_image(ctxInfo.grContext()).get()); } #endif static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, const SkBitmap& bitmap, SkImage::LegacyBitmapMode mode) { REPORTER_ASSERT(reporter, image->width() == bitmap.width()); REPORTER_ASSERT(reporter, image->height() == bitmap.height()); REPORTER_ASSERT(reporter, image->alphaType() == bitmap.alphaType()); if (SkImage::kRO_LegacyBitmapMode == mode) { REPORTER_ASSERT(reporter, bitmap.isImmutable()); } REPORTER_ASSERT(reporter, bitmap.getPixels()); const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType()); SkPMColor imageColor; REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0)); REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0)); } static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, SkImage::LegacyBitmapMode mode) { if (!image) { ERRORF(reporter, "Failed to create image."); return; } SkBitmap bitmap; REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap, mode)); check_legacy_bitmap(reporter, image, bitmap, mode); // Test subsetting to exercise the rowBytes logic. SkBitmap tmp; REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2, image->height() / 2))); sk_sp<SkImage> subsetImage(SkImage::MakeFromBitmap(tmp)); REPORTER_ASSERT(reporter, subsetImage.get()); SkBitmap subsetBitmap; REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap, mode)); check_legacy_bitmap(reporter, subsetImage.get(), subsetBitmap, mode); } DEF_TEST(ImageLegacyBitmap, reporter) { const SkImage::LegacyBitmapMode modes[] = { SkImage::kRO_LegacyBitmapMode, SkImage::kRW_LegacyBitmapMode, }; for (auto& mode : modes) { sk_sp<SkImage> image(create_image()); test_legacy_bitmap(reporter, image.get(), mode); image = create_data_image(); test_legacy_bitmap(reporter, image.get(), mode); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); test_legacy_bitmap(reporter, image.get(), mode); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); test_legacy_bitmap(reporter, image.get(), mode); } } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, ctxInfo) { const SkImage::LegacyBitmapMode modes[] = { SkImage::kRO_LegacyBitmapMode, SkImage::kRW_LegacyBitmapMode, }; for (auto& mode : modes) { sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext())); test_legacy_bitmap(reporter, image.get(), mode); } } #endif static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) { if (!image) { ERRORF(reporter, "Failed to create image!"); return; } SkPixmap pm; bool success = image->peekPixels(&pm); REPORTER_ASSERT(reporter, expectPeekSuccess == success); if (success) { const SkImageInfo& info = pm.info(); REPORTER_ASSERT(reporter, 20 == info.width()); REPORTER_ASSERT(reporter, 20 == info.height()); REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType()); REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() || kOpaque_SkAlphaType == info.alphaType()); REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes()); REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0)); } } DEF_TEST(ImagePeek, reporter) { sk_sp<SkImage> image(create_image()); test_peek(reporter, image.get(), true); image = create_data_image(); test_peek(reporter, image.get(), true); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); test_peek(reporter, image.get(), true); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); test_peek(reporter, image.get(), false); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, ctxInfo) { sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext())); test_peek(reporter, image.get(), false); } #endif #if SK_SUPPORT_GPU struct TextureReleaseChecker { TextureReleaseChecker() : fReleaseCount(0) {} int fReleaseCount; static void Release(void* self) { static_cast<TextureReleaseChecker*>(self)->fReleaseCount++; } }; DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_NewFromTextureRelease, reporter, ctxInfo) { const int kWidth = 10; const int kHeight = 10; std::unique_ptr<uint32_t[]> pixels(new uint32_t[kWidth * kHeight]); GrContext* ctx = ctxInfo.grContext(); GrGpu* gpu = ctx->contextPriv().getGpu(); GrBackendTexture backendTex = gpu->createTestingOnlyBackendTexture( pixels.get(), kWidth, kHeight, kRGBA_8888_GrPixelConfig, true, GrMipMapped::kNo); TextureReleaseChecker releaseChecker; GrSurfaceOrigin texOrigin = kBottomLeft_GrSurfaceOrigin; sk_sp<SkImage> refImg( SkImage::MakeFromTexture(ctx, backendTex, texOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr, TextureReleaseChecker::Release, &releaseChecker)); GrSurfaceOrigin readBackOrigin; GrBackendObject readBackHandle = refImg->getTextureHandle(false, &readBackOrigin); // TODO: Make it so we can check this (see skbug.com/5019) #if 0 if (*readBackHandle != *(backendTexHandle)) { ERRORF(reporter, "backend mismatch %d %d\n", (int)readBackHandle, (int)backendTexHandle); } REPORTER_ASSERT(reporter, readBackHandle == backendTexHandle); #else REPORTER_ASSERT(reporter, SkToBool(readBackHandle)); #endif if (readBackOrigin != texOrigin) { ERRORF(reporter, "origin mismatch %d %d\n", readBackOrigin, texOrigin); } REPORTER_ASSERT(reporter, readBackOrigin == texOrigin); // Now exercise the release proc REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount); refImg.reset(nullptr); // force a release of the image REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount); gpu->deleteTestingOnlyBackendTexture(&backendTex); } static void test_cross_context_image(skiatest::Reporter* reporter, const GrContextOptions& options, std::function<sk_sp<SkImage>(GrContext*)> imageMaker) { for (int i = 0; i < GrContextFactory::kContextTypeCnt; ++i) { GrContextFactory testFactory(options); GrContextFactory::ContextType ctxType = static_cast<GrContextFactory::ContextType>(i); ContextInfo ctxInfo = testFactory.getContextInfo(ctxType); GrContext* ctx = ctxInfo.grContext(); if (!ctx) { continue; } // If we don't have proper support for this feature, the factory will fallback to returning // codec-backed images. Those will "work", but some of our checks will fail because we // expect the cross-context images not to work on multiple contexts at once. if (!ctx->caps()->crossContextTextureSupport()) { continue; } // We test three lifetime patterns for a single context: // 1) Create image, free image // 2) Create image, draw, flush, free image // 3) Create image, draw, free image, flush // ... and then repeat the last two patterns with drawing on a second* context: // 4) Create image, draw*, flush*, free image // 5) Create image, draw*, free iamge, flush* // Case #1: Create image, free image { sk_sp<SkImage> refImg(imageMaker(ctx)); refImg.reset(nullptr); // force a release of the image } SkImageInfo info = SkImageInfo::MakeN32Premul(128, 128); sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(ctx, SkBudgeted::kNo, info); SkCanvas* canvas = surface->getCanvas(); // Case #2: Create image, draw, flush, free image { sk_sp<SkImage> refImg(imageMaker(ctx)); canvas->drawImage(refImg, 0, 0); canvas->flush(); refImg.reset(nullptr); // force a release of the image } // Case #3: Create image, draw, free image, flush { sk_sp<SkImage> refImg(imageMaker(ctx)); canvas->drawImage(refImg, 0, 0); refImg.reset(nullptr); // force a release of the image canvas->flush(); } // Configure second context sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); ContextInfo otherContextInfo = testFactory.getSharedContextInfo(ctx); GrContext* otherCtx = otherContextInfo.grContext(); sk_gpu_test::TestContext* otherTestContext = otherContextInfo.testContext(); // Creating a context in a share group may fail if (!otherCtx) { continue; } surface = SkSurface::MakeRenderTarget(otherCtx, SkBudgeted::kNo, info); canvas = surface->getCanvas(); // Case #4: Create image, draw*, flush*, free image { testContext->makeCurrent(); sk_sp<SkImage> refImg(imageMaker(ctx)); otherTestContext->makeCurrent(); canvas->drawImage(refImg, 0, 0); canvas->flush(); testContext->makeCurrent(); refImg.reset(nullptr); // force a