// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Context.cpp: Implements the gl::Context class, managing all GL state and performing // rendering operations. #include "Context.h" #include "main.h" #include "mathutil.h" #include "utilities.h" #include "ResourceManager.h" #include "Buffer.h" #include "Fence.h" #include "Framebuffer.h" #include "Program.h" #include "Query.h" #include "Renderbuffer.h" #include "Shader.h" #include "Texture.h" #include "VertexDataManager.h" #include "IndexDataManager.h" #include "Display.h" #include "Surface.h" #include "Common/Half.hpp" #define _GDI32_ #include <windows.h> #include <GL/GL.h> #include <GL/glext.h> namespace gl { Context::Context(const Context *shareContext) : modelView(32), projection(2) { sw::Context *context = new sw::Context(); device = new gl::Device(context); setClearColor(0.0f, 0.0f, 0.0f, 0.0f); mState.depthClearValue = 1.0f; mState.stencilClearValue = 0; mState.cullFaceEnabled = false; mState.cullMode = GL_BACK; mState.frontFace = GL_CCW; mState.depthTestEnabled = false; mState.depthFunc = GL_LESS; mState.blendEnabled = false; mState.sourceBlendRGB = GL_ONE; mState.sourceBlendAlpha = GL_ONE; mState.destBlendRGB = GL_ZERO; mState.destBlendAlpha = GL_ZERO; mState.blendEquationRGB = GL_FUNC_ADD; mState.blendEquationAlpha = GL_FUNC_ADD; mState.blendColor.red = 0; mState.blendColor.green = 0; mState.blendColor.blue = 0; mState.blendColor.alpha = 0; mState.stencilTestEnabled = false; mState.stencilFunc = GL_ALWAYS; mState.stencilRef = 0; mState.stencilMask = -1; mState.stencilWritemask = -1; mState.stencilBackFunc = GL_ALWAYS; mState.stencilBackRef = 0; mState.stencilBackMask = - 1; mState.stencilBackWritemask = -1; mState.stencilFail = GL_KEEP; mState.stencilPassDepthFail = GL_KEEP; mState.stencilPassDepthPass = GL_KEEP; mState.stencilBackFail = GL_KEEP; mState.stencilBackPassDepthFail = GL_KEEP; mState.stencilBackPassDepthPass = GL_KEEP; mState.polygonOffsetFillEnabled = false; mState.polygonOffsetFactor = 0.0f; mState.polygonOffsetUnits = 0.0f; mState.sampleAlphaToCoverageEnabled = false; mState.sampleCoverageEnabled = false; mState.sampleCoverageValue = 1.0f; mState.sampleCoverageInvert = false; mState.scissorTestEnabled = false; mState.ditherEnabled = true; mState.generateMipmapHint = GL_DONT_CARE; mState.fragmentShaderDerivativeHint = GL_DONT_CARE; mState.colorLogicOpEnabled = false; mState.logicalOperation = GL_COPY; mState.lineWidth = 1.0f; mState.viewportX = 0; mState.viewportY = 0; mState.viewportWidth = 0; mState.viewportHeight = 0; mState.zNear = 0.0f; mState.zFar = 1.0f; mState.scissorX = 0; mState.scissorY = 0; mState.scissorWidth = 0; mState.scissorHeight = 0; mState.colorMaskRed = true; mState.colorMaskGreen = true; mState.colorMaskBlue = true; mState.colorMaskAlpha = true; mState.depthMask = true; if(shareContext) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(); } // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. mTexture2DZero = new Texture2D(0); mProxyTexture2DZero = new Texture2D(0); mTextureCubeMapZero = new TextureCubeMap(0); mState.activeSampler = 0; bindArrayBuffer(0); bindElementArrayBuffer(0); bindTextureCubeMap(0); bindTexture2D(0); bindReadFramebuffer(0); bindDrawFramebuffer(0); bindRenderbuffer(0); mState.currentProgram = 0; mState.packAlignment = 4; mState.unpackAlignment = 4; mVertexDataManager = nullptr; mIndexDataManager = nullptr; mInvalidEnum = false; mInvalidValue = false; mInvalidOperation = false; mOutOfMemory = false; mInvalidFramebufferOperation = false; mHasBeenCurrent = false; markAllStateDirty(); matrixMode = GL_MODELVIEW; listMode = 0; //memset(displayList, 0, sizeof(displayList)); listIndex = 0; list = 0; firstFreeIndex = 1; clientTexture = GL_TEXTURE0; drawing = false; drawMode = 0; // FIXME mState.vertexAttribute[sw::Color0].mCurrentValue[0] = 1.0f; mState.vertexAttribute[sw::Color0].mCurrentValue[1] = 1.0f; mState.vertexAttribute[sw::Color0].mCurrentValue[2] = 1.0f; mState.vertexAttribute[sw::Color0].mCurrentValue[3] = 1.0f; mState.vertexAttribute[sw::Normal].mCurrentValue[0] = 0.0f; mState.vertexAttribute[sw::Normal].mCurrentValue[1] = 0.0f; mState.vertexAttribute[sw::Normal].mCurrentValue[2] = 1.0f; mState.vertexAttribute[sw::Normal].mCurrentValue[3] = 0.0f; mState.vertexAttribute[sw::TexCoord0].mCurrentValue[0] = 0.0f; mState.vertexAttribute[sw::TexCoord0].mCurrentValue[1] = 0.0f; mState.vertexAttribute[sw::TexCoord0].mCurrentValue[2] = 0.0f; mState.vertexAttribute[sw::TexCoord0].mCurrentValue[3] = 1.0f; mState.vertexAttribute[sw::TexCoord1].mCurrentValue[0] = 0.0f; mState.vertexAttribute[sw::TexCoord1].mCurrentValue[1] = 0.0f; mState.vertexAttribute[sw::TexCoord1].mCurrentValue[2] = 0.0f; mState.vertexAttribute[sw::TexCoord1].mCurrentValue[3] = 1.0f; for(int i = 0; i < 8; i++) { envEnable[i] = true; } } Context::~Context() { if(mState.currentProgram != 0) { Program *programObject = mResourceManager->getProgram(mState.currentProgram); if(programObject) { programObject->release(); } mState.currentProgram = 0; } while(!mFramebufferNameSpace.empty()) { deleteFramebuffer(mFramebufferNameSpace.firstName()); } while(!mFenceNameSpace.empty()) { deleteFence(mFenceNameSpace.firstName()); } while(!mQueryNameSpace.empty()) { deleteQuery(mQueryNameSpace.firstName()); } for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { mState.samplerTexture[type][sampler] = nullptr; } } for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mState.vertexAttribute[i].mBoundBuffer = nullptr; } for(int i = 0; i < QUERY_TYPE_COUNT; i++) { mState.activeQuery[i] = nullptr; } mState.arrayBuffer = nullptr; mState.elementArrayBuffer = nullptr; mState.renderbuffer = nullptr; mTexture2DZero = nullptr; mProxyTexture2DZero = nullptr; mTextureCubeMapZero = nullptr; delete mVertexDataManager; delete mIndexDataManager; mResourceManager->release(); delete device; } void Context::makeCurrent(Surface *surface) { if(!mHasBeenCurrent) { mVertexDataManager = new VertexDataManager(this); mIndexDataManager = new IndexDataManager(); mState.viewportX = 0; mState.viewportY = 0; mState.viewportWidth = surface->getWidth(); mState.viewportHeight = surface->getHeight(); mState.scissorX = 0; mState.scissorY = 0; mState.scissorWidth = surface->getWidth(); mState.scissorHeight = surface->getHeight(); mHasBeenCurrent = true; } // Wrap the existing resources into GL objects and assign them to the '0' names Image *defaultRenderTarget = surface->getRenderTarget(); Image *depthStencil = surface->getDepthStencil(); Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget); DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil); Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero); setFramebufferZero(framebufferZero); if(defaultRenderTarget) { defaultRenderTarget->release(); } if(depthStencil) { depthStencil->release(); } markAllStateDirty(); } // This function will set all of the state-related dirty flags, so that all state is set during next pre-draw. void Context::markAllStateDirty() { mAppliedProgramSerial = 0; mDepthStateDirty = true; mMaskStateDirty = true; mBlendStateDirty = true; mStencilStateDirty = true; mPolygonOffsetStateDirty = true; mSampleStateDirty = true; mDitherStateDirty = true; mFrontFaceDirty = true; mColorLogicOperatorDirty = true; } void Context::setClearColor(float red, float green, float blue, float alpha) { mState.colorClearValue.red = red; mState.colorClearValue.green = green; mState.colorClearValue.blue = blue; mState.colorClearValue.alpha = alpha; } void Context::setClearDepth(float depth) { mState.depthClearValue = depth; } void Context::setClearStencil(int stencil) { mState.stencilClearValue = stencil; } void Context::setCullFaceEnabled(bool enabled) { mState.cullFaceEnabled = enabled; } bool Context::isCullFaceEnabled() const { return mState.cullFaceEnabled; } void Context::setCullMode(GLenum mode) { mState.cullMode = mode; } void Context::setFrontFace(GLenum front) { if(mState.frontFace != front) { mState.frontFace = front; mFrontFaceDirty = true; } } void Context::setDepthTestEnabled(bool enabled) { if(mState.depthTestEnabled != enabled) { mState.depthTestEnabled = enabled; mDepthStateDirty = true; } } bool Context::isDepthTestEnabled() const { return mState.depthTestEnabled; } void Context::setDepthFunc(GLenum depthFunc) { if(mState.depthFunc != depthFunc) { mState.depthFunc = depthFunc; mDepthStateDirty = true; } } void Context::setDepthRange(float zNear, float zFar) { mState.zNear = zNear; mState.zFar = zFar; } void Context::setBlendEnabled(bool enabled) { if(mState.blendEnabled != enabled) { mState.blendEnabled = enabled; mBlendStateDirty = true; } } bool Context::isBlendEnabled() const { return mState.blendEnabled; } void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) { if(mState.sourceBlendRGB != sourceRGB || mState.sourceBlendAlpha != sourceAlpha || mState.destBlendRGB != destRGB || mState.destBlendAlpha != destAlpha) { mState.sourceBlendRGB = sourceRGB; mState.destBlendRGB = destRGB; mState.sourceBlendAlpha = sourceAlpha; mState.destBlendAlpha = destAlpha; mBlendStateDirty = true; } } void Context::setBlendColor(float red, float green, float blue, float alpha) { if(mState.blendColor.red != red || mState.blendColor.green != green || mState.blendColor.blue != blue || mState.blendColor.alpha != alpha) { mState.blendColor.red = red; mState.blendColor.green = green; mState.blendColor.blue = blue; mState.blendColor.alpha = alpha; mBlendStateDirty = true; } } void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) { if(mState.blendEquationRGB != rgbEquation || mState.blendEquationAlpha != alphaEquation) { mState.blendEquationRGB = rgbEquation; mState.blendEquationAlpha = alphaEquation; mBlendStateDirty = true; } } void Context::setStencilTestEnabled(bool enabled) { if(mState.stencilTestEnabled != enabled) { mState.stencilTestEnabled = enabled; mStencilStateDirty = true; } } bool Context::isStencilTestEnabled() const { return mState.stencilTestEnabled; } void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) { if(mState.stencilFunc != stencilFunc || mState.stencilRef != stencilRef || mState.stencilMask != stencilMask) { mState.stencilFunc = stencilFunc; mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; mState.stencilMask = stencilMask; mStencilStateDirty = true; } } void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask) { if(mState.stencilBackFunc != stencilBackFunc || mState.stencilBackRef != stencilBackRef || mState.stencilBackMask != stencilBackMask) { mState.stencilBackFunc = stencilBackFunc; mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0; mState.stencilBackMask = stencilBackMask; mStencilStateDirty = true; } } void Context::setStencilWritemask(GLuint stencilWritemask) { if(mState.stencilWritemask != stencilWritemask) { mState.stencilWritemask = stencilWritemask; mStencilStateDirty = true; } } void Context::setStencilBackWritemask(GLuint stencilBackWritemask) { if(mState.stencilBackWritemask != stencilBackWritemask) { mState.stencilBackWritemask = stencilBackWritemask; mStencilStateDirty = true; } } void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) { if(mState.stencilFail != stencilFail || mState.stencilPassDepthFail != stencilPassDepthFail || mState.stencilPassDepthPass != stencilPassDepthPass) { mState.stencilFail = stencilFail; mState.stencilPassDepthFail = stencilPassDepthFail; mState.stencilPassDepthPass = stencilPassDepthPass; mStencilStateDirty = true; } } void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass) { if(mState.stencilBackFail != stencilBackFail || mState.stencilBackPassDepthFail != stencilBackPassDepthFail || mState.stencilBackPassDepthPass != stencilBackPassDepthPass) { mState.stencilBackFail = stencilBackFail; mState.stencilBackPassDepthFail = stencilBackPassDepthFail; mState.stencilBackPassDepthPass = stencilBackPassDepthPass; mStencilStateDirty = true; } } void Context::setPolygonOffsetFillEnabled(bool enabled) { if(mState.polygonOffsetFillEnabled != enabled) { mState.polygonOffsetFillEnabled = enabled; mPolygonOffsetStateDirty = true; } } bool Context::isPolygonOffsetFillEnabled() const { return mState.polygonOffsetFillEnabled; } void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) { if(mState.polygonOffsetFactor != factor || mState.polygonOffsetUnits != units) { mState.polygonOffsetFactor = factor; mState.polygonOffsetUnits = units; mPolygonOffsetStateDirty = true; } } void Context::setSampleAlphaToCoverageEnabled(bool enabled) { if(mState.sampleAlphaToCoverageEnabled != enabled) { mState.sampleAlphaToCoverageEnabled = enabled; mSampleStateDirty = true; } } bool Context::isSampleAlphaToCoverageEnabled() const { return mState.sampleAlphaToCoverageEnabled; } void Context::setSampleCoverageEnabled(bool enabled) { if(mState.sampleCoverageEnabled != enabled) { mState.sampleCoverageEnabled = enabled; mSampleStateDirty = true; } } bool Context::isSampleCoverageEnabled() const { return mState.sampleCoverageEnabled; } void Context::setSampleCoverageParams(GLclampf value, bool invert) { if(mState.sampleCoverageValue != value || mState.sampleCoverageInvert != invert) { mState.sampleCoverageValue = value; mState.sampleCoverageInvert = invert; mSampleStateDirty = true; } } void Context::setScissorTestEnabled(bool enabled) { mState.scissorTestEnabled = enabled; } bool Context::isScissorTestEnabled() const { return mState.scissorTestEnabled; } void Context::setDitherEnabled(bool enabled) { if(mState.ditherEnabled != enabled) { mState.ditherEnabled = enabled; mDitherStateDirty = true; } } bool Context::isDitherEnabled() const { return mState.ditherEnabled; } void Context::setLineWidth(GLfloat width) { mState.lineWidth = width; device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX)); } void Context::setGenerateMipmapHint(GLenum hint) { mState.generateMipmapHint = hint; } void Context::setFragmentShaderDerivativeHint(GLenum hint) { mState.fragmentShaderDerivativeHint = hint; // TODO: Propagate the hint to shader translator so we can write // ddx, ddx_coarse, or ddx_fine depending on the hint. // Ignore for now. It is valid for implementations to ignore hint. } void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.viewportX = x; mState.viewportY = y; mState.viewportWidth = width; mState.viewportHeight = height; } void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.scissorX = x; mState.scissorY = y; mState.scissorWidth = width; mState.scissorHeight = height; } void Context::setColorMask(bool red, bool green, bool blue, bool alpha) { if(mState.colorMaskRed != red || mState.colorMaskGreen != green || mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha) { mState.colorMaskRed = red; mState.colorMaskGreen = green; mState.colorMaskBlue = blue; mState.colorMaskAlpha = alpha; mMaskStateDirty = true; } } void Context::setDepthMask(bool mask) { if(mState.depthMask != mask) { mState.depthMask = mask; mMaskStateDirty = true; } } void Context::setActiveSampler(unsigned int active) { mState.activeSampler = active; } GLuint Context::getReadFramebufferName() const { return mState.readFramebuffer; } GLuint Context::getDrawFramebufferName() const { return mState.drawFramebuffer; } GLuint Context::getRenderbufferName() const { return mState.renderbuffer.name(); } GLuint Context::getArrayBufferName() const { return mState.arrayBuffer.name(); } GLuint Context::getActiveQuery(GLenum target) const { Query *queryObject = nullptr; switch(target) { case GL_ANY_SAMPLES_PASSED: queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED]; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE]; break; default: ASSERT(false); } if(queryObject) { return queryObject->name; } return 0; } void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled) { mState.vertexAttribute[attribNum].mArrayEnabled = enabled; } const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) { return mState.vertexAttribute[attribNum]; } void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, GLsizei stride, const void *pointer) { mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer; mState.vertexAttribute[attribNum].mSize = size; mState.vertexAttribute[attribNum].mType = type; mState.vertexAttribute[attribNum].mNormalized = normalized; mState.vertexAttribute[attribNum].mStride = stride; mState.vertexAttribute[attribNum].mPointer = pointer; } const void *Context::getVertexAttribPointer(unsigned int attribNum) const { return mState.vertexAttribute[attribNum].mPointer; } const VertexAttributeArray &Context::getVertexAttributes() { return mState.vertexAttribute; } void Context::setPackAlignment(GLint alignment) { mState.packAlignment = alignment; } GLint Context::getPackAlignment() const { return mState.packAlignment; } void Context::setUnpackAlignment(GLint alignment) { mState.unpackAlignment = alignment; } GLint Context::getUnpackAlignment() const { return mState.unpackAlignment; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createProgram() { return mResourceManager->createProgram(); } GLuint Context::createShader(GLenum type) { return mResourceManager->createShader(type); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { return mFramebufferNameSpace.allocate(); } GLuint Context::createFence() { return mFenceNameSpace.allocate(new Fence()); } // Returns an unused query name GLuint Context::createQuery() { return mQueryNameSpace.allocate(); } void Context::deleteBuffer(GLuint buffer) { if(mResourceManager->getBuffer(buffer)) { detachBuffer(buffer); } mResourceManager->deleteBuffer(buffer); } void Context::deleteShader(GLuint shader) { mResourceManager->deleteShader(shader); } void Context::deleteProgram(GLuint program) { mResourceManager->deleteProgram(program); } void Context::deleteTexture(GLuint texture) { if(mResourceManager->getTexture(texture)) { detachTexture(texture); } mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { if(mResourceManager->getRenderbuffer(renderbuffer)) { detachRenderbuffer(renderbuffer); } mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFramebuffer(GLuint framebuffer) { Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer); if(framebufferObject) { detachFramebuffer(framebuffer); delete framebufferObject; } } void Context::deleteFence(GLuint fence) { Fence *fenceObject = mFenceNameSpace.remove(fence); if(fenceObject) { delete fenceObject; } } void Context::deleteQuery(GLuint query) { Query *queryObject = mQueryNameSpace.remove(query); if(queryObject) { queryObject->release(); } } Buffer *Context::getBuffer(GLuint handle) { return mResourceManager->getBuffer(handle); } Shader *Context::getShader(GLuint handle) { return mResourceManager->getShader(handle); } Program *Context::getProgram(GLuint handle) { return mResourceManager->getProgram(handle); } Texture *Context::getTexture(GLuint handle) { return mResourceManager->getTexture(handle); } Renderbuffer *Context::getRenderbuffer(GLuint handle) { return mResourceManager->getRenderbuffer(handle); } Framebuffer *Context::getReadFramebuffer() { return getFramebuffer(mState.readFramebuffer); } Framebuffer *Context::getDrawFramebuffer() { return getFramebuffer(mState.drawFramebuffer); } void Context::bindArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.arrayBuffer = getBuffer(buffer); } void Context::bindElementArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.elementArrayBuffer = getBuffer(buffer); } void Context::bindTexture2D(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_2D); mState.samplerTexture[TEXTURE_2D][mState.activeSampler] = getTexture(texture); } void Context::bindTextureCubeMap(GLuint texture) { mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE); mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler] = getTexture(texture); } void Context::bindReadFramebuffer(GLuint framebuffer) { if(!getFramebuffer(framebuffer)) { mFramebufferNameSpace.insert(framebuffer, new Framebuffer()); } mState.readFramebuffer = framebuffer; } void Context::bindDrawFramebuffer(GLuint framebuffer) { if(!getFramebuffer(framebuffer)) { mFramebufferNameSpace.insert(framebuffer, new Framebuffer()); } mState.drawFramebuffer = framebuffer; } void Context::bindRenderbuffer(GLuint