// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "OutputASM.h" #include "Common/Math.hpp" #include "common/debug.h" #include "InfoSink.h" #include "libGLESv2/Shader.h" #include <GLES2/gl2.h> #include <GLES2/gl2ext.h> #include <GLES3/gl3.h> #include <stdlib.h> namespace { GLenum glVariableType(const TType &type) { switch(type.getBasicType()) { case EbtFloat: if(type.isScalar()) { return GL_FLOAT; } else if(type.isVector()) { switch(type.getNominalSize()) { case 2: return GL_FLOAT_VEC2; case 3: return GL_FLOAT_VEC3; case 4: return GL_FLOAT_VEC4; default: UNREACHABLE(type.getNominalSize()); } } else if(type.isMatrix()) { switch(type.getNominalSize()) { case 2: switch(type.getSecondarySize()) { case 2: return GL_FLOAT_MAT2; case 3: return GL_FLOAT_MAT2x3; case 4: return GL_FLOAT_MAT2x4; default: UNREACHABLE(type.getSecondarySize()); } case 3: switch(type.getSecondarySize()) { case 2: return GL_FLOAT_MAT3x2; case 3: return GL_FLOAT_MAT3; case 4: return GL_FLOAT_MAT3x4; default: UNREACHABLE(type.getSecondarySize()); } case 4: switch(type.getSecondarySize()) { case 2: return GL_FLOAT_MAT4x2; case 3: return GL_FLOAT_MAT4x3; case 4: return GL_FLOAT_MAT4; default: UNREACHABLE(type.getSecondarySize()); } default: UNREACHABLE(type.getNominalSize()); } } else UNREACHABLE(0); break; case EbtInt: if(type.isScalar()) { return GL_INT; } else if(type.isVector()) { switch(type.getNominalSize()) { case 2: return GL_INT_VEC2; case 3: return GL_INT_VEC3; case 4: return GL_INT_VEC4; default: UNREACHABLE(type.getNominalSize()); } } else UNREACHABLE(0); break; case EbtUInt: if(type.isScalar()) { return GL_UNSIGNED_INT; } else if(type.isVector()) { switch(type.getNominalSize()) { case 2: return GL_UNSIGNED_INT_VEC2; case 3: return GL_UNSIGNED_INT_VEC3; case 4: return GL_UNSIGNED_INT_VEC4; default: UNREACHABLE(type.getNominalSize()); } } else UNREACHABLE(0); break; case EbtBool: if(type.isScalar()) { return GL_BOOL; } else if(type.isVector()) { switch(type.getNominalSize()) { case 2: return GL_BOOL_VEC2; case 3: return GL_BOOL_VEC3; case 4: return GL_BOOL_VEC4; default: UNREACHABLE(type.getNominalSize()); } } else UNREACHABLE(0); break; case EbtSampler2D: return GL_SAMPLER_2D; case EbtISampler2D: return GL_INT_SAMPLER_2D; case EbtUSampler2D: return GL_UNSIGNED_INT_SAMPLER_2D; case EbtSamplerCube: return GL_SAMPLER_CUBE; case EbtSampler2DRect: return GL_SAMPLER_2D_RECT_ARB; case EbtISamplerCube: return GL_INT_SAMPLER_CUBE; case EbtUSamplerCube: return GL_UNSIGNED_INT_SAMPLER_CUBE; case EbtSamplerExternalOES: return GL_SAMPLER_EXTERNAL_OES; case EbtSampler3D: return GL_SAMPLER_3D_OES; case EbtISampler3D: return GL_INT_SAMPLER_3D; case EbtUSampler3D: return GL_UNSIGNED_INT_SAMPLER_3D; case EbtSampler2DArray: return GL_SAMPLER_2D_ARRAY; case EbtISampler2DArray: return GL_INT_SAMPLER_2D_ARRAY; case EbtUSampler2DArray: return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY; case EbtSampler2DShadow: return GL_SAMPLER_2D_SHADOW; case EbtSamplerCubeShadow: return GL_SAMPLER_CUBE_SHADOW; case EbtSampler2DArrayShadow: return GL_SAMPLER_2D_ARRAY_SHADOW; default: UNREACHABLE(type.getBasicType()); break; } return GL_NONE; } GLenum glVariablePrecision(const TType &type) { if(type.getBasicType() == EbtFloat) { switch(type.getPrecision()) { case EbpHigh: return GL_HIGH_FLOAT; case EbpMedium: return GL_MEDIUM_FLOAT; case EbpLow: return GL_LOW_FLOAT; case EbpUndefined: // Should be defined as the default precision by the parser default: UNREACHABLE(type.getPrecision()); } } else if(type.getBasicType() == EbtInt) { switch(type.getPrecision()) { case EbpHigh: return GL_HIGH_INT; case EbpMedium: return GL_MEDIUM_INT; case EbpLow: return GL_LOW_INT; case EbpUndefined: // Should be defined as the default precision by the parser default: UNREACHABLE(type.getPrecision()); } } // Other types (boolean, sampler) don't have a precision return GL_NONE; } } namespace glsl { // Integer to TString conversion TString str(int i) { char buffer[20]; sprintf(buffer, "%d", i); return buffer; } class Temporary : public TIntermSymbol { public: Temporary(OutputASM *assembler) : TIntermSymbol(TSymbolTableLevel::nextUniqueId(), "tmp", TType(EbtFloat, EbpHigh, EvqTemporary, 4, 1, false)), assembler(assembler) { } ~Temporary() { assembler->freeTemporary(this); } private: OutputASM *const assembler; }; class Constant : public TIntermConstantUnion { public: Constant(float x, float y, float z, float w) : TIntermConstantUnion(constants, TType(EbtFloat, EbpHigh, EvqConstExpr, 4, 1, false)) { constants[0].setFConst(x); constants[1].setFConst(y); constants[2].setFConst(z); constants[3].setFConst(w); } Constant(bool b) : TIntermConstantUnion(constants, TType(EbtBool, EbpHigh, EvqConstExpr, 1, 1, false)) { constants[0].setBConst(b); } Constant(int i) : TIntermConstantUnion(constants, TType(EbtInt, EbpHigh, EvqConstExpr, 1, 1, false)) { constants[0].setIConst(i); } ~Constant() { } private: ConstantUnion constants[4]; }; ShaderVariable::ShaderVariable(const TType& type, const std::string& name, int registerIndex) : type(type.isStruct() ? GL_NONE : glVariableType(type)), precision(glVariablePrecision(type)), name(name), arraySize(type.getArraySize()), registerIndex(registerIndex) { if(type.isStruct()) { for(const auto& field : type.getStruct()->fields()) { fields.push_back(ShaderVariable(*(field->type()), field->name().c_str(), -1)); } } } Uniform::Uniform(const TType& type, const std::string &name, int registerIndex, int blockId, const BlockMemberInfo& blockMemberInfo) : ShaderVariable(type, name, registerIndex), blockId(blockId), blockInfo(blockMemberInfo) { } UniformBlock::UniformBlock(const std::string& name, unsigned int dataSize, unsigned int arraySize, TLayoutBlockStorage layout, bool isRowMajorLayout, int registerIndex, int blockId) : name(name), dataSize(dataSize), arraySize(arraySize), layout(layout), isRowMajorLayout(isRowMajorLayout), registerIndex(registerIndex), blockId(blockId) { } BlockLayoutEncoder::BlockLayoutEncoder() : mCurrentOffset(0) { } BlockMemberInfo BlockLayoutEncoder::encodeType(const TType &type) { int arrayStride; int matrixStride; bool isRowMajor = type.getLayoutQualifier().matrixPacking == EmpRowMajor; getBlockLayoutInfo(type, type.getArraySize(), isRowMajor, &arrayStride, &matrixStride); const BlockMemberInfo memberInfo(static_cast<int>(mCurrentOffset * BytesPerComponent), static_cast<int>(arrayStride * BytesPerComponent), static_cast<int>(matrixStride * BytesPerComponent), (matrixStride > 0) && isRowMajor); advanceOffset(type, type.getArraySize(), isRowMajor, arrayStride, matrixStride); return memberInfo; } // static size_t BlockLayoutEncoder::getBlockRegister(const BlockMemberInfo &info) { return (info.offset / BytesPerComponent) / ComponentsPerRegister; } // static size_t BlockLayoutEncoder::getBlockRegisterElement(const BlockMemberInfo &info) { return (info.offset / BytesPerComponent) % ComponentsPerRegister; } void BlockLayoutEncoder::nextRegister() { mCurrentOffset = sw::align(mCurrentOffset, ComponentsPerRegister); } Std140BlockEncoder::Std140BlockEncoder() : BlockLayoutEncoder() { } void Std140BlockEncoder::enterAggregateType() { nextRegister(); } void Std140BlockEncoder::exitAggregateType() { nextRegister(); } void Std140BlockEncoder::getBlockLayoutInfo(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int *arrayStrideOut, int *matrixStrideOut) { size_t baseAlignment = 0; int matrixStride = 0; int arrayStride = 0; if(type.isMatrix()) { baseAlignment = ComponentsPerRegister; matrixStride = ComponentsPerRegister; if(arraySize > 0) { const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize(); arrayStride = ComponentsPerRegister * numRegisters; } } else if(arraySize > 0) { baseAlignment = ComponentsPerRegister; arrayStride = ComponentsPerRegister; } else { const size_t numComponents = type.getElementSize(); baseAlignment = (numComponents == 3 ? 4u : numComponents); } mCurrentOffset = sw::align(mCurrentOffset, baseAlignment); *matrixStrideOut = matrixStride; *arrayStrideOut = arrayStride; } void Std140BlockEncoder::advanceOffset(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int arrayStride, int matrixStride) { if(arraySize > 0) { mCurrentOffset += arrayStride * arraySize; } else if(type.isMatrix()) { ASSERT(matrixStride == ComponentsPerRegister); const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize(); mCurrentOffset += ComponentsPerRegister * numRegisters; } else { mCurrentOffset += type.getElementSize(); } } Attribute::Attribute() { type = GL_NONE; arraySize = 0; registerIndex = 0; } Attribute::Attribute(GLenum type, const std::string &name, int arraySize, int location, int registerIndex) { this->type = type; this->name = name; this->arraySize = arraySize; this->location = location; this->registerIndex = registerIndex; } sw::PixelShader *Shader::getPixelShader() const { return nullptr; } sw::VertexShader *Shader::getVertexShader() const { return nullptr; } OutputASM::TextureFunction::TextureFunction(const TString& nodeName) : method(IMPLICIT), proj(false), offset(false) { TString name = TFunction::unmangleName(nodeName); if(name == "texture2D" || name == "textureCube" || name == "texture" || name == "texture3D" || name == "texture2DRect") { method = IMPLICIT; } else if(name == "texture2DProj" || name == "textureProj" || name == "texture2DRectProj") { method = IMPLICIT; proj = true; } else if(name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod") { method = LOD; } else if(name == "texture2DProjLod" || name == "textureProjLod") { method = LOD; proj = true; } else if(name == "textureSize") { method = SIZE; } else if(name == "textureOffset") { method = IMPLICIT; offset = true; } else if(name == "textureProjOffset") { method = IMPLICIT; offset = true; proj = true; } else if(name == "textureLodOffset") { method = LOD; offset = true; } else if(name == "textureProjLodOffset") { method = LOD; proj = true; offset = true; } else if(name == "texelFetch") { method = FETCH; } else if(name == "texelFetchOffset") { method = FETCH; offset = true; } else if(name == "textureGrad") { method = GRAD; } else if(name == "textureGradOffset") { method = GRAD; offset = true; } else if(name == "textureProjGrad") { method = GRAD; proj = true; } else if(name == "textureProjGradOffset") { method = GRAD; proj = true; offset = true; } else UNREACHABLE(0); } OutputASM::OutputASM(TParseContext &context, Shader *shaderObject) : TIntermTraverser(true, true, true), shaderObject(shaderObject), mContext(context) { shader = nullptr; pixelShader = nullptr; vertexShader = nullptr; if(shaderObject) { shader = shaderObject->getShader(); pixelShader = shaderObject->getPixelShader(); vertexShader = shaderObject->getVertexShader(); } functionArray.push_back(Function(0, "main(", nullptr, nullptr)); currentFunction = 0; outputQualifier = EvqOutput; // Initialize outputQualifier to any value other than EvqFragColor or EvqFragData } OutputASM::~OutputASM() { } void OutputASM::output() { if(shader) { emitShader(GLOBAL); if(functionArray.size() > 1) // Only call main() when there are other functions { Instruction *callMain = emit(sw::Shader::OPCODE_CALL); callMain->dst.type = sw::Shader::PARAMETER_LABEL; callMain->dst.index = 0; // main() emit(sw::Shader::OPCODE_RET); } emitShader(FUNCTION); } } void OutputASM::emitShader(Scope scope) { emitScope = scope; currentScope = GLOBAL; mContext.getTreeRoot()->traverse(this); } void OutputASM::freeTemporary(Temporary *temporary) { free(temporaries, temporary); } sw::Shader::Opcode OutputASM::getOpcode(sw::Shader::Opcode op, TIntermTyped *in) const { TBasicType baseType = in->getType().getBasicType(); switch(op) { case sw::Shader::OPCODE_NEG: switch(baseType) { case EbtInt: case EbtUInt: return sw::Shader::OPCODE_INEG; case EbtFloat: default: return op; } case sw::Shader::OPCODE_ABS: switch(baseType) { case EbtInt: return sw::Shader::OPCODE_IABS; case EbtFloat: default: return op; } case sw::Shader::OPCODE_SGN: switch(baseType) { case EbtInt: return sw::Shader::OPCODE_ISGN; case EbtFloat: default: return op; } case