// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "Reactor.hpp" #include "Optimizer.hpp" #include "src/IceTypes.h" #include "src/IceCfg.h" #include "src/IceELFStreamer.h" #include "src/IceGlobalContext.h" #include "src/IceCfgNode.h" #include "src/IceELFObjectWriter.h" #include "src/IceGlobalInits.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/raw_os_ostream.h" #if defined(_WIN32) #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif // !WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif // !NOMINMAX #include <Windows.h> #else #include <sys/mman.h> #if !defined(MAP_ANONYMOUS) #define MAP_ANONYMOUS MAP_ANON #endif #endif //#include <mutex> #include <limits> #include <iostream> #include <cassert> namespace { Ice::GlobalContext *context = nullptr; Ice::Cfg *function = nullptr; Ice::CfgNode *basicBlock = nullptr; Ice::CfgLocalAllocatorScope *allocator = nullptr; sw::Routine *routine = nullptr; std::mutex codegenMutex; Ice::ELFFileStreamer *elfFile = nullptr; Ice::Fdstream *out = nullptr; } namespace { #if !defined(__i386__) && defined(_M_IX86) #define __i386__ 1 #endif #if !defined(__x86_64__) && (defined(_M_AMD64) || defined (_M_X64)) #define __x86_64__ 1 #endif class CPUID { public: const static bool ARM; const static bool SSE4_1; private: static void cpuid(int registers[4], int info) { #if defined(__i386__) || defined(__x86_64__) #if defined(_WIN32) __cpuid(registers, info); #else __asm volatile("cpuid": "=a" (registers[0]), "=b" (registers[1]), "=c" (registers[2]), "=d" (registers[3]): "a" (info)); #endif #else registers[0] = 0; registers[1] = 0; registers[2] = 0; registers[3] = 0; #endif } static bool detectARM() { #if defined(__arm__) return true; #elif defined(__i386__) || defined(__x86_64__) return false; #else #error "Unknown architecture" #endif } static bool detectSSE4_1() { #if defined(__i386__) || defined(__x86_64__) int registers[4]; cpuid(registers, 1); return (registers[2] & 0x00080000) != 0; #else return false; #endif } }; const bool CPUID::ARM = CPUID::detectARM(); const bool CPUID::SSE4_1 = CPUID::detectSSE4_1(); const bool emulateIntrinsics = false; const bool emulateMismatchedBitCast = CPUID::ARM; } namespace sw { enum EmulatedType { EmulatedShift = 16, EmulatedV2 = 2 << EmulatedShift, EmulatedV4 = 4 << EmulatedShift, EmulatedV8 = 8 << EmulatedShift, EmulatedBits = EmulatedV2 | EmulatedV4 | EmulatedV8, Type_v2i32 = Ice::IceType_v4i32 | EmulatedV2, Type_v4i16 = Ice::IceType_v8i16 | EmulatedV4, Type_v2i16 = Ice::IceType_v8i16 | EmulatedV2, Type_v8i8 = Ice::IceType_v16i8 | EmulatedV8, Type_v4i8 = Ice::IceType_v16i8 | EmulatedV4, Type_v2f32 = Ice::IceType_v4f32 | EmulatedV2, }; class Value : public Ice::Operand {}; class SwitchCases : public Ice::InstSwitch {}; class BasicBlock : public Ice::CfgNode {}; Ice::Type T(Type *t) { static_assert(static_cast<unsigned int>(Ice::IceType_NUM) < static_cast<unsigned int>(EmulatedBits), "Ice::Type overlaps with our emulated types!"); return (Ice::Type)(reinterpret_cast<std::intptr_t>(t) & ~EmulatedBits); } Type *T(Ice::Type t) { return reinterpret_cast<Type*>(t); } Type *T(EmulatedType t) { return reinterpret_cast<Type*>(t); } Value *V(Ice::Operand *v) { return reinterpret_cast<Value*>(v); } BasicBlock *B(Ice::CfgNode *b) { return reinterpret_cast<BasicBlock*>(b); } static size_t typeSize(Type *type) { if(reinterpret_cast<std::intptr_t>(type) & EmulatedBits) { switch(reinterpret_cast<std::intptr_t>(type)) { case Type_v2i32: return 8; case Type_v4i16: return 8; case Type_v2i16: return 4; case Type_v8i8: return 8; case Type_v4i8: return 4; case Type_v2f32: return 8; default: assert(false); } } return Ice::typeWidthInBytes(T(type)); } Optimization optimization[10] = {InstructionCombining, Disabled}; using ElfHeader = std::conditional<sizeof(void*) == 8, Elf64_Ehdr, Elf32_Ehdr>::type; using SectionHeader = std::conditional<sizeof(void*) == 8, Elf64_Shdr, Elf32_Shdr>::type; inline const SectionHeader *sectionHeader(const ElfHeader *elfHeader) { return reinterpret_cast<const SectionHeader*>((intptr_t)elfHeader + elfHeader->e_shoff); } inline const SectionHeader *elfSection(const ElfHeader *elfHeader, int index) { return §ionHeader(elfHeader)[index]; } static void *relocateSymbol(const ElfHeader *elfHeader, const Elf32_Rel &relocation, const SectionHeader &relocationTable) { const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info); intptr_t address = (intptr_t)elfHeader + target->sh_offset; int32_t *patchSite = (int*)(address + relocation.r_offset); uint32_t index = relocation.getSymbol(); int table = relocationTable.sh_link; void *symbolValue = nullptr; if(index != SHN_UNDEF) { if(table == SHN_UNDEF) return nullptr; const SectionHeader *symbolTable = elfSection(elfHeader, table); uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize; if(index >= symtab_entries) { assert(index < symtab_entries && "Symbol Index out of range"); return nullptr; } intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset; Elf32_Sym &symbol = ((Elf32_Sym*)symbolAddress)[index]; uint16_t section = symbol.st_shndx; if(section != SHN_UNDEF && section < SHN_LORESERVE) { const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx); symbolValue = reinterpret_cast<void*>((intptr_t)elfHeader + symbol.st_value + target->sh_offset); } else { return nullptr; } } if(CPUID::ARM) { switch(relocation.getType()) { case R_ARM_NONE: // No relocation break; case R_ARM_MOVW_ABS_NC: { uint32_t thumb = 0; // Calls to Thumb code not supported. uint32_t lo = (uint32_t)(intptr_t)symbolValue | thumb; *patchSite = (*patchSite & 0xFFF0F000) | ((lo & 0xF000) << 4) | (lo & 0x0FFF); } break; case R_ARM_MOVT_ABS: { uint32_t hi = (uint32_t)(intptr_t)(symbolValue) >> 16; *patchSite = (*patchSite & 0xFFF0F000) | ((hi & 0xF000) << 4) | (hi & 0x0FFF); } break; default: assert(false && "Unsupported relocation type"); return nullptr; } } else { switch(relocation.getType()) { case R_386_NONE: // No relocation break; case R_386_32: *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite); break; // case R_386_PC32: // *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite - (intptr_t)patchSite); // break; default: assert(false && "Unsupported relocation type"); return nullptr; } } return symbolValue; } static void *relocateSymbol(const ElfHeader *elfHeader, const Elf64_Rela &relocation, const SectionHeader &relocationTable) { const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info); intptr_t address = (intptr_t)elfHeader + target->sh_offset; int32_t *patchSite = (int*)(address + relocation.r_offset); uint32_t index = relocation.getSymbol(); int table = relocationTable.sh_link; void *symbolValue = nullptr; if(index != SHN_UNDEF) { if(table == SHN_UNDEF) return nullptr; const SectionHeader *symbolTable = elfSection(elfHeader, table); uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize; if(index >= symtab_entries) { assert(index < symtab_entries && "Symbol Index out of range"); return nullptr; } intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset; Elf64_Sym &symbol = ((Elf64_Sym*)symbolAddress)[index]; uint16_t section = symbol.st_shndx; if(section != SHN_UNDEF && section < SHN_LORESERVE) { const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx); symbolValue = reinterpret_cast<void*>((intptr_t)elfHeader + symbol.st_value + target->sh_offset); } else { return nullptr; } } switch(relocation.getType()) { case R_X86_64_NONE: // No relocation break; case R_X86_64_64: *(int64_t*)patchSite = (int64_t)((intptr_t)symbolValue + *(int64_t*)patchSite) + relocation.r_addend; break; case R_X86_64_PC32: *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite - (intptr_t)patchSite) + relocation.r_addend; break; case R_X86_64_32S: *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite) + relocation.r_addend; break; default: assert(false && "Unsupported relocation type"); return nullptr; } return symbolValue; } void *loadImage(uint8_t *const elfImage, size_t &codeSize) { ElfHeader *elfHeader = (ElfHeader*)elfImage; if(!elfHeader->checkMagic()) { return nullptr; } // Expect ELF bitness to match platform assert(sizeof(void*) == 8 ? elfHeader->getFileClass() == ELFCLASS64 : elfHeader->getFileClass() == ELFCLASS32); #if defined(__i386__) assert(sizeof(void*) == 4 && elfHeader->e_machine == EM_386); #elif defined(__x86_64__) assert(sizeof(void*) == 8 && elfHeader->e_machine == EM_X86_64); #elif defined(__arm__) assert(sizeof(void*) == 4 && elfHeader->e_machine == EM_ARM); #else #error "Unsupported platform" #endif SectionHeader *sectionHeader = (SectionHeader*)(elfImage + elfHeader->e_shoff); void *entry = nullptr; for(int i = 0; i < elfHeader->e_shnum; i++) { if(sectionHeader[i].sh_type == SHT_PROGBITS) { if(sectionHeader[i].sh_flags & SHF_EXECINSTR) { entry = elfImage + sectionHeader[i].sh_offset; codeSize = sectionHeader[i].sh_size; } } else if(sectionHeader[i].sh_type == SHT_REL) { assert(sizeof(void*) == 4 && "UNIMPLEMENTED"); // Only expected/implemented for 32-bit code for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++) { const Elf32_Rel &relocation = ((const Elf32_Rel*)(elfImage + sectionHeader[i].sh_offset))[index]; relocateSymbol(elfHeader, relocation, sectionHeader[i]); } } else if(sectionHeader[i].sh_type == SHT_RELA) { assert(sizeof(void*) == 8 && "UNIMPLEMENTED"); // Only expected/implemented for 64-bit code for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++) { const Elf64_Rela &relocation = ((const Elf64_Rela*)(elfImage + sectionHeader[i].sh_offset))[index]; relocateSymbol(elfHeader, relocation, sectionHeader[i]); } } } return entry; } template<typename T> struct ExecutableAllocator { ExecutableAllocator() {}; template<class U> ExecutableAllocator(const ExecutableAllocator<U> &other) {}; using value_type = T; using size_type = std::size_t; T *allocate(size_type n) { #if defined(_WIN32) return (T*)VirtualAlloc(NULL, sizeof(T) * n, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); #else return (T*)mmap(nullptr, sizeof(T) * n, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #endif } void deallocate(T *p, size_type n) { #if defined(_WIN32) VirtualFree(p, 0, MEM_RELEASE); #else munmap(p, sizeof(T) * n); #endif } }; class ELFMemoryStreamer : public Ice::ELFStreamer, public Routine { ELFMemoryStreamer(const ELFMemoryStreamer &) = delete; ELFMemoryStreamer &operator=(const ELFMemoryStreamer &) = delete; public: ELFMemoryStreamer() : Routine(), entry(nullptr) { position = 0; buffer.reserve(0x1000); } ~ELFMemoryStreamer() override { #if defined(_WIN32) if(buffer.size() != 0) { DWORD exeProtection; VirtualProtect(&buffer[0], buffer.size(), oldProtection, &exeProtection); } #endif } void write8(uint8_t Value) override { if(position == (uint64_t)buffer.size()) { buffer.push_back(Value); position++; } else if(position < (uint64_t)buffer.size()) { buffer[position] = Value; position++; } else assert(false && "UNIMPLEMENTED"); } void writeBytes(llvm::StringRef Bytes) override { std::size_t oldSize = buffer.size(); buffer.resize(oldSize + Bytes.size()); memcpy(&buffer[oldSize], Bytes.begin(), Bytes.size()); position += Bytes.size(); } uint64_t tell() const override { return position; } void seek(uint64_t Off) override { position = Off; } const void *getEntry() override { if(!entry) { position = std::numeric_limits<std::size_t>::max(); // Can't stream more data after this size_t codeSize = 0; entry = loadImage(&buffer[0], codeSize); #if defined(_WIN32) VirtualProtect(&buffer[0], buffer.size(), PAGE_EXECUTE_READ, &oldProtection); FlushInstructionCache(GetCurrentProcess(), NULL, 0); #else mprotect(&buffer[0], buffer.size(), PROT_READ | PROT_EXEC); __builtin___clear_cache((char*)entry, (char*)entry + codeSize); #endif } return entry; } private: void *entry; std::vector<uint8_t, ExecutableAllocator<uint8_t>> buffer; std::size_t position; #if defined(_WIN32) DWORD oldProtection; #endif }; Nucleus::Nucleus() { ::codegenMutex.lock(); // Reactor is currently not thread safe Ice::ClFlags &Flags = Ice::ClFlags::Flags; Ice::ClFlags::getParsedClFlags(Flags); #if defined(__arm__) Flags.setTargetArch(Ice::Target_ARM32); Flags.setTargetInstructionSet(Ice::ARM32InstructionSet_HWDivArm); #else // x86 Flags.setTargetArch(sizeof(void*) == 8 ? Ice::Target_X8664 : Ice::Target_X8632); Flags.setTargetInstructionSet(CPUID::SSE4_1 ? Ice::X86InstructionSet_SSE4_1 : Ice::X86InstructionSet_SSE2); #endif Flags.setOutFileType(Ice::FT_Elf); Flags.setOptLevel(Ice::Opt_2); Flags.setApplicationBinaryInterface(Ice::ABI_Platform); Flags.setVerbose(false ? Ice::IceV_Most : Ice::IceV_None); Flags.setDisableHybridAssembly(true); static llvm::raw_os_ostream cout(std::cout); static llvm::raw_os_ostream cerr(std::cerr); if(false) // Write out to a file { std::error_code errorCode; ::out = new