renderbuffer) { mResourceManager->checkRenderbufferAllocation(renderbuffer); mState.renderbuffer = getRenderbuffer(renderbuffer); } void Context::useProgram(GLuint program) { GLuint priorProgram = mState.currentProgram; mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged. if(priorProgram != program) { Program *newProgram = mResourceManager->getProgram(program); Program *oldProgram = mResourceManager->getProgram(priorProgram); if(newProgram) { newProgram->addRef(); } if(oldProgram) { oldProgram->release(); } } } void Context::beginQuery(GLenum target, GLuint query) { // From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id> // of zero, if the active query object name for <target> is non-zero (for the // targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if // the active query for either target is non-zero), if <id> is the name of an // existing query object whose type does not match <target>, or if <id> is the // active query object name for any query type, the error INVALID_OPERATION is // generated. // Ensure no other queries are active // NOTE: If other queries than occlusion are supported, we will need to check // separately that: // a) The query ID passed is not the current active query for any target/type // b) There are no active queries for the requested target (and in the case // of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, // no query may be active for either if glBeginQuery targets either. for(int i = 0; i < QUERY_TYPE_COUNT; i++) { if(mState.activeQuery[i]) { return error(GL_INVALID_OPERATION); } } QueryType qType; switch(target) { case GL_ANY_SAMPLES_PASSED: qType = QUERY_ANY_SAMPLES_PASSED; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; break; default: ASSERT(false); } Query *queryObject = getQuery(query, true, target); // Check that name was obtained with glGenQueries if(!queryObject) { return error(GL_INVALID_OPERATION); } // Check for type mismatch if(queryObject->getType() != target) { return error(GL_INVALID_OPERATION); } // Set query as active for specified target mState.activeQuery[qType] = queryObject; // Begin query queryObject->begin(); } void Context::endQuery(GLenum target) { QueryType qType; switch(target) { case GL_ANY_SAMPLES_PASSED: qType = QUERY_ANY_SAMPLES_PASSED; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; break; default: ASSERT(false); } Query *queryObject = mState.activeQuery[qType]; if(!queryObject) { return error(GL_INVALID_OPERATION); } queryObject->end(); mState.activeQuery[qType] = nullptr; } void Context::setFramebufferZero(Framebuffer *buffer) { delete mFramebufferNameSpace.remove(0); mFramebufferNameSpace.insert(0, buffer); } void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer) { Renderbuffer *renderbufferObject = mState.renderbuffer; renderbufferObject->setStorage(renderbuffer); } Framebuffer *Context::getFramebuffer(unsigned int handle) { return mFramebufferNameSpace.find(handle); } Fence *Context::getFence(unsigned int handle) { return mFenceNameSpace.find(handle); } Query *Context::getQuery(unsigned int handle, bool create, GLenum type) { if(!mQueryNameSpace.isReserved(handle)) { return nullptr; } else { Query *query = mQueryNameSpace.find(handle); if(!query && create) { query = new Query(handle, type); query->addRef(); mQueryNameSpace.insert(handle, query); } return query; } } Buffer *Context::getArrayBuffer() { return mState.arrayBuffer; } Buffer *Context::getElementArrayBuffer() { return mState.elementArrayBuffer; } Program *Context::getCurrentProgram() { return mResourceManager->getProgram(mState.currentProgram); } Texture2D *Context::getTexture2D(GLenum target) { if(target == GL_TEXTURE_2D) { return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); } else if(target == GL_PROXY_TEXTURE_2D) { return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, PROXY_TEXTURE_2D)); } else UNREACHABLE(target); return nullptr; } TextureCubeMap *Context::getTextureCubeMap() { return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE)); } Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) { GLuint texid = mState.samplerTexture[type][sampler].name(); if(texid == 0) // Special case: 0 refers to different initial textures based on the target { switch(type) { case TEXTURE_2D: return mTexture2DZero; case PROXY_TEXTURE_2D: return mProxyTexture2DZero; case TEXTURE_CUBE: return mTextureCubeMapZero; default: UNREACHABLE(type); } } return mState.samplerTexture[type][sampler]; } bool Context::getBooleanv(GLenum pname, GLboolean *params) { switch(pname) { case GL_SHADER_COMPILER: *params = GL_TRUE; break; case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break; case GL_COLOR_WRITEMASK: params[0] = mState.colorMaskRed; params[1] = mState.colorMaskGreen; params[2] = mState.colorMaskBlue; params[3] = mState.colorMaskAlpha; break; case GL_CULL_FACE: *params = mState.cullFaceEnabled; break; case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFillEnabled; break; case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled; break; case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverageEnabled; break; case GL_SCISSOR_TEST: *params = mState.scissorTestEnabled; break; case GL_STENCIL_TEST: *params = mState.stencilTestEnabled; break; case GL_DEPTH_TEST: *params = mState.depthTestEnabled; break; case GL_BLEND: *params = mState.blendEnabled; break; case GL_DITHER: *params = mState.ditherEnabled; break; default: return false; } return true; } bool Context::getFloatv(GLenum pname, GLfloat *params) { // Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. switch(pname) { case GL_LINE_WIDTH: *params = mState.lineWidth; break; case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break; case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break; case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = ALIASED_LINE_WIDTH_RANGE_MIN; params[1] = ALIASED_LINE_WIDTH_RANGE_MAX; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = ALIASED_POINT_SIZE_RANGE_MIN; params[1] = ALIASED_POINT_SIZE_RANGE_MAX; break; case GL_DEPTH_RANGE: params[0] = mState.zNear; params[1] = mState.zFar; break; case GL_COLOR_CLEAR_VALUE: params[0] = mState.colorClearValue.red; params[1] = mState.colorClearValue.green; params[2] = mState.colorClearValue.blue; params[3] = mState.colorClearValue.alpha; break; case GL_BLEND_COLOR: params[0] = mState.blendColor.red; params[1] = mState.blendColor.green; params[2] = mState.blendColor.blue; params[3] = mState.blendColor.alpha; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: *params = MAX_TEXTURE_MAX_ANISOTROPY; break; case GL_MODELVIEW_MATRIX: for(int i = 0; i < 16; i++) { params[i] = modelView.current()[i % 4][i / 4]; } break; case GL_PROJECTION_MATRIX: for(int i = 0; i < 16; i++) { params[i] = projection.current()[i % 4][i / 4]; } break; default: return false; } return true; } bool Context::getIntegerv(GLenum pname, GLint *params) { // Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. You may find it in // Context::getFloatv. switch(pname) { case GL_MAX_VERTEX_ATTRIBS: *params = MAX_VERTEX_ATTRIBS; break; case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = MAX_VERTEX_UNIFORM_VECTORS; break; case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = MAX_VERTEX_UNIFORM_VECTORS * 4; break; // FIXME: Verify case GL_MAX_VARYING_VECTORS: *params = MAX_VARYING_VECTORS; break; case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = MAX_COMBINED_TEXTURE_IMAGE_UNITS; break; case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = MAX_VERTEX_TEXTURE_IMAGE_UNITS; break; case GL_MAX_TEXTURE_IMAGE_UNITS: *params = MAX_TEXTURE_IMAGE_UNITS; break; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = MAX_FRAGMENT_UNIFORM_VECTORS; break; case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = MAX_VERTEX_UNIFORM_VECTORS * 4; break; // FIXME: Verify case GL_MAX_RENDERBUFFER_SIZE: *params = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; break; case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break; case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break; case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.name(); break; case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.name(); break; // case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_DRAW_FRAMEBUFFER_BINDING: *params = mState.drawFramebuffer; break; case GL_READ_FRAMEBUFFER_BINDING: *params = mState.readFramebuffer; break; case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.name(); break; case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break; case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break; case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break; case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break; case GL_FRAGMENT_SHADER_DERIVATIVE_HINT: *params = mState.fragmentShaderDerivativeHint; break; case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break; case GL_STENCIL_FUNC: *params = mState.stencilFunc; break; case GL_STENCIL_REF: *params = mState.stencilRef; break; case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break; case GL_STENCIL_BACK_FUNC: *params = mState.stencilBackFunc; break; case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break; case GL_STENCIL_BACK_VALUE_MASK: *params = mState.stencilBackMask; break; case GL_STENCIL_FAIL: *params = mState.stencilFail; break; case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break; case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break; case GL_STENCIL_BACK_FAIL: *params = mState.stencilBackFail; break; case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.stencilBackPassDepthFail; break; case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.stencilBackPassDepthPass; break; case GL_DEPTH_FUNC: *params = mState.depthFunc; break; case GL_BLEND_SRC_RGB: *params = mState.sourceBlendRGB; break; case GL_BLEND_SRC_ALPHA: *params = mState.sourceBlendAlpha; break; case GL_BLEND_DST_RGB: *params = mState.destBlendRGB; break; case GL_BLEND_DST_ALPHA: *params = mState.destBlendAlpha; break; case GL_BLEND_EQUATION_RGB: *params = mState.blendEquationRGB; break; case