sw::Shader::OPCODE_ADD: switch(baseType) { case EbtInt: case EbtUInt: return sw::Shader::OPCODE_IADD; case EbtFloat: default: return op; } case sw::Shader::OPCODE_SUB: switch(baseType) { case EbtInt: case EbtUInt: return sw::Shader::OPCODE_ISUB; case EbtFloat: default: return op; } case sw::Shader::OPCODE_MUL: switch(baseType) { case EbtInt: case EbtUInt: return sw::Shader::OPCODE_IMUL; case EbtFloat: default: return op; } case sw::Shader::OPCODE_DIV: switch(baseType) { case EbtInt: return sw::Shader::OPCODE_IDIV; case EbtUInt: return sw::Shader::OPCODE_UDIV; case EbtFloat: default: return op; } case sw::Shader::OPCODE_IMOD: return baseType == EbtUInt ? sw::Shader::OPCODE_UMOD : op; case sw::Shader::OPCODE_ISHR: return baseType == EbtUInt ? sw::Shader::OPCODE_USHR : op; case sw::Shader::OPCODE_MIN: switch(baseType) { case EbtInt: return sw::Shader::OPCODE_IMIN; case EbtUInt: return sw::Shader::OPCODE_UMIN; case EbtFloat: default: return op; } case sw::Shader::OPCODE_MAX: switch(baseType) { case EbtInt: return sw::Shader::OPCODE_IMAX; case EbtUInt: return sw::Shader::OPCODE_UMAX; case EbtFloat: default: return op; } default: return op; } } void OutputASM::visitSymbol(TIntermSymbol *symbol) { // The type of vertex outputs and fragment inputs with the same name must match (validated at link time), // so declare them but don't assign a register index yet (one will be assigned when referenced in reachable code). switch(symbol->getQualifier()) { case EvqVaryingIn: case EvqVaryingOut: case EvqInvariantVaryingIn: case EvqInvariantVaryingOut: case EvqVertexOut: case EvqFragmentIn: if(symbol->getBasicType() != EbtInvariant) // Typeless declarations are not new varyings { declareVarying(symbol, -1); } break; case EvqFragmentOut: declareFragmentOutput(symbol); break; default: break; } TInterfaceBlock* block = symbol->getType().getInterfaceBlock(); // OpenGL ES 3.0.4 spec, section 2.12.6 Uniform Variables: // "All members of a named uniform block declared with a shared or std140 layout qualifier // are considered active, even if they are not referenced in any shader in the program. // The uniform block itself is also considered active, even if no member of the block is referenced." if(block && ((block->blockStorage() == EbsShared) || (block->blockStorage() == EbsStd140))) { uniformRegister(symbol); } } bool OutputASM::visitBinary(Visit visit, TIntermBinary *node) { if(currentScope != emitScope) { return false; } TIntermTyped *result = node; TIntermTyped *left = node->getLeft(); TIntermTyped *right = node->getRight(); const TType &leftType = left->getType(); const TType &rightType = right->getType(); if(isSamplerRegister(result)) { return false; // Don't traverse, the register index is determined statically } switch(node->getOp()) { case EOpAssign: assert(visit == PreVisit); right->traverse(this); assignLvalue(left, right); copy(result, right); return false; case EOpInitialize: assert(visit == PreVisit); // Constant arrays go into the constant register file. if(leftType.getQualifier() == EvqConstExpr && leftType.isArray() && leftType.getArraySize() > 1) { for(int i = 0; i < left->totalRegisterCount(); i++) { emit(sw::Shader::OPCODE_DEF, left, i, right, i); } } else { right->traverse(this); copy(left, right); } return false; case EOpMatrixTimesScalarAssign: assert(visit == PreVisit); right->traverse(this); for(int i = 0; i < leftType.getNominalSize(); i++) { emit(sw::Shader::OPCODE_MUL, result, i, left, i, right); } assignLvalue(left, result); return false; case EOpVectorTimesMatrixAssign: assert(visit == PreVisit); { right->traverse(this); int size = leftType.getNominalSize(); for(int i = 0; i < size; i++) { Instruction *dot = emit(sw::Shader::OPCODE_DP(size), result, 0, left, 0, right, i); dot->dst.mask = 1 << i; } assignLvalue(left, result); } return false; case EOpMatrixTimesMatrixAssign: assert(visit == PreVisit); { right->traverse(this); int dim = leftType.getNominalSize(); for(int i = 0; i < dim; i++) { Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i); mul->src[1].swizzle = 0x00; for(int j = 1; j < dim; j++) { Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i); mad->src[1].swizzle = j * 0x55; } } assignLvalue(left, result); } return false; case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: assert(visit == PreVisit); evaluateRvalue(node); return false; case EOpVectorSwizzle: if(visit == PostVisit) { int swizzle = 0; TIntermAggregate *components = right->getAsAggregate(); if(components) { TIntermSequence &sequence = components->getSequence(); int component = 0; for(TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++) { TIntermConstantUnion *element = (*sit)->getAsConstantUnion(); if(element) { int i = element->getUnionArrayPointer()[0].getIConst(); swizzle |= i << (component * 2); component++; } else UNREACHABLE(0); } } else UNREACHABLE(0); Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, left); mov->src[0].swizzle = swizzle; } break; case EOpAddAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, left, right); break; case EOpAdd: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, right); break; case EOpSubAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, left, right); break; case EOpSub: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, right); break; case EOpMulAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, left, right); break; case EOpMul: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, right); break; case EOpDivAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, left, right); break; case EOpDiv: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, right); break; case EOpIModAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, left, right); break; case EOpIMod: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, right); break; case EOpBitShiftLeftAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_SHL, result, left, left, right); break; case EOpBitShiftLeft: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_SHL, result, left, right); break; case EOpBitShiftRightAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, left, right); break; case EOpBitShiftRight: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, right); break; case EOpBitwiseAndAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_AND, result, left, left, right); break; case EOpBitwiseAnd: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_AND, result, left, right); break; case EOpBitwiseXorAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_XOR, result, left, left, right); break; case EOpBitwiseXor: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_XOR, result, left, right); break; case EOpBitwiseOrAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_OR, result, left, left, right); break; case EOpBitwiseOr: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_OR, result, left, right); break; case EOpEqual: if(visit == PostVisit) { emitBinary(sw::Shader::OPCODE_EQ, result, left, right); for(int index = 1; index < left->totalRegisterCount(); index++) { Temporary equal(this); emit(sw::Shader::OPCODE_EQ, &equal, 0, left, index, right, index); emit(sw::Shader::OPCODE_AND, result, result, &equal); } } break; case EOpNotEqual: if(visit == PostVisit) { emitBinary(sw::Shader::OPCODE_NE, result, left, right); for(int index = 1; index < left->totalRegisterCount(); index++) { Temporary notEqual(this); emit(sw::Shader::OPCODE_NE, ¬Equal, 0, left, index, right, index); emit(sw::Shader::OPCODE_OR, result, result, ¬Equal); } } break; case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, left, right); break; case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, left, right); break; case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, left, right); break; case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, left, right); break; case EOpVectorTimesScalarAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, left, right); break; case EOpVectorTimesScalar: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, right); break; case EOpMatrixTimesScalar: if(visit == PostVisit) { if(left->isMatrix()) { for(int i = 0; i < leftType.getNominalSize(); i++) { emit(sw::Shader::OPCODE_MUL, result, i, left, i, right, 0); } } else if(right->isMatrix()) { for(int i = 0; i < rightType.getNominalSize(); i++) { emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i); } } else UNREACHABLE(0); } break; case EOpVectorTimesMatrix: if(visit == PostVisit) { sw::Shader::Opcode dpOpcode = sw::Shader::OPCODE_DP(leftType.getNominalSize()); int size = rightType.getNominalSize(); for(int i = 0; i < size; i++) { Instruction *dot = emit(dpOpcode, result, 0, left, 0, right, i); dot->dst.mask = 1 << i; } } break; case EOpMatrixTimesVector: if(visit == PostVisit) { Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right); mul->src[1].swizzle = 0x00; int size = rightType.getNominalSize(); for(int i = 1; i < size; i++) { Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, 0, left, i, right, 0, result); mad->src[1].swizzle = i * 0x55; } } break; case EOpMatrixTimesMatrix: if(visit == PostVisit) { int dim = leftType.getNominalSize(); int size = rightType.getNominalSize(); for(int i = 0; i < size; i++) { Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i); mul->src[1].swizzle = 0x00; for(int j = 1; j < dim; j++) { Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i); mad->src[1].swizzle = j * 0x55; } } } break; case EOpLogicalOr: if(trivial(right, 6)) { if(visit == PostVisit) { emit(sw::Shader::OPCODE_OR, result, left, right); } } else // Short-circuit evaluation { if(visit == InVisit) { emit(sw::Shader::OPCODE_MOV, result, left); Instruction *ifnot = emit(sw::Shader::OPCODE_IF, 0, result); ifnot->src[0].modifier = sw::Shader::MODIFIER_NOT; } else if(visit == PostVisit) { emit(sw::Shader::OPCODE_MOV, result, right); emit(sw::Shader::OPCODE_ENDIF); } } break; case EOpLogicalXor: if(visit == PostVisit) emit(sw::Shader::OPCODE_XOR, result, left, right); break; case EOpLogicalAnd: if(trivial(right, 6)) { if(visit == PostVisit) { emit(sw::Shader::OPCODE_AND, result, left, right); } } else // Short-circuit evaluation { if(visit == InVisit) { emit(sw::Shader::OPCODE_MOV, result, left); emit(sw::Shader::OPCODE_IF, 0, result); } else if(visit == PostVisit) { emit(sw::Shader::OPCODE_MOV, result, right); emit(sw::Shader::OPCODE_ENDIF); } } break; default: UNREACHABLE(node->getOp()); } return true; } void OutputASM::emitDeterminant(TIntermTyped *result, TIntermTyped *arg, int size, int col, int row, int outCol, int outRow) { switch(size) { case 1: // Used for cofactor computation only { // For a 2x2 matrix, the cofactor is simply a transposed move or negate bool isMov = (row == col); sw::Shader::Opcode op = isMov ? sw::Shader::OPCODE_MOV : sw::Shader::OPCODE_NEG; Instruction *mov = emit(op, result, outCol, arg, isMov ? 1 - row : row); mov->src[0].swizzle = 0x55 * (isMov ? 1 - col : col); mov->dst.mask = 1 << outRow; } break; case 2: { static const unsigned int swizzle[3] = { 0x99, 0x88, 0x44 }; // xy?? : yzyz, xzxz, xyxy bool isCofactor = (col >= 0) && (row >= 0); int col0 = (isCofactor && (col <= 0)) ? 1 : 0; int col1 = (isCofactor && (col <= 1)) ? 2 : 1; bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01)); Instruction *det = emit(sw::Shader::OPCODE_DET2, result, outCol, arg, negate ? col1 : col0, arg, negate ? col0 : col1); det->src[0].swizzle = det->src[1].swizzle = swizzle[isCofactor ? row : 2]; det->dst.mask = 1 << outRow; } break; case 3: { static const unsigned int swizzle[4] = { 0xF9, 0xF8, 0xF4, 0xE4 }; // xyz? : yzww, xzww, xyww, xyzw bool isCofactor = (col >= 0) && (row >= 0); int col0 = (isCofactor && (col <= 0)) ? 1 : 0; int col1 = (isCofactor && (col <= 1)) ? 2 : 1; int col2 = (isCofactor && (col <= 2)) ? 