release of the image } // Case #5: Create image, draw*, free image, flush* { testContext->makeCurrent(); sk_sp<SkImage> refImg(imageMaker(ctx)); otherTestContext->makeCurrent(); canvas->drawImage(refImg, 0, 0); testContext->makeCurrent(); refImg.reset(nullptr); // force a release of the image otherTestContext->makeCurrent(); canvas->flush(); // This is specifically here for vulkan to guarantee the command buffer will finish // which is when we call the ReleaseProc. otherCtx->contextPriv().getGpu()->testingOnly_flushGpuAndSync(); } // Case #6: Verify that only one context can be using the image at a time { testContext->makeCurrent(); sk_sp<SkImage> refImg(imageMaker(ctx)); // Any context should be able to borrow the texture at this point sk_sp<SkColorSpace> texColorSpace; sk_sp<GrTextureProxy> proxy = as_IB(refImg)->asTextureProxyRef( ctx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); REPORTER_ASSERT(reporter, proxy); // But once it's borrowed, no other context should be able to borrow otherTestContext->makeCurrent(); sk_sp<GrTextureProxy> otherProxy = as_IB(refImg)->asTextureProxyRef( otherCtx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); REPORTER_ASSERT(reporter, !otherProxy); // Original context (that's already borrowing) should be okay testContext->makeCurrent(); sk_sp<GrTextureProxy> proxySecondRef = as_IB(refImg)->asTextureProxyRef( ctx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); REPORTER_ASSERT(reporter, proxySecondRef); // Release first ref from the original context proxy.reset(nullptr); // We released one proxy but not the other from the current borrowing context. Make sure // a new context is still not able to borrow the texture. otherTestContext->makeCurrent(); otherProxy = as_IB(refImg)->asTextureProxyRef(otherCtx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); REPORTER_ASSERT(reporter, !otherProxy); // Release second ref from the original context testContext->makeCurrent(); proxySecondRef.reset(nullptr); // Now we should be able to borrow the texture from the other context otherTestContext->makeCurrent(); otherProxy = as_IB(refImg)->asTextureProxyRef(otherCtx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); REPORTER_ASSERT(reporter, otherProxy); // Release everything otherProxy.reset(nullptr); refImg.reset(nullptr); } } } DEF_GPUTEST(SkImage_MakeCrossContextFromEncodedRelease, reporter, options) { sk_sp<SkData> data = GetResourceAsData("images/mandrill_128.png"); SkASSERT(data.get()); test_cross_context_image(reporter, options, [&data](GrContext* ctx) { return SkImage::MakeCrossContextFromEncoded(ctx, data, false, nullptr); }); } DEF_GPUTEST(SkImage_MakeCrossContextFromPixmapRelease, reporter, options) { SkBitmap bitmap; SkPixmap pixmap; SkAssertResult(GetResourceAsBitmap("images/mandrill_128.png", &bitmap) && bitmap.peekPixels(&pixmap)); test_cross_context_image(reporter, options, [&pixmap](GrContext* ctx) { return SkImage::MakeCrossContextFromPixmap(ctx, pixmap, false, nullptr); }); } static void check_images_same(skiatest::Reporter* reporter, const SkImage* a, const SkImage* b) { if (a->width() != b->width() || a->height() != b->height()) { ERRORF(reporter, "Images must have the same size"); return; } if (a->alphaType() != b->alphaType()) { ERRORF(reporter, "Images must have the same alpha type"); return; } SkImageInfo info = SkImageInfo::MakeN32Premul(a->width(), a->height()); SkAutoPixmapStorage apm; SkAutoPixmapStorage bpm; apm.alloc(info); bpm.alloc(info); if (!a->readPixels(apm, 0, 0)) { ERRORF(reporter, "Could not read image a's pixels"); return; } if (!b->readPixels(bpm, 0, 0)) { ERRORF(reporter, "Could not read image b's pixels"); return; } for (auto y = 0; y < info.height(); ++y) { for (auto x = 0; x < info.width(); ++x) { uint32_t pixelA = *apm.addr32(x, y); uint32_t pixelB = *bpm.addr32(x, y); if (pixelA != pixelB) { ERRORF(reporter, "Expected image pixels to be the same. At %d,%d 0x%08x != 