GL_BLEND_EQUATION_ALPHA: *params = mState.blendEquationAlpha; break; case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break; case GL_STENCIL_BACK_WRITEMASK: *params = mState.stencilBackWritemask; break; case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break; case GL_SUBPIXEL_BITS: *params = 4; break; case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; break; case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE; break; case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = 0; break; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; break; case GL_MAX_SAMPLES: *params = IMPLEMENTATION_MAX_SAMPLES; break; case GL_SAMPLE_BUFFERS: case GL_SAMPLES: { Framebuffer *framebuffer = getDrawFramebuffer(); int width, height, samples; if(framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE) { switch(pname) { case GL_SAMPLE_BUFFERS: if(samples > 1) { *params = 1; } else { *params = 0; } break; case GL_SAMPLES: *params = samples; break; } } else { *params = 0; } } break; case GL_IMPLEMENTATION_COLOR_READ_TYPE: *params = IMPLEMENTATION_COLOR_READ_TYPE; break; case GL_IMPLEMENTATION_COLOR_READ_FORMAT: *params = IMPLEMENTATION_COLOR_READ_FORMAT; break; case GL_MAX_VIEWPORT_DIMS: { int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; params[0] = maxDimension; params[1] = maxDimension; } break; case GL_COMPRESSED_TEXTURE_FORMATS: { for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++) { params[i] = compressedTextureFormats[i]; } } break; case GL_VIEWPORT: params[0] = mState.viewportX; params[1] = mState.viewportY; params[2] = mState.viewportWidth; params[3] = mState.viewportHeight; break; case GL_SCISSOR_BOX: params[0] = mState.scissorX; params[1] = mState.scissorY; params[2] = mState.scissorWidth; params[3] = mState.scissorHeight; break; case GL_CULL_FACE_MODE: *params = mState.cullMode; break; case GL_FRONT_FACE: *params = mState.frontFace; break; case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: { Framebuffer *framebuffer = getDrawFramebuffer(); Renderbuffer *colorbuffer = framebuffer->getColorbuffer(); if(colorbuffer) { switch(pname) { case GL_RED_BITS: *params = colorbuffer->getRedSize(); break; case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break; case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break; case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break; } } else { *params = 0; } } break; case GL_DEPTH_BITS: { Framebuffer *framebuffer = getDrawFramebuffer(); Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); if(depthbuffer) { *params = depthbuffer->getDepthSize(); } else { *params = 0; } } break; case GL_STENCIL_BITS: { Framebuffer *framebuffer = getDrawFramebuffer(); Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); if(stencilbuffer) { *params = stencilbuffer->getStencilSize(); } else { *params = 0; } } break; case GL_TEXTURE_BINDING_2D: { if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name(); } break; case GL_TEXTURE_BINDING_CUBE_MAP: { if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name(); } break; default: return false; } return true; } bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) { // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch(pname) { case GL_COMPRESSED_TEXTURE_FORMATS: { *type = GL_INT; *numParams = NUM_COMPRESSED_TEXTURE_FORMATS; } break; case GL_SHADER_BINARY_FORMATS: { *type = GL_INT; *numParams = 0; } break; case GL_MAX_VERTEX_ATTRIBS: case GL_MAX_VERTEX_UNIFORM_VECTORS: case GL_MAX_VARYING_VECTORS: case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: case GL_MAX_TEXTURE_IMAGE_UNITS: case GL_MAX_FRAGMENT_UNIFORM_VECTORS: case GL_MAX_RENDERBUFFER_SIZE: case GL_NUM_SHADER_BINARY_FORMATS: case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: case GL_FRAMEBUFFER_BINDING: case GL_RENDERBUFFER_BINDING: case GL_CURRENT_PROGRAM: case GL_PACK_ALIGNMENT: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_FRAGMENT_SHADER_DERIVATIVE_HINT: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_STENCIL_BACK_FUNC: case GL_STENCIL_BACK_VALUE_MASK: case GL_STENCIL_BACK_REF: case GL_STENCIL_BACK_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB: case GL_BLEND_SRC_ALPHA: case GL_BLEND_DST_RGB: case GL_BLEND_DST_ALPHA: case GL_BLEND_EQUATION_RGB: case GL_BLEND_EQUATION_ALPHA: case GL_STENCIL_WRITEMASK: case GL_STENCIL_BACK_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP: case GL_MAX_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: case GL_MAX_ARRAY_TEXTURE_LAYERS: { *type = GL_INT; *numParams = 1; } break; case GL_MAX_SAMPLES: { *type = GL_INT; *numParams = 1; } break; case GL_MAX_VIEWPORT_DIMS: { *type = GL_INT; *numParams = 2; } break; case GL_VIEWPORT: case GL_SCISSOR_BOX: { *type = GL_INT; *numParams = 4; } break; case GL_SHADER_COMPILER: case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: { *type = GL_BOOL; *numParams = 1; } break; case GL_COLOR_WRITEMASK: { *type = GL_BOOL; *numParams = 4; } break; case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: { *type = GL_FLOAT; *numParams = 1; } break; case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: { *type = GL_FLOAT; *numParams = 2; } break; case GL_COLOR_CLEAR_VALUE: case GL_BLEND_COLOR: { *type = GL_FLOAT; *numParams = 4; } break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: *type = GL_FLOAT; *numParams = 1; break; default: return false; } return true; } // Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle bool Context::applyRenderTarget() { Framebuffer *framebuffer = getDrawFramebuffer(); int width, height, samples; if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE) { return error(GL_INVALID_FRAMEBUFFER_OPERATION, false); } Image *renderTarget = framebuffer->getRenderTarget(); device->setRenderTarget(0, renderTarget); if(renderTarget) renderTarget->release(); Image *depthStencil = framebuffer->getDepthStencil(); device->setDepthStencilSurface(depthStencil); if(depthStencil) depthStencil->release(); Viewport viewport; float zNear = clamp01(mState.zNear); float zFar = clamp01(mState.zFar); viewport.x0 = mState.viewportX; viewport.y0 = mState.viewportY; viewport.width = mState.viewportWidth; viewport.height = mState.viewportHeight; viewport.minZ = zNear; viewport.maxZ = zFar; device->setViewport(viewport); if(mState.scissorTestEnabled) { sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight}; scissor.clip(0, 0, width, height); device->setScissorRect(scissor); device->setScissorEnable(true); } else { device->setScissorEnable(false); } Program *program = getCurrentProgram(); if(program) { GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear}; program->setUniform1fv(program->getUniformLocation("gl_DepthRange.near"), 1, &nearFarDiff[0]); program->setUniform1fv(program->getUniformLocation("gl_DepthRange.far"), 1, &nearFarDiff[1]); program->setUniform1fv(program->getUniformLocation("gl_DepthRange.diff"), 1, &nearFarDiff[2]); } return true; } // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) void Context::applyState(GLenum drawMode) { Framebuffer *framebuffer = getDrawFramebuffer(); if(mState.cullFaceEnabled) { device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace)); } else { device->setCullMode(sw::CULL_NONE); } if(mDepthStateDirty) { if(mState.depthTestEnabled) { device->setDepthBufferEnable(true); device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc)); } else { device->setDepthBufferEnable(false); } mDepthStateDirty = false; } if(mBlendStateDirty) { if(mState.blendEnabled) { device->setAlphaBlendEnable(true); device->setSeparateAlphaBlendEnable(true); device->setBlendConstant(es2sw::ConvertColor(mState.blendColor)); device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB)); device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB)); device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB)); device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha)); device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha)); device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha)); } else { device->setAlphaBlendEnable(false); } mBlendStateDirty = false; } if(mColorLogicOperatorDirty) { if(mState.colorLogicOpEnabled) { device->setColorLogicOpEnabled(true); device->setLogicalOperation(es2sw::ConvertLogicalOperation(mState.logicalOperation)); } else { device->setColorLogicOpEnabled(false); } mColorLogicOperatorDirty = false; } if(mStencilStateDirty || mFrontFaceDirty) { if(mState.stencilTestEnabled && framebuffer->hasStencil()) { device->setStencilEnable(true); device->setTwoSidedStencil(true); if(mState.stencilWritemask != mState.stencilBackWritemask || mState.stencilRef != mState.stencilBackRef || mState.stencilMask != mState.stencilBackMask) { ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL."); return error(GL_INVALID_OPERATION); } // get the maximum size of the stencil ref Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1; if(mState.frontFace == GL_CCW) { device->setStencilWriteMask(mState.stencilWritemask); device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc)); device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); device->setStencilMask(mState.stencilMask); device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail)); device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); device->setStencilWriteMaskCCW(mState.stencilBackWritemask); device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilBackFunc)); device->setStencilReferenceCCW((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil); device->setStencilMaskCCW(mState.stencilBackMask); device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackFail)); device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail)); device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass)); } else { device->setStencilWriteMaskCCW(mState.stencilWritemask); device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc)); device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); device->setStencilMaskCCW(mState.stencilMask); device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail)); device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); device->setStencilWriteMask(mState.stencilBackWritemask); device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilBackFunc)); device->setStencilReference((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil); device->setStencilMask(mState.stencilBackMask); device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilBackFail)); device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail)); device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass)); } } else { device->setStencilEnable(false); } mStencilStateDirty = false; mFrontFaceDirty = false; } if(mMaskStateDirty) { device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha)); device->setDepthWriteEnable(mState.depthMask); mMaskStateDirty = false; } if(mPolygonOffsetStateDirty) { if(mState.polygonOffsetFillEnabled) { Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); if(depthbuffer) { device->setSlopeDepthBias(mState.polygonOffsetFactor); float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize())); device->setDepthBias(depthBias); } } else { device->setSlopeDepthBias(0); device->setDepthBias(0); } mPolygonOffsetStateDirty = false; } if(mSampleStateDirty) { if(mState.sampleAlphaToCoverageEnabled) { device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE); } else { device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE); } if(mState.sampleCoverageEnabled) { unsigned int mask = 0; if(mState.sampleCoverageValue != 0) { int width, height, samples; framebuffer->completeness(width, height, samples); float threshold = 0.5f; for(int i = 0; i < samples; i++) { mask <<= 1; if((i + 1) * mState.sampleCoverageValue >= threshold) { threshold += 1.0f; mask |= 1; } } } if(mState.sampleCoverageInvert) { mask = ~mask; } device->setMultiSampleMask(mask); } else { device->setMultiSampleMask(0xFFFFFFFF); } mSampleStateDirty = false; } if(mDitherStateDirty) { // UNIMPLEMENTED(); // FIXME mDitherStateDirty = false; } } GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count) { TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS]; GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes); if(err != GL_NO_ERROR) { return err; } Program *program = getCurrentProgram(); device->resetInputStreams(false); for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { if(program && program->getAttributeStream(i) == -1) { continue; } sw::Resource *resource = attributes[i].vertexBuffer; const void *buffer = (char*)resource->data() + attributes[i].offset; int stride = attributes[i].stride; buffer = (char*)buffer + stride * base; sw::Stream attribute(resource, buffer, stride); attribute.type = attributes[i].type; attribute.count = attributes[i].count; attribute.normalized = attributes[i].normalized; int stream = program ? program->getAttributeStream(i) : i; device->setInputStream(stream, attribute); } return GL_NO_ERROR; } // Applies the indices and element array bindings GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo) { GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo); if(err == GL_NO_ERROR) { device->setIndexBuffer(indexInfo->indexBuffer); } return err; } // Applies the shaders and shader constants void Context::applyShaders() { Program *programObject = getCurrentProgram(); if(!programObject) { device->setVertexShader(0); device->setPixelShader(0); return; } sw::VertexShader *vertexShader = programObject->getVertexShader(); sw::PixelShader *pixelShader = programObject->getPixelShader(); device->setVertexShader(vertexShader); device->setPixelShader(pixelShader); if(programObject->getSerial() != mAppliedProgramSerial) { programObject->dirtyAllUniforms(); mAppliedProgramSerial = programObject->getSerial(); } programObject->applyUniforms(); } void Context::applyTextures() { applyTextures(sw::SAMPLER_PIXEL); //applyTextures(sw::SAMPLER_VERTEX); } void Context::applyTextures(sw::SamplerType samplerType) { Program *programObject = getCurrentProgram(); int samplerCount = (samplerType == sw::SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : MAX_VERTEX_TEXTURE_IMAGE_UNITS; // Range of samplers of given sampler type for(int samplerIndex = 0; samplerIndex < samplerCount; samplerIndex++) { int textureUnit = programObject ? programObject->getSamplerMapping(samplerType, samplerIndex) : samplerIndex; // OpenGL texture image unit index if(textureUnit != -1) { TextureType textureType = programObject ? programObject->getSamplerTextureType(samplerType, samplerIndex) : TEXTURE_2D; Texture *texture = getSamplerTexture(textureUnit, textureType); if(envEnable[samplerIndex] && texture->isSamplerComplete()) { GLenum wrapS = texture->getWrapS(); GLenum wrapT = texture->getWrapT(); GLenum minFilter = texture->getMinFilter(); GLenum magFilter = texture->getMagFilter(); GLfloat maxAnisotropy = texture->getMaxAnisotropy(); device->setAddressingModeU(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapS)); device->setAddressingModeV(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapT)); device->setTextureFilter(samplerType, samplerIndex, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy)); device->setMipmapFilter(samplerType, samplerIndex, es2sw::ConvertMipMapFilter(minFilter)); device->setMaxAnisotropy(samplerType, samplerIndex, maxAnisotropy); applyTexture(samplerType, samplerIndex, texture); device->setStageOperation(samplerIndex, sw::TextureStage::STAGE_MODULATE); device->setFirstArgument(samplerIndex, sw::TextureStage::SOURCE_TEXTURE); device->setSecondArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT); //device->setThirdArgument(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); device->setStageOperationAlpha(samplerIndex, sw::TextureStage::STAGE_MODULATE); device->setFirstArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_TEXTURE); device->setSecondArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT); //device->setThirdArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); //device->setConstantColor(0, sw::Color<float>(0.0f, 0.0f, 0.0f, 0.0f)); } else { applyTexture(samplerType, samplerIndex, nullptr); device->setStageOperation(samplerIndex, sw::TextureStage::STAGE_SELECTARG1); device->setFirstArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT); device->setSecondArgument(samplerIndex, sw::TextureStage::SOURCE_CURRENT); //device->setThirdArgument(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); device->setStageOperationAlpha(samplerIndex, sw::TextureStage::STAGE_SELECTARG1); device->setFirstArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT); device->setSecondArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CURRENT); //device->setThirdArgumentAlpha(samplerIndex, sw::TextureStage::SOURCE_CONSTANT); } } else { applyTexture(samplerType, samplerIndex, nullptr); } } } void Context::applyTexture(sw::SamplerType type, int index, Texture *baseTexture) { Program *program = getCurrentProgram(); int sampler = (type == sw::SAMPLER_PIXEL) ? index : 16 + index; bool textureUsed = false; if(type == sw::SAMPLER_PIXEL) { textureUsed = program ? program->getPixelShader()->usesSampler(index) : true; } else if(type == sw::SAMPLER_VERTEX) { textureUsed = program ? program->getVertexShader()->usesSampler(index) : false; } else UNREACHABLE(type); sw::Resource *resource = nullptr; if(baseTexture && textureUsed) { resource = baseTexture->getResource(); } device->setTextureResource(sampler, resource); if(baseTexture && textureUsed) { int topLevel = baseTexture->getTopLevel(); if(baseTexture->getTarget() == GL_TEXTURE_2D) { Texture2D *texture = static_cast<Texture2D*>(baseTexture); for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { int surfaceLevel = mipmapLevel; if(surfaceLevel < 0) { surfaceLevel = 0; } else if(surfaceLevel > topLevel) { surfaceLevel = topLevel; } Image *surface = texture->getImage(surfaceLevel); device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D); } } else if(baseTexture->getTarget() == GL_TEXTURE_CUBE_MAP) { for(int face = 0; face < 6; face++) { TextureCubeMap *cubeTexture = static_cast<TextureCubeMap*>(baseTexture); for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { int surfaceLevel = mipmapLevel; if(surfaceLevel < 0) { surfaceLevel = 0; } else if(surfaceLevel > topLevel) { surfaceLevel = topLevel; } Image *surface = cubeTexture->getImage(face, surfaceLevel); device->setTextureLevel(sampler, face, mipmapLevel, surface, sw::TEXTURE_CUBE); } } } else UNIMPLEMENTED(); } else { device->setTextureLevel(sampler, 0, 0, 0, sw::TEXTURE_NULL); } } void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels) { Framebuffer *framebuffer = getReadFramebuffer(); int framebufferWidth, framebufferHeight, framebufferSamples; if(framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } if(getReadFramebufferName() != 0 && framebufferSamples != 0) { return error(GL_INVALID_OPERATION); } GLsizei outputPitch = ComputePitch(width, format, type, mState.packAlignment); // Sized query sanity check if(bufSize) { int requiredSize = outputPitch * height; if(requiredSize > *bufSize) { return error(GL_INVALID_OPERATION); } } Image *renderTarget = framebuffer->getRenderTarget(); if(!renderTarget) { return error(GL_OUT_OF_MEMORY); } sw::Rect rect = {x, y, x + width, y + height}; rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight()); unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, sw::LOCK_READONLY); unsigned char *dest = (unsigned char*)pixels; unsigned short *dest16 = (unsigned short*)pixels; int inputPitch = (int)renderTarget->getPitch(); for(int j = 0; j < rect.y1 - rect.y0; j++) { if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 && format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE) { // Fast path for EXT_read_format_bgra, given an RGBA source buffer // Note that buffers with no alpha go through the slow path below memcpy(dest + j * outputPitch, source + j * inputPitch, (rect.x1 - rect.x0) * 4); } else { for(int i = 0; i < rect.x1 - rect.x0; i++) { float r; float g; float b; float a; switch(renderTarget->getInternalFormat()) { case sw::FORMAT_R5G6B5: { unsigned short rgb = *(unsigned short*)(source + 2 * i + j * inputPitch); a = 1.0f; b = (rgb & 0x001F) * (1.0f / 0x001F); g = (rgb & 0x07E0) * (1.0f / 0x07E0); r = (rgb & 0xF800) * (1.0f / 0xF800); } break; case sw::FORMAT_A1R5G5B5: { unsigned short argb = *(unsigned short*)(source + 2 * i + j * inputPitch); a = (argb & 0x8000) ? 