3 : 2; bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01)); Instruction *det = emit(sw::Shader::OPCODE_DET3, result, outCol, arg, col0, arg, negate ? col2 : col1, arg, negate ? col1 : col2); det->src[0].swizzle = det->src[1].swizzle = det->src[2].swizzle = swizzle[isCofactor ? row : 3]; det->dst.mask = 1 << outRow; } break; case 4: { Instruction *det = emit(sw::Shader::OPCODE_DET4, result, outCol, arg, 0, arg, 1, arg, 2, arg, 3); det->dst.mask = 1 << outRow; } break; default: UNREACHABLE(size); break; } } bool OutputASM::visitUnary(Visit visit, TIntermUnary *node) { if(currentScope != emitScope) { return false; } TIntermTyped *result = node; TIntermTyped *arg = node->getOperand(); TBasicType basicType = arg->getType().getBasicType(); union { float f; int i; } one_value; if(basicType == EbtInt || basicType == EbtUInt) { one_value.i = 1; } else { one_value.f = 1.0f; } Constant one(one_value.f, one_value.f, one_value.f, one_value.f); Constant rad(1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f); Constant deg(5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f); switch(node->getOp()) { case EOpNegative: if(visit == PostVisit) { sw::Shader::Opcode negOpcode = getOpcode(sw::Shader::OPCODE_NEG, arg); for(int index = 0; index < arg->totalRegisterCount(); index++) { emit(negOpcode, result, index, arg, index); } } break; case EOpVectorLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break; case EOpLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break; case EOpBitwiseNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break; case EOpPostIncrement: if(visit == PostVisit) { copy(result, arg); sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg); for(int index = 0; index < arg->totalRegisterCount(); index++) { emit(addOpcode, arg, index, arg, index, &one); } assignLvalue(arg, arg); } break; case EOpPostDecrement: if(visit == PostVisit) { copy(result, arg); sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg); for(int index = 0; index < arg->totalRegisterCount(); index++) { emit(subOpcode, arg, index, arg, index, &one); } assignLvalue(arg, arg); } break; case EOpPreIncrement: if(visit == PostVisit) { sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg); for(int index = 0; index < arg->totalRegisterCount(); index++) { emit(addOpcode, result, index, arg, index, &one); } assignLvalue(arg, result); } break; case EOpPreDecrement: if(visit == PostVisit) { sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg); for(int index = 0; index < arg->totalRegisterCount(); index++) { emit(subOpcode, result, index, arg, index, &one); } assignLvalue(arg, result); } break; case EOpRadians: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &rad); break; case EOpDegrees: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, °); break; case EOpSin: if(visit == PostVisit) emit(sw::Shader::OPCODE_SIN, result, arg); break; case EOpCos: if(visit == PostVisit) emit(sw::Shader::OPCODE_COS, result, arg); break; case EOpTan: if(visit == PostVisit) emit(sw::Shader::OPCODE_TAN, result, arg); break; case EOpAsin: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASIN, result, arg); break; case EOpAcos: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOS, result, arg); break; case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN, result, arg); break; case EOpSinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_SINH, result, arg); break; case EOpCosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_COSH, result, arg); break; case EOpTanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_TANH, result, arg); break; case EOpAsinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASINH, result, arg); break; case EOpAcosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOSH, result, arg); break; case EOpAtanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATANH, result, arg); break; case EOpExp: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP, result, arg); break; case EOpLog: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG, result, arg); break; case EOpExp2: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP2, result, arg); break; case EOpLog2: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG2, result, arg); break; case EOpSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_SQRT, result, arg); break; case EOpInverseSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_RSQ, result, arg); break; case EOpAbs: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_ABS, result), result, arg); break; case EOpSign: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_SGN, result), result, arg); break; case EOpFloor: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOOR, result, arg); break; case EOpTrunc: if(visit == PostVisit) emit(sw::Shader::OPCODE_TRUNC, result, arg); break; case EOpRound: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUND, result, arg); break; case EOpRoundEven: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUNDEVEN, result, arg); break; case EOpCeil: if(visit == PostVisit) emit(sw::Shader::OPCODE_CEIL, result, arg, result); break; case EOpFract: if(visit == PostVisit) emit(sw::Shader::OPCODE_FRC, result, arg); break; case EOpIsNan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISNAN, result, arg); break; case EOpIsInf: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISINF, result, arg); break; case EOpLength: if(visit == PostVisit) emit(sw::Shader::OPCODE_LEN(dim(arg)), result, arg); break; case EOpNormalize: if(visit == PostVisit) emit(sw::Shader::OPCODE_NRM(dim(arg)), result, arg); break; case EOpDFdx: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDX, result, arg); break; case EOpDFdy: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDY, result, arg); break; case EOpFwidth: if(visit == PostVisit) emit(sw::Shader::OPCODE_FWIDTH, result, arg); break; case EOpAny: if(visit == PostVisit) emit(sw::Shader::OPCODE_ANY, result, arg); break; case EOpAll: if(visit == PostVisit) emit(sw::Shader::OPCODE_ALL, result, arg); break; case EOpFloatBitsToInt: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOINT, result, arg); break; case EOpFloatBitsToUint: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOUINT, result, arg); break; case EOpIntBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_INTBITSTOFLOAT, result, arg); break; case EOpUintBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_UINTBITSTOFLOAT, result, arg); break; case EOpPackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKSNORM2x16, result, arg); break; case EOpPackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKUNORM2x16, result, arg); break; case EOpPackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKHALF2x16, result, arg); break; case EOpUnpackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKSNORM2x16, result, arg); break; case EOpUnpackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKUNORM2x16, result, arg); break; case EOpUnpackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKHALF2x16, result, arg); break; case EOpTranspose: if(visit == PostVisit) { int numCols = arg->getNominalSize(); int numRows = arg->getSecondarySize(); for(int i = 0; i < numCols; ++i) { for(int j = 0; j < numRows; ++j) { Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, j, arg, i); mov->src[0].swizzle = 0x55 * j; mov->dst.mask = 1 << i; } } } break; case EOpDeterminant: if(visit == PostVisit) { int size = arg->getNominalSize(); ASSERT(size == arg->getSecondarySize()); emitDeterminant(result, arg, size); } break; case EOpInverse: if(visit == PostVisit) { int size = arg->getNominalSize(); ASSERT(size == arg->getSecondarySize()); // Compute transposed matrix of cofactors for(int i = 0; i < size; ++i) { for(int j = 0; j < size; ++j) { // For a 2x2 matrix, the cofactor is simply a transposed move or negate // For a 3x3 or 4x4 matrix, the cofactor is a transposed determinant emitDeterminant(result, arg, size - 1, j, i, i, j); } } // Compute 1 / determinant Temporary invDet(this); emitDeterminant(&invDet, arg, size); Constant one(1.0f, 1.0f, 1.0f, 1.0f); Instruction *div = emit(sw::Shader::OPCODE_DIV, &invDet, &one, &invDet); div->src[1].swizzle = 0x00; // xxxx // Divide transposed matrix of cofactors by determinant for(int i = 0; i < size; ++i) { emit(sw::Shader::OPCODE_MUL, result, i, result, i, &invDet); } } break; default: UNREACHABLE(node->getOp()); } return true; } bool OutputASM::visitAggregate(Visit visit, TIntermAggregate *node) { if(currentScope != emitScope && node->getOp() != EOpFunction && node->getOp() != EOpSequence) { return false; } Constant zero(0.0f, 0.0f, 0.0f, 0.0f); TIntermTyped *result = node; const TType &resultType = node->getType(); TIntermSequence &arg = node->getSequence(); size_t argumentCount = arg.size(); switch(node->getOp()) { case EOpSequence: break; case EOpDeclaration: break; case EOpInvariantDeclaration: break; case EOpPrototype: break; case EOpComma: if(visit == PostVisit) { copy(result, arg[1]); } break; case EOpFunction: if(visit == PreVisit) { const TString &name = node->getName(); if(emitScope == FUNCTION) { if(functionArray.size() > 1) // No need for a label when there's only main() { Instruction *label = emit(sw::Shader::OPCODE_LABEL); label->dst.type = sw::Shader::PARAMETER_LABEL; const Function *function = findFunction(name); ASSERT(function); // Should have been added during global pass label->dst.index = function->label; currentFunction = function->label; } } else if(emitScope == GLOBAL) { if(name != "main(") { TIntermSequence &arguments = node->getSequence()[0]->getAsAggregate()->getSequence(); functionArray.push_back(Function(functionArray.size(), name, &arguments, node)); } } else UNREACHABLE(emitScope); currentScope = FUNCTION; } else if(visit == PostVisit) { if(emitScope == FUNCTION) { if(functionArray.size() > 1) // No need to return when there's only main() { emit(sw::Shader::OPCODE_RET); } } currentScope = GLOBAL; } break; case EOpFunctionCall: if(visit == PostVisit) { if(node->isUserDefined()) { const TString &name = node->getName(); const Function *function = findFunction(name); if(!function) { mContext.error(node->getLine(), "function definition not found", name.c_str()); return false; } TIntermSequence &arguments = *function->arg; for(size_t i = 0; i < argumentCount; i++) { TIntermTyped *in = arguments[i]->getAsTyped(); if(in->getQualifier() == EvqIn || in->getQualifier() == EvqInOut || in->getQualifier() == EvqConstReadOnly) { copy(in, arg[i]); } } Instruction *call = emit(sw::Shader::OPCODE_CALL); call->dst.type = sw::Shader::PARAMETER_LABEL; call->dst.index = function->label; if(function->ret && function->ret->getType().getBasicType() != EbtVoid) { copy(result, function->ret); } for(size_t i = 0; i < argumentCount; i++) { TIntermTyped *argument = arguments[i]->getAsTyped(); TIntermTyped *out = arg[i]->getAsTyped(); if(argument->getQualifier() == EvqOut || argument->getQualifier() == EvqInOut) { assignLvalue(out, argument); } } } else { const TextureFunction textureFunction(node->getName()); TIntermTyped *s = arg[0]->getAsTyped(); TIntermTyped *t = arg[1]->getAsTyped(); Temporary coord(this); if(textureFunction.proj) { Instruction *rcp = emit(sw::Shader::OPCODE_RCPX, &coord, arg[1]); rcp->src[0].swizzle = 0x55 * (t->getNominalSize() - 1); rcp->dst.mask = 0x7; Instruction *mul = emit(sw::Shader::OPCODE_MUL, &coord, arg[1], &coord); mul->dst.mask = 0x7; if(IsShadowSampler(s->getBasicType())) { ASSERT(s->getBasicType() == EbtSampler2DShadow); Instruction *mov = emit(sw::Shader::OPCODE_MOV, &coord, &coord); mov->src[0].swizzle = 0xA4; } } else { Instruction *mov = emit(sw::Shader::OPCODE_MOV, &coord, arg[1]); if(IsShadowSampler(s->getBasicType()) && t->getNominalSize() == 3) { ASSERT(s->getBasicType() == EbtSampler2DShadow); mov->src[0].swizzle = 0xA4; } } switch(textureFunction.method) { case TextureFunction::IMPLICIT: if(!textureFunction.offset) { if(argumentCount == 2) { emit(sw::Shader::OPCODE_TEX, result, &coord, s); } else if(argumentCount == 3) // Bias { emit(sw::Shader::OPCODE_TEXBIAS, result, &coord, s, arg[2]); } else UNREACHABLE(argumentCount); } else // Offset { if(argumentCount == 3) { emit(sw::Shader::OPCODE_TEXOFFSET, result, &coord, s, arg[2]); } else if(argumentCount == 4) // Bias { emit(sw::Shader::OPCODE_TEXOFFSETBIAS, result, &coord, s, arg[2], arg[3]); } else