0x%08x", x, y, pixelA, pixelB); return; } } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DeferredTextureImage, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); sk_sp<GrContextThreadSafeProxy> proxy = context->threadSafeProxy(); GrContextFactory otherFactory; ContextInfo otherContextInfo = otherFactory.getContextInfo(ctxInfo.type()); testContext->makeCurrent(); REPORTER_ASSERT(reporter, proxy); auto createLarge = [context] { return create_image_large(context->caps()->maxTextureSize()); }; struct { std::function<sk_sp<SkImage> ()> fImageFactory; std::vector<SkImage::DeferredTextureImageUsageParams> fParams; sk_sp<SkColorSpace> fColorSpace; SkColorType fColorType; SkFilterQuality fExpectedQuality; int fExpectedScaleFactor; bool fExpectation; } testCases[] = { { create_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, true }, { create_codec_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, true }, { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, true }, { create_picture_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, { [context] { return create_gpu_image(context); }, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, // Create a texture image in a another GrContext. { [testContext, otherContextInfo] { otherContextInfo.testContext()->makeCurrent(); sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext()); testContext->makeCurrent(); return otherContextImage; }, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, // Create an image that is too large to upload. { createLarge, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, // Create an image that is too large, but is scaled to an acceptable size. { createLarge, {{SkMatrix::I(), kMedium_SkFilterQuality, 4}}, nullptr, kN32_SkColorType, kMedium_SkFilterQuality, 16, true}, // Create an image with multiple low filter qualities, make sure we round up. { createLarge, {{SkMatrix::I(), kNone_SkFilterQuality, 4}, {SkMatrix::I(), kMedium_SkFilterQuality, 4}}, nullptr, kN32_SkColorType, kMedium_SkFilterQuality, 16, true}, // Create an image with multiple prescale levels, make sure we chose the minimum scale. { createLarge, {{SkMatrix::I(), kMedium_SkFilterQuality, 5}, {SkMatrix::I(), kMedium_SkFilterQuality, 4}}, nullptr, kN32_SkColorType, kMedium_SkFilterQuality, 16, true}, // Create a images which are decoded to a 4444 backing. { create_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, true }, { create_codec_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, true }, { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, nullptr, kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, true }, // Valid SkColorSpace and SkColorType. { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, SkColorSpace::MakeSRGB(), kN32_SkColorType, kNone_SkFilterQuality, 1, true }, // Invalid SkColorSpace and SkColorType. { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, SkColorSpace::MakeSRGB(), kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, false }, }; for (auto testCase : testCases) { sk_sp<SkImage> image(testCase.fImageFactory()); if (!image) { ERRORF(reporter, "Failed to create image!"); continue; } size_t size = image->getDeferredTextureImageData(*proxy, testCase.fParams.data(), static_cast<int>(testCase.fParams.size()), nullptr, testCase.fColorSpace.get(), testCase.fColorType); static const char *const kFS[] = { "fail", "succeed" }; if (SkToBool(size) != testCase.fExpectation) { ERRORF(reporter, "This image was expected to %s but did not.", kFS[testCase.fExpectation]); } if (size) { void* buffer = sk_malloc_throw(size); void* misaligned = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(buffer) + 3); if (image->getDeferredTextureImageData(*proxy, testCase.fParams.data(), static_cast<int>(testCase.fParams.size()), misaligned, testCase.fColorSpace.get(), testCase.fColorType)) { ERRORF(reporter, "Should fail when buffer is misaligned."); } if (!image->getDeferredTextureImageData(*proxy, testCase.fParams.data(), static_cast<int>(testCase.fParams.size()), buffer, testCase.fColorSpace.get(), testCase.fColorType)) { ERRORF(reporter, "deferred image size succeeded but creation failed."); } else { for (auto budgeted : { SkBudgeted::kNo, SkBudgeted::kYes }) { sk_sp<SkImage> newImage( SkImage::MakeFromDeferredTextureImageData(context, buffer, budgeted)); REPORTER_ASSERT(reporter, newImage != nullptr); if (newImage) { // Scale the image in software for comparison. SkImageInfo scaled_info = SkImageInfo::MakeN32( image->width() / testCase.fExpectedScaleFactor, image->height() / testCase.fExpectedScaleFactor, image->alphaType()); SkAutoPixmapStorage scaled; scaled.alloc(scaled_info); image->scalePixels(scaled, testCase.fExpectedQuality); sk_sp<SkImage> scaledImage = SkImage::MakeRasterCopy(scaled); check_images_same(reporter, scaledImage.get(), newImage.get()); } // The other context should not be able to create images from texture data // created by the original context. sk_sp<SkImage> newImage2(SkImage::MakeFromDeferredTextureImageData( otherContextInfo.grContext(), buffer, budgeted)); REPORTER_ASSERT(reporter, !newImage2); testContext->makeCurrent(); } } sk_free(buffer); } testContext->makeCurrent(); context->flush(); } } static uint32_t GetIdForBackendObject(GrContext* ctx, GrBackendObject object) { if (!object) { return 0; } if (ctx->contextPriv().getBackend() != kOpenGL_GrBackend) { return 0; } return reinterpret_cast<const GrGLTextureInfo*>(object)->fID; } static uint32_t GetIdForBackendTexture(GrBackendTexture texture) { if (!texture.isValid()) { return 0; } if (texture.backend() != kOpenGL_GrBackend) { return 0; } return texture.getGLTextureInfo()->fID; } DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(makeBackendTexture, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); sk_sp<GrContextThreadSafeProxy> proxy = context->threadSafeProxy(); GrContextFactory otherFactory; ContextInfo otherContextInfo = otherFactory.getContextInfo(ctxInfo.type()); testContext->makeCurrent(); REPORTER_ASSERT(reporter, proxy); auto createLarge = [context] { return create_image_large(context->caps()->maxTextureSize()); }; struct { std::function<sk_sp<SkImage> ()> fImageFactory; bool fExpectation; bool fCanTakeDirectly; } testCases[] = { { create_image, true, false }, { create_codec_image, true, false }, { create_data_image, true, false }, { create_picture_image, true, false }, { [context] { return create_gpu_image(context); }, true, true }, // Create a texture image in a another GrContext. { [otherContextInfo] { auto restore = otherContextInfo.testContext()->makeCurrentAndAutoRestore(); sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext()); otherContextInfo.grContext()->flush(); return otherContextImage; }, false, false }, // Create an image that is too large to be texture backed. { createLarge, false, false } }; for (auto testCase : testCases) { sk_sp<SkImage> image(testCase.fImageFactory()); if (!image) { ERRORF(reporter, "Failed to create image!"); continue; } uint32_t originalID = GetIdForBackendObject(context, image->getTextureHandle(true, nullptr)); GrBackendTexture texture; SkImage::BackendTextureReleaseProc proc; bool result = SkImage::MakeBackendTextureFromSkImage(context, std::move(image), &texture, &proc); if (result != testCase.fExpectation) { static const char *const kFS[] = { "fail", "succeed" }; ERRORF(reporter, "This image was expected to %s but did not.", kFS[testCase.fExpectation]); } bool tookDirectly = result && originalID == GetIdForBackendTexture(texture); if (testCase.fCanTakeDirectly != tookDirectly) { static const char *const kExpectedState[] = { "not expected", "expected" }; ERRORF(reporter, "This backend texture was %s to be taken directly.", kExpectedState[testCase.fCanTakeDirectly]); } context->flush(); } } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// static