1.0f : 0.0f; b = (argb & 0x001F) * (1.0f / 0x001F); g = (argb & 0x03E0) * (1.0f / 0x03E0); r = (argb & 0x7C00) * (1.0f / 0x7C00); } break; case sw::FORMAT_A8R8G8B8: { unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch); a = (argb & 0xFF000000) * (1.0f / 0xFF000000); b = (argb & 0x000000FF) * (1.0f / 0x000000FF); g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00); r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000); } break; case sw::FORMAT_X8R8G8B8: { unsigned int xrgb = *(unsigned int*)(source + 4 * i + j * inputPitch); a = 1.0f; b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF); g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00); r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000); } break; case sw::FORMAT_A2R10G10B10: { unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch); a = (argb & 0xC0000000) * (1.0f / 0xC0000000); b = (argb & 0x000003FF) * (1.0f / 0x000003FF); g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00); r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000); } break; case sw::FORMAT_A32B32G32R32F: { r = *((float*)(source + 16 * i + j * inputPitch) + 0); g = *((float*)(source + 16 * i + j * inputPitch) + 1); b = *((float*)(source + 16 * i + j * inputPitch) + 2); a = *((float*)(source + 16 * i + j * inputPitch) + 3); } break; case sw::FORMAT_A16B16G16R16F: { r = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 0); g = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 1); b = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 2); a = (float)*((sw::half*)(source + 8 * i + j * inputPitch) + 3); } break; default: UNIMPLEMENTED(); // FIXME UNREACHABLE(renderTarget->getInternalFormat()); } switch(format) { case GL_RGBA: switch(type) { case GL_UNSIGNED_BYTE: dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f); dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f); dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f); dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f); break; default: UNREACHABLE(type); } break; case GL_BGRA_EXT: switch(type) { case GL_UNSIGNED_BYTE: dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * b + 0.5f); dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f); dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * r + 0.5f); dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f); break; case GL_UNSIGNED_SHORT_4_4_4_4_REV: // According to the desktop GL spec in the "Transfer of Pixel Rectangles" section // this type is packed as follows: // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // -------------------------------------------------------------------------------- // | 4th | 3rd | 2nd | 1st component | // -------------------------------------------------------------------------------- // in the case of BGRA_EXT, B is the first component, G the second, and so forth. dest16[i + j * outputPitch / sizeof(unsigned short)] = ((unsigned short)(15 * a + 0.5f) << 12)| ((unsigned short)(15 * r + 0.5f) << 8) | ((unsigned short)(15 * g + 0.5f) << 4) | ((unsigned short)(15 * b + 0.5f) << 0); break; case GL_UNSIGNED_SHORT_1_5_5_5_REV: // According to the desktop GL spec in the "Transfer of Pixel Rectangles" section // this type is packed as follows: // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // -------------------------------------------------------------------------------- // | 4th | 3rd | 2nd | 1st component | // -------------------------------------------------------------------------------- // in the case of BGRA_EXT, B is the first component, G the second, and so forth. dest16[i + j * outputPitch / sizeof(unsigned short)] = ((unsigned short)( a + 0.5f) << 15) | ((unsigned short)(31 * r + 0.5f) << 10) | ((unsigned short)(31 * g + 0.5f) << 5) | ((unsigned short)(31 * b + 0.5f) << 0); break; default: UNREACHABLE(type); } break; case GL_RGB: // IMPLEMENTATION_COLOR_READ_FORMAT switch(type) { case GL_UNSIGNED_SHORT_5_6_5: // IMPLEMENTATION_COLOR_READ_TYPE dest16[i + j * outputPitch / sizeof(unsigned short)] = ((unsigned short)(31 * b + 0.5f) << 0) | ((unsigned short)(63 * g + 0.5f) << 5) | ((unsigned short)(31 * r + 0.5f) << 11); break; default: UNREACHABLE(type); } break; default: UNREACHABLE(format); } } } } renderTarget->unlock(); renderTarget->release(); } void Context::clear(GLbitfield mask) { Framebuffer *framebuffer = getDrawFramebuffer(); if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } if(!applyRenderTarget()) { return; } float depth = clamp01(mState.depthClearValue); int stencil = mState.stencilClearValue & 0x000000FF; if(mask & GL_COLOR_BUFFER_BIT) { unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) | (mState.colorMaskGreen ? 0x2 : 0) | (mState.colorMaskBlue ? 0x4 : 0) | (mState.colorMaskAlpha ? 0x8 : 0); if(rgbaMask != 0) { device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask); } } if(mask & GL_DEPTH_BUFFER_BIT) { if(mState.depthMask != 0) { device->clearDepth(depth); } } if(mask & GL_STENCIL_BUFFER_BIT) { if(mState.stencilWritemask != 0) { device->clearStencil(stencil, mState.stencilWritemask); } } } void Context::drawArrays(GLenum mode, GLint first, GLsizei count) { if(!mState.currentProgram) { device->setProjectionMatrix(projection.current()); device->setViewMatrix(modelView.current()); device->setTextureMatrix(0, texture[0].current()); device->setTextureMatrix(1, texture[1].current()); device->setTextureTransform(0, texture[0].isIdentity() ? 0 : 4, false); device->setTextureTransform(1, texture[1].isIdentity() ? 0 : 4, false); device->setTexGen(0, sw::TEXGEN_NONE); device->setTexGen(1, sw::TEXGEN_NONE); } PrimitiveType primitiveType; int primitiveCount; if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount)) return error(GL_INVALID_ENUM); if(primitiveCount <= 0) { return; } if(!applyRenderTarget()) { return; } applyState(mode); GLenum err = applyVertexBuffer(0, first, count); if(err != GL_NO_ERROR) { return error(err); } applyShaders(); applyTextures(); if(getCurrentProgram() && !getCurrentProgram()->validateSamplers(false)) { return error(GL_INVALID_OPERATION); } if(!cullSkipsDraw(mode)) { device->drawPrimitive(primitiveType, primitiveCount); } } void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices) { if(!mState.currentProgram) { return; } if(!indices && !mState.elementArrayBuffer) { return error(GL_INVALID_OPERATION); } PrimitiveType primitiveType; int primitiveCount; if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount)) return error(GL_INVALID_ENUM); if(primitiveCount <= 0) { return; } if(!applyRenderTarget()) { return; } applyState(mode); TranslatedIndexData indexInfo; GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo); if(err != GL_NO_ERROR) { return error(err); } GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount); if(err != GL_NO_ERROR) { return error(err); } applyShaders(); applyTextures(); if(!getCurrentProgram()->validateSamplers(false)) { return error(GL_INVALID_OPERATION); } if(!cullSkipsDraw(mode)) { device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount, IndexDataManager::typeSize(type)); } } void Context::finish() { device->finish(); } void Context::flush() { // We don't queue anything without processing it as fast as possible } void Context::recordInvalidEnum() { mInvalidEnum = true; } void Context::recordInvalidValue() { mInvalidValue = true; } void Context::recordInvalidOperation() { mInvalidOperation = true; } void Context::recordOutOfMemory() { mOutOfMemory = true; } void Context::recordInvalidFramebufferOperation() { mInvalidFramebufferOperation = true; } // Get one of the recorded errors and clear its flag, if any. GLenum Context::getError() { if(mInvalidEnum) { mInvalidEnum = false; return GL_INVALID_ENUM; } if(mInvalidValue) { mInvalidValue = false; return GL_INVALID_VALUE; } if(mInvalidOperation) { mInvalidOperation = false; return GL_INVALID_OPERATION; } if(mOutOfMemory) { mOutOfMemory = false; return GL_OUT_OF_MEMORY; } if(mInvalidFramebufferOperation) { mInvalidFramebufferOperation = false; return GL_INVALID_FRAMEBUFFER_OPERATION; } return GL_NO_ERROR; } int Context::getSupportedMultisampleCount(int requested) { int supported = 0; for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--) { if(supported >= requested) { return supported; } supported = multisampleCount[i]; } return supported; } void Context::detachBuffer(GLuint buffer) { // If a buffer object is deleted while it is bound, all bindings to that object in the current context // (i.e. in the thread that called Delete-Buffers) are reset to zero. if(mState.arrayBuffer.name() == buffer) { mState.arrayBuffer = nullptr; } if(mState.elementArrayBuffer.name() == buffer) { mState.elementArrayBuffer = nullptr; } for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer) { mState.vertexAttribute[attribute].mBoundBuffer = nullptr; } } } void Context::detachTexture(GLuint texture) { // If a texture object is deleted, it is as if all texture units which are bound to that texture object are // rebound to texture object zero for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { if(mState.samplerTexture[type][sampler].name() == texture) { mState.samplerTexture[type][sampler] = nullptr; } } } // If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is // as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this // image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if(readFramebuffer) { readFramebuffer->detachTexture(texture); } if(drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachTexture(texture); } } void Context::detachFramebuffer(GLuint framebuffer) { // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if(mState.readFramebuffer == framebuffer) { bindReadFramebuffer(0); } if(mState.drawFramebuffer == framebuffer) { bindDrawFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { // If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer // had been executed with the target RENDERBUFFER and name of zero. if(mState.renderbuffer.name() == renderbuffer) { bindRenderbuffer(0); } // If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, // then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment // point to which this image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if(readFramebuffer) { readFramebuffer->detachRenderbuffer(renderbuffer); } if(drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachRenderbuffer(renderbuffer); } } bool Context::cullSkipsDraw(GLenum drawMode) { return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode); } bool Context::isTriangleMode(GLenum drawMode) { switch(drawMode) { case GL_TRIANGLES: case GL_TRIANGLE_FAN: case GL_TRIANGLE_STRIP: return true; case GL_POINTS: case GL_LINES: case GL_LINE_LOOP: case GL_LINE_STRIP: return false; default: UNREACHABLE(drawMode); } return false; } void Context::setVertexAttrib(GLuint index, float x, float y, float z, float w) { ASSERT(index < MAX_VERTEX_ATTRIBS); mState.vertexAttribute[index].mCurrentValue[0] = x; mState.vertexAttribute[index].mCurrentValue[1] = y; mState.vertexAttribute[index].mCurrentValue[2] = z; mState.vertexAttribute[index].mCurrentValue[3] = w; mVertexDataManager->dirtyCurrentValue(index); } void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask) { Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); int readBufferWidth, readBufferHeight, readBufferSamples; int drawBufferWidth, drawBufferHeight, drawBufferSamples; if(!readFramebuffer || readFramebuffer->completeness(readBufferWidth, readBufferHeight, readBufferSamples) != GL_FRAMEBUFFER_COMPLETE || !drawFramebuffer || drawFramebuffer->completeness(drawBufferWidth, drawBufferHeight, drawBufferSamples) != GL_FRAMEBUFFER_COMPLETE) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } if(drawBufferSamples > 1) { return error(GL_INVALID_OPERATION); } sw::SliceRect sourceRect; sw::SliceRect destRect; if(srcX0 < srcX1) { sourceRect.x0 = srcX0; sourceRect.x1 = srcX1; destRect.x0 = dstX0; destRect.x1 = dstX1; } else { sourceRect.x0 = srcX1; destRect.x0 = dstX1; sourceRect.x1 = srcX0; destRect.x1 = dstX0; } if(srcY0 < srcY1) { sourceRect.y0 = srcY0; destRect.y0 = dstY0; sourceRect.y1 = srcY1; destRect.y1 = dstY1; } else { sourceRect.y0 = srcY1; destRect.y0 = dstY1; sourceRect.y1 = srcY0; destRect.y1 = dstY0; } sw::Rect sourceScissoredRect = sourceRect; sw::Rect destScissoredRect = destRect; if(mState.scissorTestEnabled) // Only write to parts of the destination framebuffer which pass the scissor test { if(destRect.x0 < mState.scissorX) { int xDiff = mState.scissorX - destRect.x0; destScissoredRect.x0 = mState.scissorX; sourceScissoredRect.x0 += xDiff; } if(destRect.x1 > mState.scissorX + mState.scissorWidth) { int xDiff = destRect.x1 - (mState.scissorX + mState.scissorWidth); destScissoredRect.x1 = mState.scissorX + mState.scissorWidth; sourceScissoredRect.x1 -= xDiff; } if(destRect.y0 < mState.scissorY) { int yDiff = mState.scissorY - destRect.y0; destScissoredRect.y0 = mState.scissorY; sourceScissoredRect.y0 += yDiff; } if(destRect.y1 > mState.scissorY + mState.scissorHeight) { int yDiff = destRect.y1 - (mState.scissorY + mState.scissorHeight); destScissoredRect.y1 = mState.scissorY + mState.scissorHeight; sourceScissoredRect.y1 -= yDiff; } } sw::Rect sourceTrimmedRect = sourceScissoredRect; sw::Rect destTrimmedRect = destScissoredRect; // The source & destination rectangles also may need to be trimmed if they fall out of the bounds of // the actual draw and read surfaces. if(sourceTrimmedRect.x0 < 0) { int xDiff = 0 - sourceTrimmedRect.x0; sourceTrimmedRect.x0 = 0; destTrimmedRect.x0 += xDiff; } if(sourceTrimmedRect.x1 > readBufferWidth) { int xDiff = sourceTrimmedRect.x1 - readBufferWidth; sourceTrimmedRect.x1 = readBufferWidth; destTrimmedRect.x1 -= xDiff; } if(sourceTrimmedRect.y0 < 0) { int yDiff = 0 - sourceTrimmedRect.y0; sourceTrimmedRect.y0 = 0; destTrimmedRect.y0 += yDiff; } if(sourceTrimmedRect.y1 > readBufferHeight) { int yDiff = sourceTrimmedRect.y1 - readBufferHeight; sourceTrimmedRect.y1 = readBufferHeight; destTrimmedRect.y1 -= yDiff; } if(destTrimmedRect.x0 < 0) { int xDiff = 0 - destTrimmedRect.x0; destTrimmedRect.x0 = 0; sourceTrimmedRect.x0 += xDiff; } if(destTrimmedRect.x1 > drawBufferWidth) { int xDiff = destTrimmedRect.x1 - drawBufferWidth; destTrimmedRect.x1 = drawBufferWidth; sourceTrimmedRect.x1 -= xDiff; } if(destTrimmedRect.y0 < 0) { int yDiff = 0 - destTrimmedRect.y0; destTrimmedRect.y0 = 0; sourceTrimmedRect.y0 += yDiff; } if(destTrimmedRect.y1 > drawBufferHeight) { int yDiff = destTrimmedRect.y1 - drawBufferHeight; destTrimmedRect.y1 = drawBufferHeight; sourceTrimmedRect.y1 -= yDiff; } bool partialBufferCopy = false; if(sourceTrimmedRect.y1 - sourceTrimmedRect.y0 < readBufferHeight || sourceTrimmedRect.x1 - sourceTrimmedRect.x0 < readBufferWidth || destTrimmedRect.y1 - destTrimmedRect.y0 < drawBufferHeight || destTrimmedRect.x1 - destTrimmedRect.x0 < drawBufferWidth || sourceTrimmedRect.y0 != 0 || destTrimmedRect.y0 != 0 || sourceTrimmedRect.x0 != 0 || destTrimmedRect.x0 != 0) { partialBufferCopy = true; } bool blitRenderTarget = false; bool blitDepthStencil = false; if(mask & GL_COLOR_BUFFER_BIT) { const bool validReadType = readFramebuffer->getColorbufferType() == GL_TEXTURE_2D || readFramebuffer->getColorbufferType() == GL_RENDERBUFFER; const bool validDrawType = drawFramebuffer->getColorbufferType() == GL_TEXTURE_2D || drawFramebuffer->getColorbufferType() == GL_RENDERBUFFER; if(!validReadType || !validDrawType || readFramebuffer->getColorbuffer()->getInternalFormat() != drawFramebuffer->getColorbuffer()->getInternalFormat()) { ERR("Color buffer format conversion in BlitFramebufferANGLE not supported by this implementation"); return error(GL_INVALID_OPERATION); } if(partialBufferCopy && readBufferSamples > 1) { return error(GL_INVALID_OPERATION); } blitRenderTarget = true; } if(mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) { Renderbuffer *readDSBuffer = nullptr; Renderbuffer *drawDSBuffer = nullptr; // We support OES_packed_depth_stencil, and do not support a separately attached depth and stencil buffer, so if we have // both a depth and stencil buffer, it will be the same buffer. if(mask & GL_DEPTH_BUFFER_BIT) { if(readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer()) { if(readFramebuffer->getDepthbufferType() != drawFramebuffer->getDepthbufferType() || readFramebuffer->getDepthbuffer()->getInternalFormat() != drawFramebuffer->getDepthbuffer()->getInternalFormat()) { return error(GL_INVALID_OPERATION); } blitDepthStencil = true; readDSBuffer = readFramebuffer->getDepthbuffer(); drawDSBuffer = drawFramebuffer->getDepthbuffer(); } } if(mask & GL_STENCIL_BUFFER_BIT) { if(readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer()) { if(readFramebuffer->getStencilbufferType() != drawFramebuffer->getStencilbufferType() || readFramebuffer->getStencilbuffer()->getInternalFormat() != drawFramebuffer->getStencilbuffer()->getInternalFormat()) { return error(GL_INVALID_OPERATION); } blitDepthStencil = true; readDSBuffer = readFramebuffer->getStencilbuffer(); drawDSBuffer = drawFramebuffer->getStencilbuffer(); } } if(partialBufferCopy) { ERR("Only whole-buffer depth and stencil blits are supported by this implementation."); return error(GL_INVALID_OPERATION); // Only whole-buffer copies are permitted } if((drawDSBuffer && drawDSBuffer->getSamples() > 1) || (readDSBuffer && readDSBuffer->getSamples() > 1)) { return error(GL_INVALID_OPERATION); } } if(blitRenderTarget || blitDepthStencil) { if(blitRenderTarget) { Image *readRenderTarget = readFramebuffer->getRenderTarget(); Image *drawRenderTarget = drawFramebuffer->getRenderTarget(); bool success = device->stretchRect(readRenderTarget, &sourceRect, drawRenderTarget, &destRect, false); readRenderTarget->release(); drawRenderTarget->release(); if(!success) { ERR("BlitFramebufferANGLE failed."); return; } } if(blitDepthStencil) { bool success = device->stretchRect(readFramebuffer->getDepthStencil(), nullptr, drawFramebuffer->getDepthStencil(), nullptr, false); if(!success) { ERR("BlitFramebufferANGLE failed."); return; } } } } void Context::setMatrixMode(GLenum mode) { matrixMode = mode; } sw::MatrixStack &Context::currentMatrixStack() { switch(matrixMode) { case GL_MODELVIEW: return modelView; break; case GL_PROJECTION: return projection; break; case GL_TEXTURE: return texture[mState.activeSampler]; break; default: UNREACHABLE(matrixMode); return modelView; break; } } void Context::loadIdentity() { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().identity(); } void Context::pushMatrix() { //if(drawing) //{ // return error(GL_INVALID_OPERATION); //} if(!currentMatrixStack().push()) { return error(GL_STACK_OVERFLOW); } } void Context::popMatrix() { //if(drawing) //{ // return error(GL_INVALID_OPERATION); //} if(!currentMatrixStack().pop()) { return error(GL_STACK_OVERFLOW); } } void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().rotate(angle, x, y, z); } void Context::translate(GLfloat x, GLfloat y, GLfloat z) { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().translate(x, y, z); } void Context::scale(GLfloat x, GLfloat y, GLfloat z) { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().scale(x, y, z); } void Context::multiply(const GLdouble *m) { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().multiply(m); } void Context::multiply(const GLfloat *m) { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().multiply(m); } void Context::frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar) { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar); } void Context::ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar) { if(drawing) { return error(GL_INVALID_OPERATION); } currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar); } void Context::setLightingEnabled(bool enable) { if(drawing) { return