UNREACHABLE(argumentCount); } break; case TextureFunction::LOD: if(!textureFunction.offset && argumentCount == 3) { emit(sw::Shader::OPCODE_TEXLOD, result, &coord, s, arg[2]); } else if(argumentCount == 4) // Offset { emit(sw::Shader::OPCODE_TEXLODOFFSET, result, &coord, s, arg[3], arg[2]); } else UNREACHABLE(argumentCount); break; case TextureFunction::FETCH: if(!textureFunction.offset && argumentCount == 3) { emit(sw::Shader::OPCODE_TEXELFETCH, result, &coord, s, arg[2]); } else if(argumentCount == 4) // Offset { emit(sw::Shader::OPCODE_TEXELFETCHOFFSET, result, &coord, s, arg[3], arg[2]); } else UNREACHABLE(argumentCount); break; case TextureFunction::GRAD: if(!textureFunction.offset && argumentCount == 4) { emit(sw::Shader::OPCODE_TEXGRAD, result, &coord, s, arg[2], arg[3]); } else if(argumentCount == 5) // Offset { emit(sw::Shader::OPCODE_TEXGRADOFFSET, result, &coord, s, arg[2], arg[3], arg[4]); } else UNREACHABLE(argumentCount); break; case TextureFunction::SIZE: emit(sw::Shader::OPCODE_TEXSIZE, result, arg[1], s); break; default: UNREACHABLE(textureFunction.method); } } } break; case EOpParameters: break; case EOpConstructFloat: case EOpConstructVec2: case EOpConstructVec3: case EOpConstructVec4: case EOpConstructBool: case EOpConstructBVec2: case EOpConstructBVec3: case EOpConstructBVec4: case EOpConstructInt: case EOpConstructIVec2: case EOpConstructIVec3: case EOpConstructIVec4: case EOpConstructUInt: case EOpConstructUVec2: case EOpConstructUVec3: case EOpConstructUVec4: if(visit == PostVisit) { int component = 0; int arrayMaxIndex = result->isArray() ? result->getArraySize() - 1 : 0; int arrayComponents = result->getType().getElementSize(); for(size_t i = 0; i < argumentCount; i++) { TIntermTyped *argi = arg[i]->getAsTyped(); int size = argi->getNominalSize(); int arrayIndex = std::min(component / arrayComponents, arrayMaxIndex); int swizzle = component - (arrayIndex * arrayComponents); if(!argi->isMatrix()) { Instruction *mov = emitCast(result, arrayIndex, argi, 0); mov->dst.mask = (0xF << swizzle) & 0xF; mov->src[0].swizzle = readSwizzle(argi, size) << (swizzle * 2); component += size; } else if(!result->isMatrix()) // Construct a non matrix from a matrix { Instruction *mov = emitCast(result, arrayIndex, argi, 0); mov->dst.mask = (0xF << swizzle) & 0xF; mov->src[0].swizzle = readSwizzle(argi, size) << (swizzle * 2); // At most one more instruction when constructing a vec3 from a mat2 or a vec4 from a mat2/mat3 if(result->getNominalSize() > size) { Instruction *mov = emitCast(result, arrayIndex, argi, 1); mov->dst.mask = (0xF << (swizzle + size)) & 0xF; // mat2: xxxy (0x40), mat3: xxxx (0x00) mov->src[0].swizzle = ((size == 2) ? 0x40 : 0x00) << (swizzle * 2); } component += size; } else // Matrix { int column = 0; while(component < resultType.getNominalSize()) { Instruction *mov = emitCast(result, arrayIndex, argi, column); mov->dst.mask = (0xF << swizzle) & 0xF; mov->src[0].swizzle = readSwizzle(argi, size) << (swizzle * 2); column++; component += size; } } } } break; case EOpConstructMat2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4: if(visit == PostVisit) { TIntermTyped *arg0 = arg[0]->getAsTyped(); const int outCols = result->getNominalSize(); const int outRows = result->getSecondarySize(); if(arg0->isScalar() && arg.size() == 1) // Construct scale matrix { for(int i = 0; i < outCols; i++) { emit(sw::Shader::OPCODE_MOV, result, i, &zero); Instruction *mov = emitCast(result, i, arg0, 0); mov->dst.mask = 1 << i; ASSERT(mov->src[0].swizzle == 0x00); } } else if(arg0->isMatrix()) { int arraySize = result->isArray() ? result->getArraySize() : 1; for(int n = 0; n < arraySize; n++) { TIntermTyped *argi = arg[n]->getAsTyped(); const int inCols = argi->getNominalSize(); const int inRows = argi->getSecondarySize(); for(int i = 0; i < outCols; i++) { if(i >= inCols || outRows > inRows) { // Initialize to identity matrix Constant col((i == 0 ? 1.0f : 0.0f), (i == 1 ? 1.0f : 0.0f), (i == 2 ? 1.0f : 0.0f), (i == 3 ? 1.0f : 0.0f)); emitCast(result, i + n * outCols, &col, 0); } if(i < inCols) { Instruction *mov = emitCast(result, i + n * outCols, argi, i); mov->dst.mask = 0xF >> (4 - inRows); } } } } else { int column = 0; int row = 0; for(size_t i = 0; i < argumentCount; i++) { TIntermTyped *argi = arg[i]->getAsTyped(); int size = argi->getNominalSize(); int element = 0; while(element < size) { Instruction *mov = emitCast(result, column, argi, 0); mov->dst.mask = (0xF << row) & 0xF; mov->src[0].swizzle = (readSwizzle(argi, size) << (row * 2)) + 0x55 * element; int end = row + size - element; column = end >= outRows ? column + 1 : column; element = element + outRows - row; row = end >= outRows ? 0 : end; } } } } break; case EOpConstructStruct: if(visit == PostVisit) { int offset = 0; for(size_t i = 0; i < argumentCount; i++) { TIntermTyped *argi = arg[i]->getAsTyped(); int size = argi->totalRegisterCount(); for(int index = 0; index < size; index++) { Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, index + offset, argi, index); mov->dst.mask = writeMask(result, offset + index); } offset += size; } } break; case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, arg[0], arg[1]); break; case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, arg[0], arg[1]); break; case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, arg[0], arg[1]); break; case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, arg[0], arg[1]); break; case EOpVectorEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_EQ, result, arg[0], arg[1]); break; case EOpVectorNotEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_NE, result, arg[0], arg[1]); break; case EOpMod: if(visit == PostVisit) emit(sw::Shader::OPCODE_MOD, result, arg[0], arg[1]); break; case EOpModf: if(visit == PostVisit) { TIntermTyped* arg1 = arg[1]->getAsTyped(); emit(sw::Shader::OPCODE_TRUNC, arg1, arg[0]); assignLvalue(arg1, arg1); emitBinary(sw::Shader::OPCODE_SUB, result, arg[0], arg1); } break; case EOpPow: if(visit == PostVisit) emit(sw::Shader::OPCODE_POW, result, arg[0], arg[1]); break; case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN2, result, arg[0], arg[1]); break; case EOpMin: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, arg[0], arg[1]); break; case EOpMax: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]); break; case EOpClamp: if(visit == PostVisit) { emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]); emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, result, arg[2]); } break; case EOpMix: if(visit == PostVisit) { if(arg[2]->getAsTyped()->getBasicType() == EbtBool) { emit(sw::Shader::OPCODE_SELECT, result, arg[2], arg[1], arg[0]); } else { emit(sw::Shader::OPCODE_LRP, result, arg[2], arg[1], arg[0]); } } break; case EOpStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_STEP, result, arg[0], arg[1]); break; case EOpSmoothStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_SMOOTH, result, arg[0], arg[1], arg[2]); break; case EOpDistance: if(visit == PostVisit) emit(sw::Shader::OPCODE_DIST(dim(arg[0])), result, arg[0], arg[1]); break; case EOpDot: if(visit == PostVisit) emit(sw::Shader::OPCODE_DP(dim(arg[0])), result, arg[0], arg[1]); break; case EOpCross: if(visit == PostVisit) emit(sw::Shader::OPCODE_CRS, result, arg[0], arg[1]); break; case EOpFaceForward: if(visit == PostVisit) emit(sw::Shader::OPCODE_FORWARD(dim(arg[0])), result, arg[0], arg[1], arg[2]); break; case EOpReflect: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFLECT(dim(arg[0])), result, arg[0], arg[1]); break; case EOpRefract: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFRACT(dim(arg[0])), result, arg[0], arg[1], arg[2]); break; case EOpMul: if(visit == PostVisit) { TIntermTyped *arg0 = arg[0]->getAsTyped(); ASSERT((arg0->getNominalSize() == arg[1]->getAsTyped()->getNominalSize()) && (arg0->getSecondarySize() == arg[1]->getAsTyped()->getSecondarySize())); int size = arg0->getNominalSize(); for(int i = 0; i < size; i++) { emit(sw::Shader::OPCODE_MUL, result, i, arg[0], i, arg[1], i); } } break; case EOpOuterProduct: if(visit == PostVisit) { for(int i = 0; i < dim(arg[1]); i++) { Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, arg[0], 0, arg[1]); mul->src[1].swizzle = 0x55 * i; } } break; default: UNREACHABLE(node->getOp()); } return true; } bool OutputASM::visitSelection(Visit visit, TIntermSelection *node) { if(currentScope != emitScope) { return false; } TIntermTyped *condition = node->getCondition(); TIntermNode *trueBlock = node->getTrueBlock(); TIntermNode *falseBlock = node->getFalseBlock(); TIntermConstantUnion *constantCondition = condition->getAsConstantUnion(); condition->traverse(this); if(node->usesTernaryOperator()) { if(constantCondition) { bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst(); if(trueCondition) { trueBlock->traverse(this); copy(node, trueBlock); } else { falseBlock->traverse(this); copy(node, falseBlock); } } else if(trivial(node, 6)) // Fast to compute both potential results and no side effects { trueBlock->traverse(this); falseBlock->traverse(this); emit(sw::Shader::OPCODE_SELECT, node, condition, trueBlock, falseBlock); } else { emit(sw::Shader::OPCODE_IF, 0, condition); if(trueBlock) { trueBlock->traverse(this); copy(node, trueBlock); } if(falseBlock) { emit(sw::Shader::OPCODE_ELSE); falseBlock->traverse(this); copy(node, falseBlock); } emit(sw::Shader::OPCODE_ENDIF); } } else // if/else statement { if(constantCondition) { bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst(); if(trueCondition) { if(trueBlock) { trueBlock->traverse(this); } } else { if(falseBlock) { falseBlock->traverse(this); } } } else { emit(sw::Shader::OPCODE_IF, 0, condition); if(trueBlock) { trueBlock->traverse(this); } if(falseBlock) { emit(sw::Shader::OPCODE_ELSE); falseBlock->traverse(this); } emit(sw::Shader::OPCODE_ENDIF); } } return false; } bool OutputASM::visitLoop(Visit visit, TIntermLoop *node) { if(currentScope != emitScope) { return false; } unsigned int iterations = loopCount(node); if(iterations == 0) { return false; } bool unroll = (iterations <= 4); if(unroll) { LoopUnrollable loopUnrollable; unroll = loopUnrollable.traverse(node); } TIntermNode *init = node->getInit(); TIntermTyped *condition = node->getCondition(); TIntermTyped *expression = node->getExpression(); TIntermNode *body = node->getBody(); Constant True(true); if(node->getType() == ELoopDoWhile) { Temporary iterate(this); emit(sw::Shader::OPCODE_MOV, &iterate, &True); emit(sw::Shader::OPCODE_WHILE, 0, &iterate); // FIXME: Implement real do-while if(body) { body->traverse(this); } emit(sw::Shader::OPCODE_TEST); condition->traverse(this); emit(sw::Shader::OPCODE_MOV, &iterate, condition); emit(sw::Shader::OPCODE_ENDWHILE); } else { if(init) { init->traverse(this); } if(unroll) { for(unsigned int i = 0; i < iterations; i++) { // condition->traverse(this); // Condition could contain statements, but not in an unrollable loop if(body) { body->traverse(this); } if(expression) { expression->traverse(this); } } } else { if(condition) { condition->traverse(this); } else { condition = &True; } emit(sw::Shader::OPCODE_WHILE, 0, condition); if(body) { body->traverse(this); } emit(sw::Shader::OPCODE_TEST); if(expression) { expression->traverse(this); } if(condition) { condition->traverse(this); } emit(sw::Shader::OPCODE_ENDWHILE); } } return false; } bool OutputASM::visitBranch(Visit visit, TIntermBranch *node) { if(currentScope != emitScope) { return false; } switch(node->getFlowOp()) { case EOpKill: if(visit == PostVisit) emit(sw::Shader::OPCODE_DISCARD); break; case EOpBreak: if(visit == PostVisit) emit(sw::Shader::OPCODE_BREAK); break; case EOpContinue: if(visit == PostVisit) emit(sw::Shader::OPCODE_CONTINUE); break; case EOpReturn: if(visit == PostVisit) { TIntermTyped *value = node->getExpression(); if(value) { copy(functionArray[currentFunction].ret, value); } emit(sw::Shader::OPCODE_LEAVE); } break; default: UNREACHABLE(node->getFlowOp()); } return true; } bool