sk_sp<SkImage> create_picture_image(sk_sp<SkColorSpace> space) { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clear(SK_ColorCYAN); return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10), nullptr, nullptr, SkImage::BitDepth::kU8, std::move(space)); }; static inline bool almost_equal(int a, int b) { return SkTAbs(a - b) <= 1; } DEF_TEST(Image_ColorSpace, r) { sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB(); sk_sp<SkImage> image = GetResourceAsImage("images/mandrill_512_q075.jpg"); REPORTER_ASSERT(r, srgb.get() == image->colorSpace()); image = GetResourceAsImage("images/webp-color-profile-lossy.webp"); SkColorSpaceTransferFn fn; bool success = image->colorSpace()->isNumericalTransferFn(&fn); REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, color_space_almost_equal(1.8f, fn.fG)); sk_sp<SkColorSpace> rec2020 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma, SkColorSpace::kRec2020_Gamut); image = create_picture_image(rec2020); REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); SkBitmap bitmap; SkImageInfo info = SkImageInfo::MakeN32(10, 10, kPremul_SkAlphaType, rec2020); bitmap.allocPixels(info); image = SkImage::MakeFromBitmap(bitmap); REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); sk_sp<SkSurface> surface = SkSurface::MakeRaster( SkImageInfo::MakeN32Premul(SkISize::Make(10, 10))); image = surface->makeImageSnapshot(); REPORTER_ASSERT(r, nullptr == image->colorSpace()); surface = SkSurface::MakeRaster(info); image = surface->makeImageSnapshot(); REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); } DEF_TEST(Image_makeColorSpace, r) { sk_sp<SkColorSpace> p3 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma, SkColorSpace::kDCIP3_D65_Gamut); SkColorSpaceTransferFn fn; fn.fA = 1.f; fn.fB = 0.f; fn.fC = 0.f; fn.fD = 0.f; fn.fE = 0.f; fn.fF = 0.f; fn.fG = 1.8f; sk_sp<SkColorSpace> adobeGamut = SkColorSpace::MakeRGB(fn, SkColorSpace::kAdobeRGB_Gamut); SkBitmap srgbBitmap; srgbBitmap.allocPixels(SkImageInfo::MakeS32(1, 1, kOpaque_SkAlphaType)); *srgbBitmap.getAddr32(0, 0) = SkSwizzle_RGBA_to_PMColor(0xFF604020); srgbBitmap.setImmutable(); sk_sp<SkImage> srgbImage = SkImage::MakeFromBitmap(srgbBitmap); sk_sp<SkImage> p3Image = srgbImage->makeColorSpace(p3, SkTransferFunctionBehavior::kIgnore); SkBitmap p3Bitmap; bool success = p3Image->asLegacyBitmap(&p3Bitmap, SkImage::kRO_LegacyBitmapMode); REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, almost_equal(0x28, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x40, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x5E, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0)))); sk_sp<SkImage> adobeImage = srgbImage->makeColorSpace(adobeGamut, SkTransferFunctionBehavior::kIgnore); SkBitmap adobeBitmap; success = adobeImage->asLegacyBitmap(&adobeBitmap, SkImage::kRO_LegacyBitmapMode); REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, almost_equal(0x21, SkGetPackedR32(*adobeBitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x31, SkGetPackedG32(*adobeBitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x4C, SkGetPackedB32(*adobeBitmap.getAddr32(0, 0)))); srgbImage = GetResourceAsImage("images/1x1.png"); p3Image = srgbImage->makeColorSpace(p3, SkTransferFunctionBehavior::kIgnore); success = p3Image->asLegacyBitmap(&p3Bitmap, SkImage::kRO_LegacyBitmapMode); REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, almost_equal(0x8B, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x82, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x77, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0)))); } /////////////////////////////////////////////////////////////////////////////////////////////////// static void make_all_premul(SkBitmap* bm) { bm->allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); for (int a = 0; a < 256; ++a) { for (int r = 0; r < 256; ++r) { // make all valid premul combinations int c = SkTMin(a, r); *bm->getAddr32(a, r) = SkPackARGB32(a, c, c, c); } } } static bool equal(const SkBitmap& a, const