error(GL_INVALID_OPERATION); } device->setLightingEnable(enable); } void Context::setFogEnabled(bool enable) { if(drawing) { return error(GL_INVALID_OPERATION); } device->setFogEnable(enable); } void Context::setAlphaTestEnabled(bool enable) { if(drawing) { return error(GL_INVALID_OPERATION); } device->setAlphaTestEnable(enable); } void Context::alphaFunc(GLenum func, GLclampf ref) { if(drawing) { return error(GL_INVALID_OPERATION); } switch(func) { case GL_NEVER: device->setAlphaCompare(sw::ALPHA_NEVER); break; case GL_LESS: device->setAlphaCompare(sw::ALPHA_LESS); break; case GL_EQUAL: device->setAlphaCompare(sw::ALPHA_EQUAL); break; case GL_LEQUAL: device->setAlphaCompare(sw::ALPHA_LESSEQUAL); break; case GL_GREATER: device->setAlphaCompare(sw::ALPHA_GREATER); break; case GL_NOTEQUAL: device->setAlphaCompare(sw::ALPHA_NOTEQUAL); break; case GL_GEQUAL: device->setAlphaCompare(sw::ALPHA_GREATEREQUAL); break; case GL_ALWAYS: device->setAlphaCompare(sw::ALPHA_ALWAYS); break; default: UNREACHABLE(func); } device->setAlphaReference(gl::clamp01(ref)); } void Context::setTexture2DEnabled(bool enable) { if(drawing) { return error(GL_INVALID_OPERATION); } envEnable[mState.activeSampler] = enable; } void Context::setShadeModel(GLenum mode) { //if(drawing) //{ // return error(GL_INVALID_OPERATION); //} switch(mode) { case GL_FLAT: device->setShadingMode(sw::SHADING_FLAT); break; case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break; default: return error(GL_INVALID_ENUM); } } void Context::setLightEnabled(int index, bool enable) { device->setLightEnable(index, enable); } void Context::setNormalizeNormalsEnabled(bool enable) { device->setNormalizeNormals(enable); } GLuint Context::genLists(GLsizei range) { if(drawing) { return error(GL_INVALID_OPERATION, 0); } int firstIndex = std::max(1u, firstFreeIndex); for(; true; firstIndex++) { int empty = 0; for(; empty < range; empty++) { if(displayList[firstIndex + empty] != 0) { break; } } if(empty == range) { for(int i = firstIndex; i < firstIndex + range; i++) { displayList[i] = new DisplayList(); } if(firstIndex == firstFreeIndex) { firstFreeIndex = firstIndex + range; } return firstIndex; } } return 0; } void Context::newList(GLuint list, GLenum mode) { if(drawing || listIndex != 0) { return error(GL_INVALID_OPERATION); } ASSERT(!this->list); this->list = new DisplayList(); listIndex = list; listMode = mode; } void Context::endList() { if(drawing || listIndex == 0) { return error(GL_INVALID_OPERATION); } ASSERT(list); delete displayList[listIndex]; displayList[listIndex] = list; list = 0; listIndex = 0; listMode = 0; } void Context::callList(GLuint list) { // As per GL specifications, if the list does not exist, it is ignored if(displayList[list]) { displayList[list]->call(); } } void Context::deleteList(GLuint list) { delete displayList[list]; displayList[list] = 0; displayList.erase(list); firstFreeIndex = std::min(firstFreeIndex , list); } void Context::listCommand(Command *command) { ASSERT(list); list->list.push_back(command); if(listMode == GL_COMPILE_AND_EXECUTE) { listMode = 0; command->call(); listMode = GL_COMPILE_AND_EXECUTE; } } void APIENTRY glVertexAttribArray(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid* ptr) { TRACE("(GLuint index = %d, GLint size = %d, GLenum type = 0x%X, " "GLboolean normalized = %d, GLsizei stride = %d, const GLvoid* ptr = %p)", index, size, type, normalized, stride, ptr); gl::Context *context = gl::getContext(); if(context) { context->setVertexAttribState(index, context->getArrayBuffer(), size, type, (normalized == GL_TRUE), stride, ptr); context->setVertexAttribArrayEnabled(index, ptr != 0); } } void Context::captureAttribs() { memcpy(clientAttribute, mState.vertexAttribute, sizeof(mState.vertexAttribute)); } void Context::captureDrawArrays(GLenum mode, GLint first, GLsizei count) { ASSERT(first == 0); // FIXME: UNIMPLEMENTED! for(GLuint i = 0; i < MAX_VERTEX_ATTRIBS; i++) { GLint size = mState.vertexAttribute[i].mSize; GLenum type = mState.vertexAttribute[i].mType; GLboolean normalized = mState.vertexAttribute[i].mNormalized; GLsizei stride = mState.vertexAttribute[i].mStride; const GLvoid *pointer = mState.vertexAttribute[i].mPointer; size_t length = count * mState.vertexAttribute[i].stride(); if(mState.vertexAttribute[i].mArrayEnabled) { ASSERT(pointer); // FIXME: Add to condition? const int padding = 1024; // For SIMD processing of vertices // FIXME: Still necessary? void *buffer = new unsigned char[length + padding]; memcpy(buffer, pointer, length); listCommand(gl::newCommand(glVertexAttribArray, i, size, type, normalized, stride, (const void*)buffer)); } else { listCommand(gl::newCommand(glVertexAttribArray, i, size, type, normalized, stride, (const void*)0)); } } } void Context::restoreAttribs() { memcpy(mState.vertexAttribute, clientAttribute, sizeof(mState.vertexAttribute)); } void Context::clientActiveTexture(GLenum texture) { clientTexture = texture; } GLenum Context::getClientActiveTexture() const { return clientTexture; } unsigned int Context::getActiveTexture() const { return mState.activeSampler; } void Context::begin(GLenum mode) { if(drawing) { return error(GL_INVALID_OPERATION); } drawing = true; drawMode = mode; vertex.clear(); } void Context::position(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { InVertex v; v.P.x = x; v.P.y = y; v.P.z = z; v.P.w = w; v.C.x = mState.vertexAttribute[sw::Color0].mCurrentValue[0]; v.C.y = mState.vertexAttribute[sw::Color0].mCurrentValue[1]; v.C.z = mState.vertexAttribute[sw::Color0].mCurrentValue[2]; v.C.w = mState.vertexAttribute[sw::Color0].mCurrentValue[3]; v.N.x = mState.vertexAttribute[sw::Normal].mCurrentValue[0]; v.N.y = mState.vertexAttribute[sw::Normal].mCurrentValue[1]; v.N.z = mState.vertexAttribute[sw::Normal].mCurrentValue[2]; v.N.w = mState.vertexAttribute[sw::Normal].mCurrentValue[3]; v.T0.x = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[0]; v.T0.y = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[1]; v.T0.z = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[2]; v.T0.w = mState.vertexAttribute[sw::TexCoord0].mCurrentValue[3]; v.T1.x = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[0]; v.T1.y = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[1]; v.T1.z = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[2]; v.T1.w = mState.vertexAttribute[sw::TexCoord1].mCurrentValue[3]; vertex.push_back(v); } void Context::end() { if(!drawing) { return error(GL_INVALID_OPERATION); } device->setProjectionMatrix(projection.current()); device->setViewMatrix(modelView.current()); device->setTextureMatrix(0, texture[0].current()); device->setTextureMatrix(1, texture[1].current()); device->setTextureTransform(0, texture[0].isIdentity() ? 0 : 4, false); device->setTextureTransform(1, texture[1].isIdentity() ? 0 : 4, false); captureAttribs(); for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mState.vertexAttribute[i].mArrayEnabled = false; } setVertexAttribState(sw::Position, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].P); setVertexAttribState(sw::Normal, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].N); setVertexAttribState(sw::Color0, 0, 4, GL_FLOAT, false, sizeof(InVertex), &vertex[0].C); setVertexAttribState(sw::TexCoord0, 0, 2, GL_FLOAT, false, sizeof(InVertex), &vertex[0].T0); setVertexAttribState(sw::TexCoord1, 0, 2, GL_FLOAT, false, sizeof(InVertex), &vertex[0].T1); mState.vertexAttribute[sw::Position].mArrayEnabled = true; mState.vertexAttribute[sw::Normal].mArrayEnabled = true; mState.vertexAttribute[sw::Color0].mArrayEnabled = true; mState.vertexAttribute[sw::TexCoord0].mArrayEnabled = true; mState.vertexAttribute[sw::TexCoord1].mArrayEnabled = true; applyState(drawMode); GLenum err = applyVertexBuffer(0, 0, vertex.size()); if(err != GL_NO_ERROR) { return error(err); } applyTextures(); switch(drawMode) { case GL_POINTS: UNIMPLEMENTED(); break; case GL_LINES: UNIMPLEMENTED(); break; case GL_LINE_STRIP: UNIMPLEMENTED(); break; case GL_LINE_LOOP: UNIMPLEMENTED(); break; case GL_TRIANGLES: UNIMPLEMENTED(); break; case GL_TRIANGLE_STRIP: device->drawPrimitive(DRAW_TRIANGLESTRIP, vertex.size() - 2); break; case GL_TRIANGLE_FAN: UNIMPLEMENTED(); break; case GL_QUADS: UNIMPLEMENTED(); break; case GL_QUAD_STRIP: UNIMPLEMENTED(); break; case GL_POLYGON: UNIMPLEMENTED(); break; default: UNREACHABLE(drawMode); } restoreAttribs(); drawing = false; } void Context::setColorLogicOpEnabled(bool colorLogicOpEnabled) { if(mState.colorLogicOpEnabled != colorLogicOpEnabled) { mState.colorLogicOpEnabled = colorLogicOpEnabled; mColorLogicOperatorDirty = true; } } bool Context::isColorLogicOpEnabled() { return mState.colorLogicOpEnabled; } void Context::setLogicalOperation(GLenum logicalOperation) { if(mState.logicalOperation != logicalOperation) { mState.logicalOperation = logicalOperation; mColorLogicOperatorDirty = true; } } void Context::setColorMaterialEnabled(bool enable) { device->setColorVertexEnable(enable); } void Context::setColorMaterialMode(GLenum mode) { switch(mode) { case GL_EMISSION: device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); device->setEmissiveMaterialSource(sw::MATERIAL_COLOR1); break; case GL_AMBIENT: device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); device->setAmbientMaterialSource(sw::MATERIAL_COLOR1); device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); break; case GL_DIFFUSE: device->setDiffuseMaterialSource(sw::MATERIAL_COLOR1); device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); break; case GL_SPECULAR: device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); device->setSpecularMaterialSource(sw::MATERIAL_COLOR1); device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); break; case GL_AMBIENT_AND_DIFFUSE: device->setDiffuseMaterialSource(sw::MATERIAL_COLOR1); device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); device->setAmbientMaterialSource(sw::MATERIAL_COLOR1); device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); break; default: UNREACHABLE(mode); } } Device *Context::getDevice() { return device; } }