OutputASM::visitSwitch(Visit visit, TIntermSwitch *node) { if(currentScope != emitScope) { return false; } TIntermTyped* switchValue = node->getInit(); TIntermAggregate* opList = node->getStatementList(); if(!switchValue || !opList) { return false; } switchValue->traverse(this); emit(sw::Shader::OPCODE_SWITCH); TIntermSequence& sequence = opList->getSequence(); TIntermSequence::iterator it = sequence.begin(); TIntermSequence::iterator defaultIt = sequence.end(); int nbCases = 0; for(; it != sequence.end(); ++it) { TIntermCase* currentCase = (*it)->getAsCaseNode(); if(currentCase) { TIntermSequence::iterator caseIt = it; TIntermTyped* condition = currentCase->getCondition(); if(condition) // non default case { if(nbCases != 0) { emit(sw::Shader::OPCODE_ELSE); } condition->traverse(this); Temporary result(this); emitBinary(sw::Shader::OPCODE_EQ, &result, switchValue, condition); emit(sw::Shader::OPCODE_IF, 0, &result); nbCases++; // Emit the code for this case and all subsequent cases until we hit a break statement. // TODO: This can repeat a lot of code for switches with many fall-through cases. for(++caseIt; caseIt != sequence.end(); ++caseIt) { (*caseIt)->traverse(this); // Stop if we encounter an unconditional branch (break, continue, return, or kill). // TODO: This doesn't work if the statement is at a deeper scope level (e.g. {break;}). // Note that this eliminates useless operations but shouldn't affect correctness. if((*caseIt)->getAsBranchNode()) { break; } } } else { defaultIt = it; // The default case might not be the last case, keep it for last } } } // If there's a default case, traverse it here if(defaultIt != sequence.end()) { emit(sw::Shader::OPCODE_ELSE); for(++defaultIt; defaultIt != sequence.end(); ++defaultIt) { (*defaultIt)->traverse(this); if((*defaultIt)->getAsBranchNode()) // Kill, Break, Continue or Return { break; } } } for(int i = 0; i < nbCases; ++i) { emit(sw::Shader::OPCODE_ENDIF); } emit(sw::Shader::OPCODE_ENDSWITCH); return false; } Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2, TIntermNode *src3, TIntermNode *src4) { return emit(op, dst, 0, src0, 0, src1, 0, src2, 0, src3, 0, src4, 0); } Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, int dstIndex, TIntermNode *src0, int index0, TIntermNode *src1, int index1, TIntermNode *src2, int index2, TIntermNode *src3, int index3, TIntermNode *src4, int index4) { Instruction *instruction = new Instruction(op); if(dst) { destination(instruction->dst, dst, dstIndex); } if(src0) { TIntermTyped* src = src0->getAsTyped(); instruction->dst.partialPrecision = src && (src->getPrecision() <= EbpLow); } source(instruction->src[0], src0, index0); source(instruction->src[1], src1, index1); source(instruction->src[2], src2, index2); source(instruction->src[3], src3, index3); source(instruction->src[4], src4, index4); shader->append(instruction); return instruction; } Instruction *OutputASM::emitCast(TIntermTyped *dst, TIntermTyped *src) { return emitCast(dst, 0, src, 0); } Instruction *OutputASM::emitCast(TIntermTyped *dst, int dstIndex, TIntermTyped *src, int srcIndex) { switch(src->getBasicType()) { case EbtBool: switch(dst->getBasicType()) { case EbtInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex); case EbtUInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex); case EbtFloat: return emit(sw::Shader::OPCODE_B2F, dst, dstIndex, src, srcIndex); default: break; } break; case EbtInt: switch(dst->getBasicType()) { case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex); case EbtFloat: return emit(sw::Shader::OPCODE_I2F, dst, dstIndex, src, srcIndex); default: break; } break; case EbtUInt: switch(dst->getBasicType()) { case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex); case EbtFloat: return emit(sw::Shader::OPCODE_U2F, dst, dstIndex, src, srcIndex); default: break; } break; case EbtFloat: switch(dst->getBasicType()) { case EbtBool: return emit(sw::Shader::OPCODE_F2B, dst, dstIndex, src, srcIndex); case EbtInt: return emit(sw::Shader::OPCODE_F2I, dst, dstIndex, src, srcIndex); case EbtUInt: return emit(sw::Shader::OPCODE_F2U, dst, dstIndex, src, srcIndex); default: break; } break; default: break; } ASSERT((src->getBasicType() == dst->getBasicType()) || ((src->getBasicType() == EbtInt) && (dst->getBasicType() == EbtUInt)) || ((src->getBasicType() == EbtUInt) && (dst->getBasicType() == EbtInt))); return emit(sw::Shader::OPCODE_MOV, dst, dstIndex, src, srcIndex); } void OutputASM::emitBinary(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2) { for(int index = 0; index < dst->elementRegisterCount(); index++) { emit(op, dst, index, src0, index, src1, index, src2, index); } } void OutputASM::emitAssign(sw::Shader::Opcode op, TIntermTyped *result, TIntermTyped *lhs, TIntermTyped *src0, TIntermTyped *src1) { emitBinary(op, result, src0, src1); assignLvalue(lhs, result); } void OutputASM::emitCmp(sw::Shader::Control cmpOp, TIntermTyped *dst, TIntermNode *left, TIntermNode *right, int index) { sw::Shader::Opcode opcode; switch(left->getAsTyped()->getBasicType()) { case EbtBool: case EbtInt: opcode = sw::Shader::OPCODE_ICMP; break; case EbtUInt: opcode = sw::Shader::OPCODE_UCMP; break; default: opcode = sw::Shader::OPCODE_CMP; break; } Instruction *cmp = emit(opcode, dst, 0, left, index, right, index); cmp->control = cmpOp; } int componentCount(const TType &type, int registers) { if(registers == 0) { return 0; } if(type.isArray() && registers >= type.elementRegisterCount()) { int index = registers / type.elementRegisterCount(); registers -= index * type.elementRegisterCount(); return index * type.getElementSize() + componentCount(type, registers); } if(type.isStruct() || type.isInterfaceBlock()) { const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields(); int elements = 0; for(const auto &field : fields) { const TType &fieldType = *(field->type()); if(fieldType.totalRegisterCount() <= registers) { registers -= fieldType.totalRegisterCount(); elements += fieldType.getObjectSize(); } else // Register within this field { return elements + componentCount(fieldType, registers); } } } else if(type.isMatrix()) { return registers * type.registerSize(); } UNREACHABLE(0); return 0; } int registerSize(const TType &type, int registers) { if(registers == 0) { if(type.isStruct()) { return registerSize(*((*(type.getStruct()->fields().begin()))->type()), 0); } else if(type.isInterfaceBlock()) { return registerSize(*((*(type.getInterfaceBlock()->fields().begin()))->type()), 0); } return type.registerSize(); } if(type.isArray() && registers >= type.elementRegisterCount()) { int index = registers / type.elementRegisterCount(); registers -= index * type.elementRegisterCount(); return registerSize(type, registers); } if(type.isStruct() || type.isInterfaceBlock()) { const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields(); int elements = 0; for(const auto &field : fields) { const TType &fieldType = *(field->type()); if(fieldType.totalRegisterCount() <= registers) { registers -= fieldType.totalRegisterCount(); elements += fieldType.getObjectSize(); } else // Register within this field { return registerSize(fieldType, registers); } } } else if(type.isMatrix()) { return registerSize(type, 0); } UNREACHABLE(0); return 0; } int OutputASM::getBlockId(TIntermTyped *arg) { if(arg) { const TType &type = arg->getType(); TInterfaceBlock* block = type.getInterfaceBlock(); if(block && (type.getQualifier() == EvqUniform)) { // Make sure the uniform block is declared uniformRegister(arg); const char* blockName = block->name().c_str(); // Fetch uniform block index from array of blocks for(ActiveUniformBlocks::const_iterator it = shaderObject->activeUniformBlocks.begin(); it != shaderObject->activeUniformBlocks.end(); ++it) { if(blockName == it->name) { return it->blockId; } } ASSERT(false); } } return -1; } OutputASM::ArgumentInfo OutputASM::getArgumentInfo(TIntermTyped *arg, int index) { const TType &type = arg->getType(); int blockId = getBlockId(arg); ArgumentInfo argumentInfo(BlockMemberInfo::getDefaultBlockInfo(), type, -1, -1); if(blockId != -1) { argumentInfo.bufferIndex = 0; for(int i = 0; i < blockId; ++i) { int blockArraySize = shaderObject->activeUniformBlocks[i].arraySize; argumentInfo.bufferIndex += blockArraySize > 0 ? blockArraySize : 1; } const BlockDefinitionIndexMap& blockDefinition = blockDefinitions[blockId]; BlockDefinitionIndexMap::const_iterator itEnd = blockDefinition.end(); BlockDefinitionIndexMap::const_iterator it = itEnd; argumentInfo.clampedIndex = index; if(type.isInterfaceBlock()) { // Offset index to the beginning of the selected instance int blockRegisters = type.elementRegisterCount(); int bufferOffset = argumentInfo.clampedIndex / blockRegisters; argumentInfo.bufferIndex += bufferOffset; argumentInfo.clampedIndex -= bufferOffset * blockRegisters; } int regIndex = registerIndex(arg); for(int i = regIndex + argumentInfo.clampedIndex; i >= regIndex; --i) { it = blockDefinition.find(i); if(it != itEnd) { argumentInfo.clampedIndex -= (i - regIndex); break; } } ASSERT(it != itEnd); argumentInfo.typedMemberInfo = it->second; int registerCount = argumentInfo.typedMemberInfo.type.totalRegisterCount(); argumentInfo.clampedIndex = (argumentInfo.clampedIndex >= registerCount) ? registerCount - 1 : argumentInfo.clampedIndex; } else { argumentInfo.clampedIndex = (index >= arg->totalRegisterCount()) ? arg->totalRegisterCount() - 1 : index; } return argumentInfo; } void OutputASM::source(sw::Shader::SourceParameter ¶meter, TIntermNode *argument, int index) { if(argument) { TIntermTyped *arg = argument->getAsTyped(); Temporary unpackedUniform(this); const TType& srcType = arg->getType(); TInterfaceBlock* srcBlock = srcType.getInterfaceBlock(); if(srcBlock && (srcType.getQualifier() == EvqUniform)) { const ArgumentInfo argumentInfo = getArgumentInfo(arg, index); const TType &memberType = argumentInfo.typedMemberInfo.type; if(memberType.getBasicType() == EbtBool) { ASSERT(argumentInfo.clampedIndex < (memberType.isArray() ? memberType.getArraySize() : 1)); // index < arraySize // Convert the packed bool, which is currently an int, to a true bool Instruction *instruction = new Instruction(sw::Shader::OPCODE_I2B); instruction->dst.type = sw::Shader::PARAMETER_TEMP; instruction->dst.index = registerIndex(&unpackedUniform); instruction->src[0].type = sw::Shader::PARAMETER_CONST; instruction->src[0].bufferIndex = argumentInfo.bufferIndex; instruction->src[0].index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * argumentInfo.typedMemberInfo.arrayStride; shader->append(instruction); arg = &unpackedUniform; index = 0; } else if((memberType.getLayoutQualifier().matrixPacking == EmpRowMajor) && memberType.isMatrix()) { int numCols = memberType.getNominalSize(); int numRows = memberType.getSecondarySize(); ASSERT(argumentInfo.clampedIndex < (numCols * (memberType.isArray() ? memberType.getArraySize() : 1))); // index < cols * arraySize unsigned int dstIndex = registerIndex(&unpackedUniform); unsigned int srcSwizzle = (argumentInfo.clampedIndex % numCols) * 0x55; int arrayIndex = argumentInfo.clampedIndex / numCols; int matrixStartOffset = argumentInfo.typedMemberInfo.offset + arrayIndex * argumentInfo.typedMemberInfo.arrayStride; for(int j = 0; j < numRows; ++j) { // Transpose the row major matrix Instruction *instruction = new Instruction(sw::Shader::OPCODE_MOV); instruction->dst.type = sw::Shader::PARAMETER_TEMP; instruction->dst.index = dstIndex; instruction->dst.mask = 1 << j; instruction->src[0].type = sw::Shader::PARAMETER_CONST; instruction->src[0].bufferIndex = argumentInfo.bufferIndex; instruction->src[0].index = matrixStartOffset + j * argumentInfo.typedMemberInfo.matrixStride; instruction->src[0].swizzle = srcSwizzle; shader->append(instruction); } arg = &unpackedUniform; index = 0; } } const ArgumentInfo argumentInfo = getArgumentInfo(arg, index); const TType &type = argumentInfo.typedMemberInfo.type; int size = registerSize(type, argumentInfo.clampedIndex); parameter.type = registerType(arg); parameter.bufferIndex = argumentInfo.bufferIndex; if(arg->getAsConstantUnion() && arg->getAsConstantUnion()->getUnionArrayPointer()) { int component = componentCount(type, argumentInfo.clampedIndex); ConstantUnion *constants = arg->getAsConstantUnion()->getUnionArrayPointer(); for(int i = 0; i < 4; i++) { if(size == 1) // Replicate { parameter.value[i] = constants[component + 0].getAsFloat(); } else if(i < size) { parameter.value[i] = constants[component + i].getAsFloat(); } else { parameter.value[i] = 0.0f; } } } else { parameter.index = registerIndex(arg) + argumentInfo.clampedIndex; if(parameter.bufferIndex != -1) { int stride = (argumentInfo.typedMemberInfo.matrixStride > 0) ? argumentInfo.typedMemberInfo.matrixStride : argumentInfo.typedMemberInfo.arrayStride; parameter.index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * stride; } } if(!IsSampler(arg->getBasicType())) { parameter.swizzle = readSwizzle(arg, size); } } } void OutputASM::destination(sw::Shader::DestinationParameter ¶meter, TIntermTyped *arg, int index) { parameter.type = registerType(arg); parameter.index = registerIndex(arg) + index; parameter.mask = writeMask(arg, index); } void OutputASM::copy(TIntermTyped *dst, TIntermNode *src, int offset) { for(int index = 0; index < dst->totalRegisterCount(); index++) { Instruction *mov = emit(sw::Shader::OPCODE_MOV, dst, index, src, offset + index); } } int swizzleElement(int swizzle, int index) { return (swizzle >> (index * 2)) & 0x03; } int swizzleSwizzle(int leftSwizzle, int rightSwizzle) { return (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 0)) << 0) | (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 1)) << 2) | (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 2)) << 4) | (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 3)) << 6); } void OutputASM::assignLvalue(TIntermTyped *dst, TIntermTyped *src) { if((src->isVector() && (!dst->isVector() || (src->getNominalSize() != dst->getNominalSize()))) || (src->isMatrix() && (!dst->isMatrix() || (src->getNominalSize() != dst->getNominalSize()) || (src->getSecondarySize() != dst->getSecondarySize())))) { return mContext.error(src->getLine(), "Result type should match the l-value type in compound assignment", src->isVector() ? "vector" : "matrix"); } TIntermBinary *binary = dst->getAsBinaryNode(); if(binary && binary->getOp() == EOpIndexIndirect && binary->getLeft()->isVector() && dst->isScalar()) { Instruction *insert = new Instruction(sw::Shader::OPCODE_INSERT); lvalue(insert->dst, dst); insert->src[0].type = insert->dst.type; insert->src[0].index = insert->dst.index; insert->src[0].rel = insert->dst.rel; source(insert->src[1], src); source(insert->src[2], binary->getRight()); shader->append(insert); } else { Instruction *mov1 = new Instruction(sw::Shader::OPCODE_MOV); int swizzle = lvalue(mov1->dst, dst); source(mov1->src[0], src); mov1->src[0].swizzle = swizzleSwizzle(mov1->src[0].swizzle, swizzle); shader->append(mov1); for(int offset = 1; offset < dst->totalRegisterCount(); offset++) { Instruction *mov = new Instruction(sw::Shader::OPCODE_MOV); mov->dst = mov1->dst; mov->dst.index += offset; mov->dst.mask = writeMask(dst, offset); source(mov->src[0], src, offset); shader->append(mov); } } } void OutputASM::evaluateRvalue(TIntermTyped *node) { TIntermBinary *binary = node->getAsBinaryNode(); if(binary && binary->getOp() == EOpIndexIndirect && binary->getLeft()->isVector() && node->isScalar()) { Instruction *insert = new Instruction(sw::Shader::OPCODE_EXTRACT); destination(insert->dst, node); Temporary address(this); unsigned char mask; TIntermTyped *root = nullptr; unsigned int offset = 0; int swizzle = lvalue(root, offset, insert->src[0].rel, mask, address, node); source(insert->src[0], root, offset); insert->src[0].swizzle = swizzleSwizzle(insert->src[0].swizzle, swizzle); source(insert->src[1], binary->getRight()); shader->append(insert); } else { Instruction *mov1 = new Instruction(sw::Shader::OPCODE_MOV); destination(mov1->dst, node, 0); Temporary address(this); unsigned char mask; TIntermTyped *root = nullptr; unsigned int offset = 0; int swizzle = lvalue(root, offset, mov1->src[0].rel, mask, address, node); source(mov1->src[0], root, offset); mov1->src[0].swizzle = swizzleSwizzle(mov1->src[0].swizzle, swizzle); shader->append(mov1); for(int i = 1; i < node->totalRegisterCount(); i++) { Instruction *mov = emit(sw::Shader::OPCODE_MOV, node, i, root, offset + i); mov->src[0].rel = mov1->src[0].rel; } } } int OutputASM::lvalue(sw::Shader::DestinationParameter &dst, TIntermTyped *node) { Temporary address(this); TIntermTyped *root = nullptr; unsigned int offset = 0; unsigned char mask = 0xF; int swizzle = lvalue(root, offset, dst.rel, mask, address, node); dst.type = registerType(root); dst.index = registerIndex(root) + offset; dst.mask = mask; return swizzle; } int OutputASM::lvalue(TIntermTyped *&root, unsigned int &offset, sw::Shader::Relative &rel, unsigned char &mask, Temporary &address, TIntermTyped *node) { TIntermTyped *result = node; TIntermBinary *binary = node->getAsBinaryNode(); TIntermSymbol *symbol = node->getAsSymbolNode(); if(binary) { TIntermTyped *left = binary->getLeft(); TIntermTyped *right = binary->getRight(); int leftSwizzle = lvalue(root, offset, rel, mask, address, left); // Resolve the l-value of the left side switch(binary->getOp()) { case EOpIndexDirect: { int rightIndex = right->getAsConstantUnion()->getIConst(0); if(left->isRegister()) { int leftMask = mask; mask = 1; while((leftMask & mask) == 0) { mask = mask << 1; } int element = swizzleElement(leftSwizzle, rightIndex); mask = 1 << element; return element; } else if(left->isArray() || left->isMatrix()) { offset += rightIndex * result->totalRegisterCount(); return 0xE4; } else UNREACHABLE(0); } break; case EOpIndexIndirect: { right->traverse(this); if(left->isRegister()) { // Requires INSERT instruction (handled by calling function) } else if(left->isArray() || left->isMatrix()) { int scale = result->totalRegisterCount(); if(rel.type == sw::Shader::PARAMETER_VOID) // Use the index register as the relative address directly { if(left->totalRegisterCount() > 1) { sw::Shader::SourceParameter relativeRegister; source(relativeRegister, right); rel.index = relativeRegister.index; rel.type = relativeRegister.type; rel.scale = scale; rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform); } } else if(rel.index != registerIndex(&address)) // Move the previous index register to the address register { if(scale == 1) { Constant oldScale((int)rel.scale); Instruction *mad = emit(sw::Shader::OPCODE_IMAD, &address, &address, &oldScale, right); mad->src[0].index = rel.index; mad->src[0].type = rel.type; } else { Constant oldScale((int)rel.scale); Instruction *mul = emit(sw::Shader::OPCODE_IMUL, &address, &address, &oldScale); mul->src[0].index = rel.index; mul->src[0].type = rel.type; Constant newScale(scale); emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address); } rel.type = sw::Shader::PARAMETER_TEMP; rel.index = registerIndex(&address); rel.scale = 1; } else // Just add the new index to the address register { if(scale == 1) { emit(sw::Shader::OPCODE_IADD, &address, &address, right); } else { Constant newScale(scale); emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address); } } } else UNREACHABLE(0); } break; case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: { const TFieldList& fields = (binary->getOp() == EOpIndexDirectStruct) ? left->getType().getStruct()->fields() : left->getType().getInterfaceBlock()->fields(); int index = right->getAsConstantUnion()->getIConst(0); int fieldOffset = 0; for(int i = 0; i < index; i++) { fieldOffset += fields[i]->type()->totalRegisterCount(); } offset += fieldOffset; mask = writeMask(result); return 0xE4; } break; case EOpVectorSwizzle: { ASSERT(left->isRegister()); int leftMask = mask; int swizzle = 0; int rightMask = 0; TIntermSequence &sequence = right->getAsAggregate()->getSequence(); for(unsigned int i = 0; i < sequence.size(); i++) { int index = sequence[i]->getAsConstantUnion()->getIConst(0); int element = swizzleElement(leftSwizzle, index); rightMask = rightMask | (1 << element); swizzle = swizzle | swizzleElement(leftSwizzle, i) << (element * 2); } mask = leftMask & rightMask; return swizzle; } break; default: UNREACHABLE(binary->getOp()); // Not an l-value operator break; } } else if(symbol) { root = symbol; offset = 0; mask = writeMask(symbol); return 0xE4; } else { node->traverse(this); root = node; offset = 0; mask = writeMask(node); return 0xE4; } return 0xE4; } sw::Shader::ParameterType OutputASM::registerType(TIntermTyped *operand) { if(isSamplerRegister(operand)) { return sw::Shader::PARAMETER_SAMPLER; } const TQualifier qualifier = operand->getQualifier(); if((qualifier == EvqFragColor) || (qualifier == EvqFragData)) { if(((qualifier == EvqFragData) && (outputQualifier == EvqFragColor)) || ((qualifier == EvqFragColor) && (outputQualifier == EvqFragData))) { mContext.error(operand->getLine(), "static assignment to both gl_FragData and gl_FragColor", ""); } outputQualifier = qualifier; } if(qualifier == EvqConstExpr && (!operand->getAsConstantUnion() || !operand->getAsConstantUnion()->getUnionArrayPointer())) { // Constant arrays are in the constant register file. if(operand->isArray() && operand->getArraySize() > 1) { return sw::Shader::PARAMETER_CONST; } else { return sw::Shader::PARAMETER_TEMP; } } switch(qualifier) { case EvqTemporary: return sw::Shader::PARAMETER_TEMP; case EvqGlobal: return sw::Shader::PARAMETER_TEMP; case EvqConstExpr: return sw::Shader::PARAMETER_FLOAT4LITERAL; // All converted to float case EvqAttribute: return sw::Shader::PARAMETER_INPUT; case EvqVaryingIn: return sw::Shader::PARAMETER_INPUT; case EvqVaryingOut: return sw::Shader::PARAMETER_OUTPUT; case EvqVertexIn: return sw::Shader::PARAMETER_INPUT; case EvqFragmentOut: return sw::Shader::PARAMETER_COLOROUT; case EvqVertexOut: return sw::Shader::PARAMETER_OUTPUT; case EvqFragmentIn: return sw::Shader::PARAMETER_INPUT; case EvqInvariantVaryingIn: return sw::Shader::PARAMETER_INPUT; // FIXME: Guarantee invariance at the backend case EvqInvariantVaryingOut: return sw::Shader::PARAMETER_OUTPUT; // FIXME: Guarantee invariance at the backend case EvqSmooth: return sw::Shader::PARAMETER_OUTPUT; case EvqFlat: return sw::Shader::PARAMETER_OUTPUT; case EvqCentroidOut: return sw::Shader::PARAMETER_OUTPUT; case EvqSmoothIn: return sw::Shader::PARAMETER_INPUT; case EvqFlatIn: return sw::Shader::PARAMETER_INPUT; case EvqCentroidIn: return sw::Shader::PARAMETER_INPUT; case EvqUniform: return sw::Shader::PARAMETER_CONST; case EvqIn: return sw::Shader::PARAMETER_TEMP; case EvqOut: return sw::Shader::PARAMETER_TEMP; case EvqInOut: return sw::Shader::PARAMETER_TEMP; case EvqConstReadOnly: return sw::Shader::PARAMETER_TEMP; case EvqPosition: return sw::Shader::PARAMETER_OUTPUT; case EvqPointSize: return sw::Shader::PARAMETER_OUTPUT; case EvqInstanceID: return sw::Shader::PARAMETER_MISCTYPE; case EvqVertexID: return sw::Shader::PARAMETER_MISCTYPE; case EvqFragCoord: return sw::Shader::PARAMETER_MISCTYPE; case EvqFrontFacing: return sw::Shader::PARAMETER_MISCTYPE; case EvqPointCoord: return sw::Shader::PARAMETER_INPUT; case EvqFragColor: return sw::Shader::PARAMETER_COLOROUT; case EvqFragData: return sw::Shader::PARAMETER_COLOROUT; case EvqFragDepth: return sw::Shader::PARAMETER_DEPTHOUT; default: UNREACHABLE(qualifier); } return sw::Shader::PARAMETER_VOID; } bool OutputASM::hasFlatQualifier(TIntermTyped *operand) { const TQualifier qualifier = operand->getQualifier(); return qualifier == EvqFlat || qualifier == EvqFlatOut || qualifier == EvqFlatIn; } unsigned int OutputASM::registerIndex(TIntermTyped *operand) { if(isSamplerRegister(operand)) { return samplerRegister(operand); } switch(operand->getQualifier()) { case EvqTemporary: return temporaryRegister(operand); case EvqGlobal: return temporaryRegister(operand); case EvqConstExpr: return temporaryRegister(operand); // Unevaluated constant expression case EvqAttribute: return attributeRegister(operand); case EvqVaryingIn: return varyingRegister(operand); case EvqVaryingOut: return varyingRegister(operand); case EvqVertexIn: return attributeRegister(operand); case EvqFragmentOut: return fragmentOutputRegister(operand); case EvqVertexOut: return varyingRegister(operand); case EvqFragmentIn: return varyingRegister(operand); case EvqInvariantVaryingIn: return varyingRegister(operand); case EvqInvariantVaryingOut: return varyingRegister(operand); case EvqSmooth: return varyingRegister(operand); case EvqFlat: return varyingRegister(operand); case EvqCentroidOut: return varyingRegister(operand); case EvqSmoothIn: return varyingRegister(operand); case EvqFlatIn: return varyingRegister(operand); case EvqCentroidIn: return varyingRegister(operand); case EvqUniform: return uniformRegister(operand); case EvqIn: return temporaryRegister(operand); case EvqOut: return temporaryRegister(operand); case EvqInOut: return temporaryRegister(operand); case EvqConstReadOnly: return temporaryRegister(operand); case EvqPosition: return varyingRegister(operand); case EvqPointSize: return varyingRegister(operand); case EvqInstanceID: vertexShader->declareInstanceId(); return sw::Shader::InstanceIDIndex; case EvqVertexID: vertexShader->declareVertexId(); return sw::Shader::VertexIDIndex; case EvqFragCoord: pixelShader->declareVPos(); return sw::Shader::VPosIndex; case EvqFrontFacing: pixelShader->declareVFace(); return sw::Shader::VFaceIndex; case EvqPointCoord: return varyingRegister(operand); case EvqFragColor: return 0; case EvqFragData: return fragmentOutputRegister(operand); case EvqFragDepth: return 0; default: UNREACHABLE(operand->getQualifier()); } return 0; } int OutputASM::writeMask(TIntermTyped *destination, int index) { if(destination->getQualifier() == EvqPointSize) { return 0x2; // Point size stored in the y component } return 0xF >> (4 - registerSize(destination->getType(), index)); } int OutputASM::readSwizzle(TIntermTyped *argument, int size) { if(argument->getQualifier() == EvqPointSize) { return 0x55; // Point size stored in the y component } static const unsigned char swizzleSize[5] = {0x00, 0x00, 0x54, 0xA4, 0xE4}; // (void), xxxx, xyyy, xyzz, xyzw return swizzleSize[size]; } // Conservatively checks whether an expression is fast to compute and has no side effects bool OutputASM::trivial(TIntermTyped *expression, int budget) { if(!expression->isRegister()) { return false; } return cost(expression, budget) >= 0; } // Returns the remaining computing budget (if < 0 the expression is too expensive or has side effects) int OutputASM::cost(TIntermNode *expression, int budget) { if(budget < 0) { return budget; } if(expression->getAsSymbolNode()) { return budget; } else if(expression->getAsConstantUnion()) { return budget; } else if(expression->getAsBinaryNode()) { TIntermBinary *binary = expression->getAsBinaryNode(); switch(binary->getOp()) { case EOpVectorSwizzle: case EOpIndexDirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: return cost(binary->getLeft(), budget - 0); case EOpAdd: case EOpSub: case EOpMul: return cost(binary->getLeft(), cost(binary->getRight(), budget - 1)); default: return -1; } } else if(expression->getAsUnaryNode()) { TIntermUnary *unary = expression->getAsUnaryNode(); switch(unary->getOp()) { case EOpAbs: case EOpNegative: return cost(unary->getOperand(), budget - 1); default: return -1; } } else if(expression->getAsSelectionNode()) { TIntermSelection *selection = expression->getAsSelectionNode(); if(selection->usesTernaryOperator()) { TIntermTyped *condition = selection->getCondition(); TIntermNode *trueBlock = selection->getTrueBlock(); TIntermNode *falseBlock = selection->getFalseBlock(); TIntermConstantUnion *constantCondition = condition->getAsConstantUnion(); if(constantCondition) { bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst(); if(trueCondition) { return cost(trueBlock, budget - 0); } else { return cost(falseBlock, budget - 0); } } else { return cost(trueBlock, cost(falseBlock, budget - 2)); } } } return -1; } const Function *OutputASM::findFunction(const TString &name) { for(unsigned int f = 0; f < functionArray.size(); f++) { if(functionArray[f].name == name) { return &functionArray[f]; } } return 0; } int OutputASM::temporaryRegister(TIntermTyped *temporary) { return allocate(temporaries, temporary); } void OutputASM::setPixelShaderInputs(const TType& type, int var, bool flat) { if(type.isStruct()) { const TFieldList &fields = type.getStruct()->fields(); int fieldVar = var; for(const auto &field : fields) { const TType& fieldType = *(field->type()); setPixelShaderInputs(fieldType, fieldVar, flat); fieldVar += fieldType.totalRegisterCount(); } } else { for(int i = 0; i < type.totalRegisterCount(); i++) { pixelShader->setInput(var + i, type.registerSize(), sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i, flat)); } } } int OutputASM::varyingRegister(TIntermTyped *varying) { int var = lookup(varyings, varying); if(var == -1) { var = allocate(varyings, varying); int registerCount = varying->totalRegisterCount(); if(pixelShader) { if((var + registerCount) > sw::MAX_FRAGMENT_INPUTS) { mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "fragment shader"); return 0; } if(varying->getQualifier() == EvqPointCoord) { ASSERT(varying->isRegister()); pixelShader->setInput(var, varying->registerSize(), sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var)); } else { setPixelShaderInputs(varying->getType(), var, hasFlatQualifier(varying)); } } else if(vertexShader) { if((var + registerCount) > sw::MAX_VERTEX_OUTPUTS) { mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "vertex shader"); return 0; } if(varying->getQualifier() == EvqPosition) { ASSERT(varying->isRegister()); vertexShader->setPositionRegister(var); } else if(varying->getQualifier() == EvqPointSize) { ASSERT(varying->isRegister()); vertexShader->setPointSizeRegister(var); } else { // Semantic indexes for user varyings will be assigned during program link to match the pixel shader } } else UNREACHABLE(0); declareVarying(varying, var); } return var; } void OutputASM::declareVarying(TIntermTyped *varying, int reg) { if(varying->getQualifier() != EvqPointCoord) // gl_PointCoord does not need linking { TIntermSymbol *symbol = varying->getAsSymbolNode(); declareVarying(varying->getType(), symbol->getSymbol(), reg); } } void OutputASM::declareVarying(const TType &type, const TString &varyingName, int registerIndex) { const char *name = varyingName.c_str(); VaryingList &activeVaryings = shaderObject->varyings; TStructure* structure = type.getStruct(); if(structure) { int fieldRegisterIndex = registerIndex; const TFieldList &fields = type.getStruct()->fields(); for(const auto &field : fields) { const TType& fieldType = *(field->type()); declareVarying(fieldType, varyingName + "." + field->name(), fieldRegisterIndex); if(fieldRegisterIndex >= 0) { fieldRegisterIndex += fieldType.totalRegisterCount(); } } } else { // Check if this varying has been declared before without having a register assigned for(VaryingList::iterator v = activeVaryings.begin(); v != activeVaryings.end(); v++) { if(v->name == name) { if(registerIndex >= 0) { ASSERT(v->registerIndex < 0 || v->registerIndex == registerIndex); v->registerIndex = registerIndex; } return; } } activeVaryings.push_back(glsl::Varying(type, name, registerIndex, 0)); } } void OutputASM::declareFragmentOutput(TIntermTyped *fragmentOutput) { int requestedLocation = fragmentOutput->getType().getLayoutQualifier().location; int registerCount = fragmentOutput->totalRegisterCount(); if(requestedLocation < 0) { ASSERT(requestedLocation == -1); // All other negative values would have been prevented in TParseContext::parseLayoutQualifier return; // No requested location } else if((requestedLocation + registerCount) > sw::RENDERTARGETS) { mContext.error(fragmentOutput->getLine(), "Fragment output location larger or equal to MAX_DRAW_BUFFERS", "fragment shader"); } else { int currentIndex = lookup(fragmentOutputs, fragmentOutput); if(requestedLocation != currentIndex) { if(currentIndex != -1) { mContext.error(fragmentOutput->getLine(), "Multiple locations for fragment output", "fragment shader"); } else { if(fragmentOutputs.size() <= (size_t)requestedLocation) { while(fragmentOutputs.size() < (size_t)requestedLocation) { fragmentOutputs.push_back(nullptr); } for(int i = 0; i < registerCount; i++) { fragmentOutputs.push_back(fragmentOutput); } } else { for(int i = 0; i < registerCount; i++) { if(!fragmentOutputs[requestedLocation + i]) { fragmentOutputs[requestedLocation + i] = fragmentOutput; } else { mContext.error(fragmentOutput->getLine(), "Fragment output location aliasing", "fragment shader"); return; } } } } } } } int OutputASM::uniformRegister(TIntermTyped *uniform) { const TType &type = uniform->getType(); ASSERT(!IsSampler(type.getBasicType())); TInterfaceBlock *block = type.getAsInterfaceBlock(); TIntermSymbol *symbol = uniform->getAsSymbolNode(); ASSERT(symbol || block); if(symbol || block) { TInterfaceBlock* parentBlock = type.getInterfaceBlock(); bool isBlockMember = (!block && parentBlock); int index = isBlockMember ? lookup(uniforms, parentBlock) : lookup(uniforms, uniform); if(index == -1 || isBlockMember) { if(index == -1) { index = allocate(uniforms, uniform); } // Verify if the current uniform is a member of an already declared block const TString &name = symbol ? symbol->getSymbol() : block->name(); int blockMemberIndex = blockMemberLookup(type, name, index); if(blockMemberIndex == -1) { declareUniform(type, name, index, false); } else { index = blockMemberIndex; } } return index; } return 0; } int OutputASM::attributeRegister(TIntermTyped *attribute) { ASSERT(!attribute->isArray()); int index = lookup(attributes, attribute); if(index == -1) { TIntermSymbol *symbol = attribute->getAsSymbolNode(); ASSERT(symbol); if(symbol) { index = allocate(attributes, attribute); const TType &type = attribute->getType(); int registerCount = attribute->totalRegisterCount(); sw::VertexShader::AttribType attribType = sw::VertexShader::ATTRIBTYPE_FLOAT; switch(type.getBasicType()) { case EbtInt: attribType = sw::VertexShader::ATTRIBTYPE_INT; break; case EbtUInt: attribType = sw::VertexShader::ATTRIBTYPE_UINT; break; case EbtFloat: default: break; } if(vertexShader && (index + registerCount) <= sw::MAX_VERTEX_INPUTS) { for(int i = 0; i < registerCount; i++) { vertexShader->setInput(index + i, sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, index + i, false), attribType); } } ActiveAttributes &activeAttributes = shaderObject->activeAttributes; const char *name = symbol->getSymbol().c_str(); activeAttributes.push_back(Attribute(glVariableType(type), name, type.getArraySize(), type.getLayoutQualifier().location, index)); } } return index; } int OutputASM::fragmentOutputRegister(TIntermTyped *fragmentOutput) { return allocate(fragmentOutputs, fragmentOutput); } int OutputASM::samplerRegister(TIntermTyped *sampler) { const TType &type = sampler->getType(); ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers TIntermSymbol *symbol = sampler->getAsSymbolNode(); TIntermBinary *binary = sampler->getAsBinaryNode(); if(symbol) { switch(type.getQualifier()) { case EvqUniform: return samplerRegister(symbol); case EvqIn: case EvqConstReadOnly: // Function arguments are not (uniform) sampler registers return -1; default: UNREACHABLE(type.getQualifier()); } } else if(binary) { TIntermTyped *left = binary->getLeft(); TIntermTyped *right = binary->getRight(); const TType &leftType = left->getType(); int index = right->getAsConstantUnion() ? right->getAsConstantUnion()->getIConst(0) : 0; int offset = 0; switch(binary->getOp()) { case EOpIndexDirect: ASSERT(left->isArray()); offset = index * leftType.samplerRegisterCount(); break; case EOpIndexDirectStruct: ASSERT(leftType.isStruct()); { const TFieldList &fields = leftType.getStruct()->fields(); for(int i = 0; i < index; i++) { offset += fields[i]->type()->totalSamplerRegisterCount(); } } break; case