SkBitmap& b) { SkASSERT(a.width() == b.width()); SkASSERT(a.height() == b.height()); for (int y = 0; y < a.height(); ++y) { for (int x = 0; x < a.width(); ++x) { SkPMColor pa = *a.getAddr32(x, y); SkPMColor pb = *b.getAddr32(x, y); if (pa != pb) { return false; } } } return true; } DEF_TEST(image_roundtrip_encode, reporter) { SkBitmap bm0; make_all_premul(&bm0); auto img0 = SkImage::MakeFromBitmap(bm0); sk_sp<SkData> data = img0->encodeToData(SkEncodedImageFormat::kPNG, 100); auto img1 = SkImage::MakeFromEncoded(data); SkBitmap bm1; bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); img1->readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0); REPORTER_ASSERT(reporter, equal(bm0, bm1)); } DEF_TEST(image_roundtrip_premul, reporter) { SkBitmap bm0; make_all_premul(&bm0); SkBitmap bm1; bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kUnpremul_SkAlphaType)); bm0.readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0); SkBitmap bm2; bm2.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); bm1.readPixels(bm2.info(), bm2.getPixels(), bm2.rowBytes(), 0, 0); REPORTER_ASSERT(reporter, equal(bm0, bm2)); } /////////////////////////////////////////////////////////////////////////////////////////////////// static void check_scaled_pixels(skiatest::Reporter* reporter, SkPixmap* pmap, uint32_t expected) { // Verify that all pixels contain the original test color for (auto y = 0; y < pmap->height(); ++y) { for (auto x = 0; x < pmap->width(); ++x) { uint32_t pixel = *pmap->addr32(x, y); if (pixel != expected) { ERRORF(reporter, "Expected scaled pixels to be the same. At %d,%d 0x%08x != 0x%08x", x, y, pixel, expected); return; } } } } static void test_scale_pixels(skiatest::Reporter* reporter, const SkImage* image, uint32_t expected) { SkImageInfo info = SkImageInfo::MakeN32Premul(image->width() * 2, image->height() * 2); // Make sure to test kDisallow first, so we don't just get a cache hit in that case for (auto chint : { SkImage::kDisallow_CachingHint, SkImage::kAllow_CachingHint }) { SkAutoPixmapStorage scaled; scaled.alloc(info); if (!image->scalePixels(scaled, kLow_SkFilterQuality, chint)) { ERRORF(reporter, "Failed to scale image"); continue; } check_scaled_pixels(reporter, &scaled, expected); } } DEF_TEST(ImageScalePixels, reporter) { const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkColor red = SK_ColorRED; // Test raster image SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); sk_sp<SkSurface> surface = SkSurface::MakeRaster(info); surface->getCanvas()->clear(red); sk_sp<SkImage> rasterImage = surface->makeImageSnapshot(); test_scale_pixels(reporter, rasterImage.get(), pmRed); // Test encoded image sk_sp<SkData> data = rasterImage->encodeToData(); sk_sp<SkImage> codecImage = SkImage::MakeFromEncoded(data); test_scale_pixels(reporter, codecImage.get(), pmRed); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageScalePixels_Gpu, reporter, ctxInfo) { const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkColor red = SK_ColorRED; SkImageInfo info = SkImageInfo::MakeN32Premul(16, 16); sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kNo, info); surface->getCanvas()->clear(red); sk_sp<SkImage> gpuImage = surface->makeImageSnapshot(); test_scale_pixels(reporter, gpuImage.get(), pmRed); } #endif static sk_sp<SkImage> any_image_will_do() { return GetResourceAsImage("images/mandrill_32.png"); } DEF_TEST(Image_nonfinite_dst, reporter) { auto surf = SkSurface::MakeRasterN32Premul(10, 10); auto img = any_image_will_do(); SkPaint paint; for (SkScalar bad : { SK_ScalarInfinity, SK_ScalarNaN}) { for (int bits = 1; bits <= 15; ++bits) { SkRect dst = { 0, 0, 10, 10 }; if (bits & 1) dst.fLeft = bad; if (bits & 2) dst.fTop = bad; if (bits & 4) dst.fRight = bad; if (bits & 8) dst.fBottom = bad; surf->getCanvas()->drawImageRect(img, dst, &paint); // we should draw nothing sk_tool_utils::PixelIter iter(surf.get()); while (void* addr = iter.next()) { REPORTER_ASSERT(reporter, *(SkPMColor*)addr == 0); } } } }