EOpIndexIndirect: // Indirect indexing produces a temporary, not a sampler register return -1; case EOpIndexDirectInterfaceBlock: // Interface blocks can't contain samplers default: UNREACHABLE(binary->getOp()); return -1; } int base = samplerRegister(left); if(base < 0) { return -1; } return base + offset; } UNREACHABLE(0); return -1; // Not a (uniform) sampler register } int OutputASM::samplerRegister(TIntermSymbol *sampler) { const TType &type = sampler->getType(); ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers int index = lookup(samplers, sampler); if(index == -1) { index = allocate(samplers, sampler, true); if(sampler->getQualifier() == EvqUniform) { const char *name = sampler->getSymbol().c_str(); declareUniform(type, name, index, true); } } return index; } bool OutputASM::isSamplerRegister(TIntermTyped *operand) { return operand && IsSampler(operand->getBasicType()) && samplerRegister(operand) >= 0; } int OutputASM::lookup(VariableArray &list, TIntermTyped *variable) { for(unsigned int i = 0; i < list.size(); i++) { if(list[i] == variable) { return i; // Pointer match } } TIntermSymbol *varSymbol = variable->getAsSymbolNode(); TInterfaceBlock *varBlock = variable->getType().getAsInterfaceBlock(); if(varBlock) { for(unsigned int i = 0; i < list.size(); i++) { if(list[i]) { TInterfaceBlock *listBlock = list[i]->getType().getAsInterfaceBlock(); if(listBlock) { if(listBlock->name() == varBlock->name()) { ASSERT(listBlock->arraySize() == varBlock->arraySize()); ASSERT(listBlock->fields() == varBlock->fields()); ASSERT(listBlock->blockStorage() == varBlock->blockStorage()); ASSERT(listBlock->matrixPacking() == varBlock->matrixPacking()); return i; } } } } } else if(varSymbol) { for(unsigned int i = 0; i < list.size(); i++) { if(list[i]) { TIntermSymbol *listSymbol = list[i]->getAsSymbolNode(); if(listSymbol) { if(listSymbol->getId() == varSymbol->getId()) { ASSERT(listSymbol->getSymbol() == varSymbol->getSymbol()); ASSERT(listSymbol->getType() == varSymbol->getType()); ASSERT(listSymbol->getQualifier() == varSymbol->getQualifier()); return i; } } } } } return -1; } int OutputASM::lookup(VariableArray &list, TInterfaceBlock *block) { for(unsigned int i = 0; i < list.size(); i++) { if(list[i] && (list[i]->getType().getInterfaceBlock() == block)) { return i; // Pointer match } } return -1; } int OutputASM::allocate(VariableArray &list, TIntermTyped *variable, bool samplersOnly) { int index = lookup(list, variable); if(index == -1) { unsigned int registerCount = variable->blockRegisterCount(samplersOnly); for(unsigned int i = 0; i < list.size(); i++) { if(list[i] == 0) { unsigned int j = 1; for( ; j < registerCount && (i + j) < list.size(); j++) { if(list[i + j] != 0) { break; } } if(j == registerCount) // Found free slots { for(unsigned int j = 0; j < registerCount; j++) { list[i + j] = variable; } return i; } } } index = list.size(); for(unsigned int i = 0; i < registerCount; i++) { list.push_back(variable); } } return index; } void OutputASM::free(VariableArray &list, TIntermTyped *variable) { int index = lookup(list, variable); if(index >= 0) { list[index] = 0; } } int OutputASM::blockMemberLookup(const TType &type, const TString &name, int registerIndex) { const TInterfaceBlock *block = type.getInterfaceBlock(); if(block) { ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks; const TFieldList& fields = block->fields(); const TString &blockName = block->name(); int fieldRegisterIndex = registerIndex; if(!type.isInterfaceBlock()) { // This is a uniform that's part of a block, let's see if the block is already defined for(size_t i = 0; i < activeUniformBlocks.size(); ++i) { if(activeUniformBlocks[i].name == blockName.c_str()) { // The block is already defined, find the register for the current uniform and return it for(size_t j = 0; j < fields.size(); j++) { const TString &fieldName = fields[j]->name(); if(fieldName == name) { return fieldRegisterIndex; } fieldRegisterIndex += fields[j]->type()->totalRegisterCount(); } ASSERT(false); return fieldRegisterIndex; } } } } return -1; } void OutputASM::declareUniform(const TType &type, const TString &name, int registerIndex, bool samplersOnly, int blockId, BlockLayoutEncoder* encoder) { const TStructure *structure = type.getStruct(); const TInterfaceBlock *block = (type.isInterfaceBlock() || (blockId == -1)) ? type.getInterfaceBlock() : nullptr; if(!structure && !block) { ActiveUniforms &activeUniforms = shaderObject->activeUniforms; const BlockMemberInfo blockInfo = encoder ? encoder->encodeType(type) : BlockMemberInfo::getDefaultBlockInfo(); if(blockId >= 0) { blockDefinitions[blockId].insert(BlockDefinitionIndexMap::value_type(registerIndex, TypedMemberInfo(blockInfo, type))); shaderObject->activeUniformBlocks[blockId].fields.push_back(activeUniforms.size()); } int fieldRegisterIndex = encoder ? shaderObject->activeUniformBlocks[blockId].registerIndex + BlockLayoutEncoder::getBlockRegister(blockInfo) : registerIndex; bool isSampler = IsSampler(type.getBasicType()); if(isSampler && samplersOnly) { for(int i = 0; i < type.totalRegisterCount(); i++) { shader->declareSampler(fieldRegisterIndex + i); } } if(isSampler == samplersOnly) { activeUniforms.push_back(Uniform(type, name.c_str(), fieldRegisterIndex, blockId, blockInfo)); } } else if(block) { ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks; const TFieldList& fields = block->fields(); const TString &blockName = block->name(); int fieldRegisterIndex = registerIndex; bool isUniformBlockMember = !type.isInterfaceBlock() && (blockId == -1); blockId = activeUniformBlocks.size(); bool isRowMajor = block->matrixPacking() == EmpRowMajor; activeUniformBlocks.push_back(UniformBlock(blockName.c_str(), 0, block->arraySize(), block->blockStorage(), isRowMajor, registerIndex, blockId)); blockDefinitions.push_back(BlockDefinitionIndexMap()); Std140BlockEncoder currentBlockEncoder; currentBlockEncoder.enterAggregateType(); for(const auto &field : fields) { const TType &fieldType = *(field->type()); const TString &fieldName = field->name(); if(isUniformBlockMember && (fieldName == name)) { registerIndex = fieldRegisterIndex; } const TString uniformName = block->hasInstanceName() ? blockName + "." + fieldName : fieldName; declareUniform(fieldType, uniformName, fieldRegisterIndex, samplersOnly, blockId, ¤tBlockEncoder); fieldRegisterIndex += fieldType.totalRegisterCount(); } currentBlockEncoder.exitAggregateType(); activeUniformBlocks[blockId].dataSize = currentBlockEncoder.getBlockSize(); } else { // Store struct for program link time validation shaderObject->activeUniformStructs.push_back(Uniform(type, name.c_str(), registerIndex, -1, BlockMemberInfo::getDefaultBlockInfo())); int fieldRegisterIndex = registerIndex; const TFieldList& fields = structure->fields(); if(type.isArray() && (structure || type.isInterfaceBlock())) { for(int i = 0; i < type.getArraySize(); i++) { if(encoder) { encoder->enterAggregateType(); } for(const auto &field : fields) { const TType &fieldType = *(field->type()); const TString &fieldName = field->name(); const TString uniformName = name + "[" + str(i) + "]." + fieldName; declareUniform(fieldType, uniformName, fieldRegisterIndex, samplersOnly, blockId, encoder); fieldRegisterIndex += samplersOnly ? fieldType.totalSamplerRegisterCount() : fieldType.totalRegisterCount(); } if(encoder) { encoder->exitAggregateType(); } } } else { if(encoder) { encoder->enterAggregateType(); } for(const auto &field : fields) { const TType &fieldType = *(field->type()); const TString &fieldName = field->name(); const TString uniformName = name + "." + fieldName; declareUniform(fieldType, uniformName, fieldRegisterIndex, samplersOnly, blockId, encoder); fieldRegisterIndex += samplersOnly ? fieldType.totalSamplerRegisterCount() : fieldType.totalRegisterCount(); } if(encoder) { encoder->exitAggregateType(); } } } } int OutputASM::dim(TIntermNode *v) { TIntermTyped *vector = v->getAsTyped(); ASSERT(vector && vector->isRegister()); return vector->getNominalSize(); } int OutputASM::dim2(TIntermNode *m) { TIntermTyped *matrix = m->getAsTyped(); ASSERT(matrix && matrix->isMatrix() && !matrix->isArray()); return matrix->getSecondarySize(); } // Returns ~0u if no loop count could be determined unsigned int OutputASM::loopCount(TIntermLoop *node) { // Parse loops of the form: // for(int index = initial; index [comparator] limit; index += increment) TIntermSymbol *index = 0; TOperator comparator = EOpNull; int initial = 0; int limit = 0; int increment = 0; // Parse index name and intial value if(node->getInit()) { TIntermAggregate *init = node->getInit()->getAsAggregate(); if(init) { TIntermSequence &sequence = init->getSequence(); TIntermTyped *variable = sequence[0]->getAsTyped(); if(variable && variable->getQualifier() == EvqTemporary && variable->getBasicType() == EbtInt) { TIntermBinary *assign = variable->getAsBinaryNode(); if(assign && assign->getOp() == EOpInitialize) { TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode(); TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion(); if(symbol && constant) { if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1) { index = symbol; initial = constant->getUnionArrayPointer()[0].getIConst(); } } } } } } // Parse comparator and limit value if(index && node->getCondition()) { TIntermBinary *test = node->getCondition()->getAsBinaryNode(); TIntermSymbol *left = test ? test->getLeft()->getAsSymbolNode() : nullptr; if(left && (left->getId() == index->getId())) { TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion(); if(constant) { if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1) { comparator = test->getOp(); limit = constant->getUnionArrayPointer()[0].getIConst(); } } } } // Parse increment if(index && comparator != EOpNull && node->getExpression()) { TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode(); TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode(); if(binaryTerminal) { TOperator op = binaryTerminal->getOp(); TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion(); if(constant) { if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1) { int value = constant->getUnionArrayPointer()[0].getIConst(); switch(op) { case EOpAddAssign: increment = value; break; case EOpSubAssign: increment = -value; break; default: UNIMPLEMENTED(); } } } } else if(unaryTerminal) { TOperator op = unaryTerminal->getOp(); switch(op) { case EOpPostIncrement: increment = 1; break; case EOpPostDecrement: increment = -1; break; case EOpPreIncrement: increment = 1; break; case EOpPreDecrement: increment = -1; break; default: UNIMPLEMENTED(); } } } if(index && comparator != EOpNull && increment != 0) { if(comparator == EOpLessThanEqual) { comparator = EOpLessThan; limit += 1; } else if(comparator == EOpGreaterThanEqual) { comparator = EOpLessThan; limit -= 1; std::swap(initial, limit); increment = -increment; } else if(comparator == EOpGreaterThan) { comparator = EOpLessThan; std::swap(initial, limit); increment = -increment; } if(comparator == EOpLessThan) { if(!(initial < limit)) // Never loops { return 0; } int iterations = (limit - initial + abs(increment) - 1) / increment; // Ceiling division if(iterations < 0) { return ~0u; } return iterations; } else UNIMPLEMENTED(); // Falls through } return ~0u; } bool LoopUnrollable::traverse(TIntermNode *node) { loopDepth = 0; loopUnrollable = true; node->traverse(this); return loopUnrollable; } bool LoopUnrollable::visitLoop(Visit visit, TIntermLoop *loop) { if(visit == PreVisit) { loopDepth++; } else if(visit == PostVisit) { loopDepth++; } return true; } bool LoopUnrollable::visitBranch(Visit visit, TIntermBranch *node) { if(!loopUnrollable) { return false; } if(!loopDepth) { return true; } switch(node->getFlowOp()) { case EOpKill: case EOpReturn: break; case EOpBreak: case EOpContinue: loopUnrollable = false; break; default: UNREACHABLE(node->getFlowOp()); } return loopUnrollable; } bool LoopUnrollable::visitAggregate(Visit visit, TIntermAggregate *node) { return loopUnrollable; } }