Ice::Fdstream("out.o", errorCode, llvm::sys::fs::F_None); ::elfFile = new Ice::ELFFileStreamer(*out); ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfFile); } else { ELFMemoryStreamer *elfMemory = new ELFMemoryStreamer(); ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfMemory); ::routine = elfMemory; } } Nucleus::~Nucleus() { delete ::routine; delete ::allocator; delete ::function; delete ::context; delete ::elfFile; delete ::out; ::codegenMutex.unlock(); } Routine *Nucleus::acquireRoutine(const wchar_t *name, bool runOptimizations) { if(basicBlock->getInsts().empty() || basicBlock->getInsts().back().getKind() != Ice::Inst::Ret) { createRetVoid(); } std::wstring wideName(name); std::string asciiName(wideName.begin(), wideName.end()); ::function->setFunctionName(Ice::GlobalString::createWithString(::context, asciiName)); optimize(); ::function->translate(); assert(!::function->hasError()); auto globals = ::function->getGlobalInits(); if(globals && !globals->empty()) { ::context->getGlobals()->merge(globals.get()); } ::context->emitFileHeader(); ::function->emitIAS(); auto assembler = ::function->releaseAssembler(); auto objectWriter = ::context->getObjectWriter(); assembler->alignFunction(); objectWriter->writeFunctionCode(::function->getFunctionName(), false, assembler.get()); ::context->lowerGlobals("last"); ::context->lowerConstants(); ::context->lowerJumpTables(); objectWriter->setUndefinedSyms(::context->getConstantExternSyms()); objectWriter->writeNonUserSections(); Routine *handoffRoutine = ::routine; ::routine = nullptr; return handoffRoutine; } void Nucleus::optimize() { sw::optimize(::function); } Value *Nucleus::allocateStackVariable(Type *t, int arraySize) { Ice::Type type = T(t); int typeSize = Ice::typeWidthInBytes(type); int totalSize = typeSize * (arraySize ? arraySize : 1); auto bytes = Ice::ConstantInteger32::create(::context, type, totalSize); auto address = ::function->makeVariable(T(getPointerType(t))); auto alloca = Ice::InstAlloca::create(::function, address, bytes, typeSize); ::function->getEntryNode()->getInsts().push_front(alloca); return V(address); } BasicBlock *Nucleus::createBasicBlock() { return B(::function->makeNode()); } BasicBlock *Nucleus::getInsertBlock() { return B(::basicBlock); } void Nucleus::setInsertBlock(BasicBlock *basicBlock) { // assert(::basicBlock->getInsts().back().getTerminatorEdges().size() >= 0 && "Previous basic block must have a terminator"); ::basicBlock = basicBlock; } void Nucleus::createFunction(Type *ReturnType, std::vector<Type*> &Params) { uint32_t sequenceNumber = 0; ::function = Ice::Cfg::create(::context, sequenceNumber).release(); ::allocator = new Ice::CfgLocalAllocatorScope(::function); for(Type *type : Params) { Ice::Variable *arg = ::function->makeVariable(T(type)); ::function->addArg(arg); } Ice::CfgNode *node = ::function->makeNode(); ::function->setEntryNode(node); ::basicBlock = node; } Value *Nucleus::getArgument(unsigned int index) { return V(::function->getArgs()[index]); } void Nucleus::createRetVoid() { Ice::InstRet *ret = Ice::InstRet::create(::function); ::basicBlock->appendInst(ret); } void Nucleus::createRet(Value *v) { Ice::InstRet *ret = Ice::InstRet::create(::function, v); ::basicBlock->appendInst(ret); } void Nucleus::createBr(BasicBlock *dest) { auto br = Ice::InstBr::create(::function, dest); ::basicBlock->appendInst(br); } void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse) { auto br = Ice::InstBr::create(::function, cond, ifTrue, ifFalse); ::basicBlock->appendInst(br); } static bool isCommutative(Ice::InstArithmetic::OpKind op) { switch(op) { case Ice::InstArithmetic::Add: case Ice::InstArithmetic::Fadd: case Ice::InstArithmetic::Mul: case Ice::InstArithmetic::Fmul: case Ice::InstArithmetic::And: case Ice::InstArithmetic::Or: case Ice::InstArithmetic::Xor: return true; default: return false; } } static Value *createArithmetic(Ice::InstArithmetic::OpKind op, Value *lhs, Value *rhs) { assert(lhs->getType() == rhs->getType() || llvm::isa<Ice::Constant>(rhs)); bool swapOperands = llvm::isa<Ice::Constant>(lhs) && isCommutative(op); Ice::Variable *result = ::function->makeVariable(lhs->getType()); Ice::InstArithmetic *arithmetic = Ice::InstArithmetic::create(::function, op, result, swapOperands ? rhs : lhs, swapOperands ? lhs : rhs); ::basicBlock->appendInst(arithmetic); return V(result); } Value *Nucleus::createAdd(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Add, lhs, rhs); } Value *Nucleus::createSub(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Sub, lhs, rhs); } Value *Nucleus::createMul(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Mul, lhs, rhs); } Value *Nucleus::createUDiv(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Udiv, lhs, rhs); } Value *Nucleus::createSDiv(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Sdiv, lhs, rhs); } Value *Nucleus::createFAdd(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Fadd, lhs, rhs); } Value *Nucleus::createFSub(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Fsub, lhs, rhs); } Value *Nucleus::createFMul(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Fmul, lhs, rhs); } Value *Nucleus::createFDiv(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Fdiv, lhs, rhs); } Value *Nucleus::createURem(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Urem, lhs, rhs); } Value *Nucleus::createSRem(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Srem, lhs, rhs); } Value *Nucleus::createFRem(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Frem, lhs, rhs); } Value *Nucleus::createShl(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Shl, lhs, rhs); } Value *Nucleus::createLShr(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Lshr, lhs, rhs); } Value *Nucleus::createAShr(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Ashr, lhs, rhs); } Value *Nucleus::createAnd(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::And, lhs, rhs); } Value *Nucleus::createOr(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Or, lhs, rhs); } Value *Nucleus::createXor(Value *lhs, Value *rhs) { return createArithmetic(Ice::InstArithmetic::Xor, lhs, rhs); } Value *Nucleus::createNeg(Value *v) { return createSub(createNullValue(T(v->getType())), v); } Value *Nucleus::createFNeg(Value *v) { double c[4] = {-0.0, -0.0, -0.0, -0.0}; Value *negativeZero = Ice::isVectorType(v->getType()) ? createConstantVector(c, T(v->getType())) : V(::context->getConstantFloat(-0.0f)); return createFSub(negativeZero, v); } Value *Nucleus::createNot(Value *v) { if(Ice::isScalarIntegerType(v->getType())) { return createXor(v, V(::context->getConstantInt(v->getType(), -1))); } else // Vector { int64_t c[16] = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; return createXor(v, createConstantVector(c, T(v->getType()))); } } Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int align) { int valueType = (int)reinterpret_cast<intptr_t>(type); Ice::Variable *result = ::function->makeVariable(T(type)); if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack. { if(emulateIntrinsics) { if(typeSize(type) == 4) { auto pointer = RValue<Pointer<Byte>>(ptr); Int x = *Pointer<Int>(pointer); Int4 vector; vector = Insert(vector, x, 0); auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue()); ::basicBlock->appendInst(bitcast); } else if(typeSize(type) == 8) { auto pointer = RValue<Pointer<Byte>>(ptr); Int x = *Pointer<Int>(pointer); Int y = *Pointer<Int>(pointer + 4); Int4 vector; vector = Insert(vector, x, 0); vector = Insert(vector, y, 1); auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue()); ::basicBlock->appendInst(bitcast); } else assert(false); } else { const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::LoadSubVector, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto load = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); load->addArg(ptr); load->addArg(::context->getConstantInt32(typeSize(type))); ::basicBlock->appendInst(load); } } else { auto load = Ice::InstLoad::create(::function, result, ptr, align); ::basicBlock->appendInst(load); } return V(result); } Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int align) { int valueType = (int)reinterpret_cast<intptr_t>(type); if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack. { if(emulateIntrinsics) { if(typeSize(type) == 4) { Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32); auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value); ::basicBlock->appendInst(bitcast); RValue<Int4> v(V(vector)); auto pointer = RValue<Pointer<Byte>>(ptr); Int x = Extract(v, 0); *Pointer<Int>(pointer) = x; } else if(typeSize(type) == 8) { Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32); auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value); ::basicBlock->appendInst(bitcast); RValue<Int4> v(V(vector)); auto pointer = RValue<Pointer<Byte>>(ptr); Int x = Extract(v, 0); *Pointer<Int>(pointer) = x; Int y = Extract(v, 1); *Pointer<Int>(pointer + 4) = y; } else assert(false); } else { const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::StoreSubVector, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto store = Ice::InstIntrinsicCall::create(::function, 3, nullptr, target, intrinsic); store->addArg(value); store->addArg(ptr); store->addArg(::context->getConstantInt32(typeSize(type))); ::basicBlock->appendInst(store); } } else { assert(value->getType() == T(type)); auto store = Ice::InstStore::create(::function, value, ptr, align); ::basicBlock->appendInst(store); } return value; } Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex) { assert(index->getType() == Ice::IceType_i32); if(auto *constant = llvm::dyn_cast<Ice::ConstantInteger32>(index)) { int32_t offset = constant->getValue() * (int)typeSize(type); if(offset == 0) { return ptr; } return createAdd(ptr, createConstantInt(offset)); } if(!Ice::isByteSizedType(T(type))) { index = createMul(index, createConstantInt((int)typeSize(type))); } if(sizeof(void*) == 8) { if(unsignedIndex) { index = createZExt(index, T(Ice::IceType_i64)); } else { index = createSExt(index, T(Ice::IceType_i64)); } } return createAdd(ptr, index); } Value *Nucleus::createAtomicAdd(Value *ptr, Value *value) { assert(false && "UNIMPLEMENTED"); return nullptr; } static Value *createCast(Ice::InstCast::OpKind op, Value *v, Type *destType) { if(v->getType() == T(destType)) { return v; } Ice::Variable *result = ::function->makeVariable(T(destType)); Ice::InstCast *cast = Ice::InstCast::create(::function, op, result, v); ::basicBlock->appendInst(cast); return V(result); } Value *Nucleus::createTrunc(Value *v, Type *destType) { return createCast(Ice::InstCast::Trunc, v, destType); } Value *Nucleus::createZExt(Value *v, Type *destType) { return createCast(Ice::InstCast::Zext, v, destType); } Value *Nucleus::createSExt(Value *v, Type *destType) { return createCast(Ice::InstCast::Sext, v, destType); } Value *Nucleus::createFPToSI(Value *v, Type *destType) { return createCast(Ice::InstCast::Fptosi, v, destType); } Value *Nucleus::createSIToFP(Value *v, Type *destType) { return createCast(Ice::InstCast::Sitofp, v, destType); } Value *Nucleus::createFPTrunc(Value *v, Type *destType) { return createCast(Ice::InstCast::Fptrunc, v, destType); } Value *Nucleus::createFPExt(Value *v, Type *destType) { return createCast(Ice::InstCast::Fpext, v, destType); } Value *Nucleus::createBitCast(Value *v, Type *destType) { // Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need // support for casting between scalars and wide vectors. For platforms where this is not supported, // emulate them by writing to the stack and reading back as the destination type. if(emulateMismatchedBitCast) { if(!Ice::isVectorType(v->getType()) && Ice::isVectorType(T(destType))) { Value *address = allocateStackVariable(destType); createStore(v, address, T(v->getType())); return createLoad(address, destType); } else if(Ice::isVectorType(v->getType()) && !Ice::isVectorType(T(destType))) { Value *address = allocateStackVariable(T(v->getType())); createStore(v, address, T(v->getType())); return createLoad(address, destType); } } return createCast(Ice::InstCast::Bitcast, v, destType); } static Value *createIntCompare(Ice::InstIcmp::ICond condition, Value *lhs, Value *rhs) { assert(lhs->getType() == rhs->getType()); auto result = ::function->makeVariable(Ice::isScalarIntegerType(lhs->getType()) ? Ice::IceType_i1 : lhs->getType()); auto cmp = Ice::InstIcmp::create(::function, condition, result, lhs, rhs); ::basicBlock->appendInst(cmp); return V(result); } Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Eq, lhs, rhs); } Value *Nucleus::createICmpNE(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Ne, lhs, rhs); } Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Ugt, lhs, rhs); } Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Uge, lhs, rhs); } Value *Nucleus::createICmpULT(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Ult, lhs, rhs); } Value *Nucleus::createICmpULE(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Ule, lhs, rhs); } Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Sgt, lhs, rhs); } Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Sge, lhs, rhs); } Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Slt, lhs, rhs); } Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs) { return createIntCompare(Ice::InstIcmp::Sle, lhs, rhs); } static Value *createFloatCompare(Ice::InstFcmp::FCond condition, Value *lhs, Value *rhs) { assert(lhs->getType() == rhs->getType()); assert(Ice::isScalarFloatingType(lhs->getType()) || lhs->getType() == Ice::IceType_v4f32); auto result = ::function->makeVariable(Ice::isScalarFloatingType(lhs->getType()) ? Ice::IceType_i1 : Ice::IceType_v4i32); auto cmp = Ice::InstFcmp::create(::function, condition, result, lhs, rhs); ::basicBlock->appendInst(cmp); return V(result); } Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Oeq, lhs, rhs); } Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Ogt, lhs, rhs); } Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Oge, lhs, rhs); } Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Olt, lhs, rhs); } Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Ole, lhs, rhs); } Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::One, lhs, rhs); } Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Ord, lhs, rhs); } Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Uno, lhs, rhs); } Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Ueq, lhs, rhs); } Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Ugt, lhs, rhs); } Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Uge, lhs, rhs); } Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Ult, lhs, rhs); } Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Ule, lhs, rhs); } Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs) { return createFloatCompare(Ice::InstFcmp::Une, lhs, rhs); } Value *Nucleus::createExtractElement(Value *vector, Type *type, int index) { auto result = ::function->makeVariable(T(type)); auto extract = Ice::InstExtractElement::create(::function, result, vector, ::context->getConstantInt32(index)); ::basicBlock->appendInst(extract); return V(result); } Value *Nucleus::createInsertElement(Value *vector, Value *element, int index) { auto result = ::function->makeVariable(vector->getType()); auto insert = Ice::InstInsertElement::create(::function, result, vector, element, ::context->getConstantInt32(index)); ::basicBlock->appendInst(insert); return V(result); } Value *Nucleus::createShuffleVector(Value *V1, Value *V2, const int *select) { assert(V1->getType() == V2->getType()); int size = Ice::typeNumElements(V1->getType()); auto result = ::function->makeVariable(V1->getType()); auto shuffle = Ice::InstShuffleVector::create(::function, result, V1, V2); for(int i = 0; i < size; i++) { shuffle->addIndex(llvm::cast<Ice::ConstantInteger32>(::context->getConstantInt32(select[i]))); } ::basicBlock->appendInst(shuffle); return V(result); } Value *Nucleus::createSelect(Value *C, Value *ifTrue, Value *ifFalse) { assert(ifTrue->getType() == ifFalse->getType()); auto result = ::function->makeVariable(ifTrue->getType()); auto *select = Ice::InstSelect::create(::function, result, C, ifTrue, ifFalse); ::basicBlock->appendInst(select); return V(result); } SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases) { auto switchInst = Ice::InstSwitch::create(::function, numCases, control, defaultBranch); ::basicBlock->appendInst(switchInst); return reinterpret_cast<SwitchCases*>(switchInst); } void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch) { switchCases->addBranch(label, label, branch); } void Nucleus::createUnreachable() { Ice::InstUnreachable *unreachable = Ice::InstUnreachable::create(::function); ::basicBlock->appendInst(unreachable); } static Value *createSwizzle4(Value *val, unsigned char select) { int swizzle[4] = { (select >> 0) & 0x03, (select >> 2) & 0x03, (select >> 4) & 0x03, (select >> 6) & 0x03, }; return Nucleus::createShuffleVector(val, val, swizzle); } static Value *createMask4(Value *lhs, Value *rhs, unsigned char select) { int64_t mask[4] = {0, 0, 0, 0}; mask[(select >> 0) & 0x03] = -1; mask[(select >> 2) & 0x03] = -1; mask[(select >> 4) & 0x03] = -1; mask[(select >> 6) & 0x03] = -1; Value *condition = Nucleus::createConstantVector(mask, T(Ice::IceType_v4i1)); Value *result = Nucleus::createSelect(condition, rhs, lhs); return result; } Type *Nucleus::getPointerType(Type *ElementType) { if(sizeof(void*) == 8) { return T(Ice::IceType_i64); } else { return T(Ice::IceType_i32); } } Value *Nucleus::createNullValue(Type *Ty) { if(Ice::isVectorType(T(Ty))) { assert(Ice::typeNumElements(T(Ty)) <= 16); int64_t c[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; return createConstantVector(c, Ty); } else { return V(::context->getConstantZero(T(Ty))); } } Value *Nucleus::createConstantLong(int64_t i) { return V(::context->getConstantInt64(i)); } Value *Nucleus::createConstantInt(int i) { return V(::context->getConstantInt32(i)); } Value *Nucleus::createConstantInt(unsigned int i) { return V(::context->getConstantInt32(i)); } Value *Nucleus::createConstantBool(bool b) { return V(::context->getConstantInt1(b)); } Value *Nucleus::createConstantByte(signed char i) { return V(::context->getConstantInt8(i)); } Value *Nucleus::createConstantByte(unsigned char i) { return V(::context->getConstantInt8(i)); } Value *Nucleus::createConstantShort(short i) { return V(::context->getConstantInt16(i)); } Value *Nucleus::createConstantShort(unsigned short i) { return V(::context->getConstantInt16(i)); } Value *Nucleus::createConstantFloat(float x) { return V(::context->getConstantFloat(x)); } Value *Nucleus::createNullPointer(Type *Ty) { return createNullValue(T(sizeof(void*) == 8 ? Ice::IceType_i64 : Ice::IceType_i32)); } Value *Nucleus::createConstantVector(const int64_t *constants, Type *type) { const int vectorSize = 16; assert(Ice::typeWidthInBytes(T(type)) == vectorSize); const int alignment = vectorSize; auto globalPool = ::function->getGlobalPool(); const int64_t *i = constants; const double *f = reinterpret_cast<const double*>(constants); Ice::VariableDeclaration::DataInitializer *dataInitializer = nullptr; switch((int)reinterpret_cast<intptr_t>(type)) { case Ice::IceType_v4i32: case Ice::IceType_v4i1: { const int initializer[4] = {(int)i[0], (int)i[1], (int)i[2], (int)i[3]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Ice::IceType_v4f32: { const float initializer[4] = {(float)f[0], (float)f[1], (float)f[2], (float)f[3]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Ice::IceType_v8i16: case Ice::IceType_v8i1: { const short initializer[8] = {(short)i[0], (short)i[1], (short)i[2], (short)i[3], (short)i[4], (short)i[5], (short)i[6], (short)i[7]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Ice::IceType_v16i8: case Ice::IceType_v16i1: { const char initializer[16] = {(char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7], (char)i[8], (char)i[9], (char)i[10], (char)i[11], (char)i[12], (char)i[13], (char)i[14], (char)i[15]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Type_v2i32: { const int initializer[4] = {(int)i[0], (int)i[1], (int)i[0], (int)i[1]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Type_v2f32: { const float initializer[4] = {(float)f[0], (float)f[1], (float)f[0], (float)f[1]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Type_v4i16: { const short initializer[8] = {(short)i[0], (short)i[1], (short)i[2], (short)i[3], (short)i[0], (short)i[1], (short)i[2], (short)i[3]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Type_v8i8: { const char initializer[16] = {(char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; case Type_v4i8: { const char initializer[16] = {(char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3]}; static_assert(sizeof(initializer) == vectorSize, "!"); dataInitializer = Ice::VariableDeclaration::DataInitializer::create(globalPool, (const char*)initializer, vectorSize); } break; default: assert(false && "Unknown constant vector type" && type); } auto name = Ice::GlobalString::createWithoutString(::context); auto *variableDeclaration = Ice::VariableDeclaration::create(globalPool); variableDeclaration->setName(name); variableDeclaration->setAlignment(alignment); variableDeclaration->setIsConstant(true); variableDeclaration->addInitializer(dataInitializer); ::function->addGlobal(variableDeclaration); constexpr int32_t offset = 0; Ice::Operand *ptr = ::context->getConstantSym(offset, name); Ice::Variable *result = ::function->makeVariable(T(type)); auto load = Ice::InstLoad::create(::function, result, ptr, alignment); ::basicBlock->appendInst(load); return V(result); } Value *Nucleus::createConstantVector(const double *constants, Type *type) { return createConstantVector((const int64_t*)constants, type); } Type *Void::getType() { return T(Ice::IceType_void); } Bool::Bool(Argument<Bool> argument) { storeValue(argument.value); } Bool::Bool(bool x) { storeValue(Nucleus::createConstantBool(x)); } Bool::Bool(RValue<Bool> rhs) { storeValue(rhs.value); } Bool::Bool(const Bool &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Bool::Bool(const Reference<Bool> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Bool> Bool::operator=(RValue<Bool> rhs) { storeValue(rhs.value); return rhs; } RValue<Bool> Bool::operator=(const Bool &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Bool>(value); } RValue<Bool> Bool::operator=(const Reference<Bool> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Bool>(value); } RValue<Bool> operator!(RValue<Bool> val) { return RValue<Bool>(Nucleus::createNot(val.value)); } RValue<Bool> operator&&(RValue<Bool> lhs, RValue<Bool> rhs) { return RValue<Bool>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Bool> operator||(RValue<Bool> lhs, RValue<Bool> rhs) { return RValue<Bool>(Nucleus::createOr(lhs.value, rhs.value)); } Type *Bool::getType() { return T(Ice::IceType_i1); } Byte::Byte(Argument<Byte> argument) { storeValue(argument.value); } Byte::Byte(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, Byte::getType()); storeValue(integer); } Byte::Byte(RValue<UInt> cast) { Value *integer = Nucleus::createTrunc(cast.value, Byte::getType()); storeValue(integer); } Byte::Byte(RValue<UShort> cast) { Value *integer = Nucleus::createTrunc(cast.value, Byte::getType()); storeValue(integer); } Byte::Byte(int x) { storeValue(Nucleus::createConstantByte((unsigned char)x)); } Byte::Byte(unsigned char x) { storeValue(Nucleus::createConstantByte(x)); } Byte::Byte(RValue<Byte> rhs) { storeValue(rhs.value); } Byte::Byte(const Byte &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Byte::Byte(const Reference<Byte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Byte> Byte::operator=(RValue<Byte> rhs) { storeValue(rhs.value); return rhs; } RValue<Byte> Byte::operator=(const Byte &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte>(value); } RValue<Byte> Byte::operator=(const Reference<Byte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte>(value); } RValue<Byte> operator+(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Byte> operator-(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Byte> operator*(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Byte> operator/(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<Byte> operator%(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<Byte> operator&(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Byte> operator|(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Byte> operator^(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Byte> operator<<(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Byte> operator>>(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<Byte> operator+=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs + rhs; } RValue<Byte> operator-=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs - rhs; } RValue<Byte> operator*=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs * rhs; } RValue<Byte> operator/=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs / rhs; } RValue<Byte> operator%=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs % rhs; } RValue<Byte> operator&=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs & rhs; } RValue<Byte> operator|=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs | rhs; } RValue<Byte> operator^=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs ^ rhs; } RValue<Byte> operator<<=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs << rhs; } RValue<Byte> operator>>=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs >> rhs; } RValue<Byte> operator+(RValue<Byte> val) { return val; } RValue<Byte> operator-(RValue<Byte> val) { return RValue<Byte>(Nucleus::createNeg(val.value)); } RValue<Byte> operator~(RValue<Byte> val) { return RValue<Byte>(Nucleus::createNot(val.value)); } RValue<Byte> operator++(Byte &val, int) // Post-increment { RValue<Byte> res = val; val += Byte(1); return res; } const Byte &operator++(Byte &val) // Pre-increment { val += Byte(1); return val; } RValue<Byte> operator--(Byte &val, int) // Post-decrement { RValue<Byte> res = val; val -= Byte(1); return res; } const Byte &operator--(Byte &val) // Pre-decrement { val -= Byte(1); return val; } RValue<Bool> operator<(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *Byte::getType() { return T(Ice::IceType_i8); } SByte::SByte(Argument<SByte> argument) { storeValue(argument.value); } SByte::SByte(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, SByte::getType()); storeValue(integer); } SByte::SByte(RValue<Short> cast) { Value *integer = Nucleus::createTrunc(cast.value, SByte::getType()); storeValue(integer); } SByte::SByte(signed char x) { storeValue(Nucleus::createConstantByte(x)); } SByte::SByte(RValue<SByte> rhs) { storeValue(rhs.value); } SByte::SByte(const SByte &rhs) { Value *value = rhs.loadValue(); storeValue(value); } SByte::SByte(const Reference<SByte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<SByte> SByte::operator=(RValue<SByte> rhs) { storeValue(rhs.value); return rhs; } RValue<SByte> SByte::operator=(const SByte &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte>(value); } RValue<SByte> SByte::operator=(const Reference<SByte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte>(value); } RValue<SByte> operator+(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<SByte> operator-(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<SByte> operator*(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<SByte> operator/(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<SByte> operator%(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<SByte> operator&(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<SByte> operator|(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<SByte> operator^(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<SByte> operator<<(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<SByte> operator>>(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<SByte> operator+=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs + rhs; } RValue<SByte> operator-=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs - rhs; } RValue<SByte> operator*=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs * rhs; } RValue<SByte> operator/=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs / rhs; } RValue<SByte> operator%=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs % rhs; } RValue<SByte> operator&=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs & rhs; } RValue<SByte> operator|=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs | rhs; } RValue<SByte> operator^=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs ^ rhs; } RValue<SByte> operator<<=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs << rhs; } RValue<SByte> operator>>=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs >> rhs; } RValue<SByte> operator+(RValue<SByte> val) { return val; } RValue<SByte> operator-(RValue<SByte> val) { return RValue<SByte>(Nucleus::createNeg(val.value)); } RValue<SByte> operator~(RValue<SByte> val) { return RValue<SByte>(Nucleus::createNot(val.value)); } RValue<SByte> operator++(SByte &val, int) // Post-increment { RValue<SByte> res = val; val += SByte(1); return res; } const SByte &operator++(SByte &val) // Pre-increment { val += SByte(1); return val; } RValue<SByte> operator--(SByte &val, int) // Post-decrement { RValue<SByte> res = val; val -= SByte(1); return res; } const SByte &operator--(SByte &val) // Pre-decrement { val -= SByte(1); return val; } RValue<Bool> operator<(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *SByte::getType() { return T(Ice::IceType_i8); } Short::Short(Argument<Short> argument) { storeValue(argument.value); } Short::Short(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, Short::getType()); storeValue(integer); } Short::Short(short x) { storeValue(Nucleus::createConstantShort(x)); } Short::Short(RValue<Short> rhs) { storeValue(rhs.value); } Short::Short(const Short &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short::Short(const Reference<Short> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Short> Short::operator=(RValue<Short> rhs) { storeValue(rhs.value); return rhs; } RValue<Short> Short::operator=(const Short &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short>(value); } RValue<Short> Short::operator=(const Reference<Short> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short>(value); } RValue<Short> operator+(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Short> operator-(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Short> operator*(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Short> operator/(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<Short> operator%(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<Short> operator&(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Short> operator|(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Short> operator^(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Short> operator<<(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Short> operator>>(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<Short> operator+=(Short &lhs, RValue<Short> rhs) { return lhs = lhs + rhs; } RValue<Short> operator-=(Short &lhs, RValue<Short> rhs) { return lhs = lhs - rhs; } RValue<Short> operator*=(Short &lhs, RValue<Short> rhs) { return lhs = lhs * rhs; } RValue<Short> operator/=(Short &lhs, RValue<Short> rhs) { return lhs = lhs / rhs; } RValue<Short> operator%=(Short &lhs, RValue<Short> rhs) { return lhs = lhs % rhs; } RValue<Short> operator&=(Short &lhs, RValue<Short> rhs) { return lhs = lhs & rhs; } RValue<Short> operator|=(Short &lhs, RValue<Short> rhs) { return lhs = lhs | rhs; } RValue<Short> operator^=(Short &lhs, RValue<Short> rhs) { return lhs = lhs ^ rhs; } RValue<Short> operator<<=(Short &lhs, RValue<Short> rhs) { return lhs = lhs << rhs; } RValue<Short> operator>>=(Short &lhs, RValue<Short> rhs) { return lhs = lhs >> rhs; } RValue<Short> operator+(RValue<Short> val) { return val; } RValue<Short> operator-(RValue<Short> val) { return RValue<Short>(Nucleus::createNeg(val.value)); } RValue<Short> operator~(RValue<Short> val) { return RValue<Short>(Nucleus::createNot(val.value)); } RValue<Short> operator++(Short &val, int) // Post-increment { RValue<Short> res = val; val += Short(1); return res; } const Short &operator++(Short &val) // Pre-increment { val += Short(1); return val; } RValue<Short> operator--(Short &val, int) // Post-decrement { RValue<Short> res = val; val -= Short(1); return res; } const Short &operator--(Short &val) // Pre-decrement { val -= Short(1); return val; } RValue<Bool> operator<(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *Short::getType() { return T(Ice::IceType_i16); } UShort::UShort(Argument<UShort> argument) { storeValue(argument.value); } UShort::UShort(RValue<UInt> cast) { Value *integer = Nucleus::createTrunc(cast.value, UShort::getType()); storeValue(integer); } UShort::UShort(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, UShort::getType()); storeValue(integer); } UShort::UShort(unsigned short x) { storeValue(Nucleus::createConstantShort(x)); } UShort::UShort(RValue<UShort> rhs) { storeValue(rhs.value); } UShort::UShort(const UShort &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort::UShort(const Reference<UShort> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UShort> UShort::operator=(RValue<UShort> rhs) { storeValue(rhs.value); return rhs; } RValue<UShort> UShort::operator=(const UShort &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort>(value); } RValue<UShort> UShort::operator=(const Reference<UShort> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort>(value); } RValue<UShort> operator+(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UShort> operator-(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UShort> operator*(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UShort> operator/(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<UShort> operator%(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<UShort> operator&(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UShort> operator|(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UShort> operator^(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UShort> operator<<(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<UShort> operator>>(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<UShort> operator+=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs + rhs; } RValue<UShort> operator-=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs - rhs; } RValue<UShort> operator*=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs * rhs; } RValue<UShort> operator/=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs / rhs; } RValue<UShort> operator%=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs % rhs; } RValue<UShort> operator&=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs & rhs; } RValue<UShort> operator|=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs | rhs; } RValue<UShort> operator^=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs ^ rhs; } RValue<UShort> operator<<=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs << rhs; } RValue<UShort> operator>>=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs >> rhs; } RValue<UShort> operator+(RValue<UShort> val) { return val; } RValue<UShort> operator-(RValue<UShort> val) { return RValue<UShort>(Nucleus::createNeg(val.value)); } RValue<UShort> operator~(RValue<UShort> val) { return RValue<UShort>(Nucleus::createNot(val.value)); } RValue<UShort> operator++(UShort &val, int) // Post-increment { RValue<UShort> res = val; val += UShort(1); return res; } const UShort &operator++(UShort &val) // Pre-increment { val += UShort(1); return val; } RValue<UShort> operator--(UShort &val, int) // Post-decrement { RValue<UShort> res = val; val -= UShort(1); return res; } const UShort &operator--(UShort &val) // Pre-decrement { val -= UShort(1); return val; } RValue<Bool> operator<(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *UShort::getType() { return T(Ice::IceType_i16); } Byte4::Byte4(RValue<Byte8> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Byte4::Byte4(const Reference<Byte4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Type *Byte4::getType() { return T(Type_v4i8); } Type *SByte4::getType() { return T(Type_v4i8); } Byte8::Byte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7) { int64_t constantVector[8] = {x0, x1, x2, x3, x4, x5, x6, x7}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Byte8::Byte8(RValue<Byte8> rhs) { storeValue(rhs.value); } Byte8::Byte8(const Byte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Byte8::Byte8(const Reference<Byte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Byte8> Byte8::operator=(RValue<Byte8> rhs) { storeValue(rhs.value); return rhs; } RValue<Byte8> Byte8::operator=(const Byte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte8>(value); } RValue<Byte8> Byte8::operator=(const Reference<Byte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte8>(value); } RValue<Byte8> operator+(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Byte8> operator-(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<Byte8> operator*(RValue<Byte8> lhs, RValue<Byte8> rhs) // { // return RValue<Byte8>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<Byte8> operator/(RValue<Byte8> lhs, RValue<Byte8> rhs) // { // return RValue<Byte8>(Nucleus::createUDiv(lhs.value, rhs.value)); // } // RValue<Byte8> operator%(RValue<Byte8> lhs, RValue<Byte8> rhs) // { // return RValue<Byte8>(Nucleus::createURem(lhs.value, rhs.value)); // } RValue<Byte8> operator&(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Byte8> operator|(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Byte8> operator^(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createXor(lhs.value, rhs.value)); } // RValue<Byte8> operator<<(RValue<Byte8> lhs, unsigned char rhs) // { // return RValue<Byte8>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); // } // RValue<Byte8> operator>>(RValue<Byte8> lhs, unsigned char rhs) // { // return RValue<Byte8>(Nucleus::createLShr(lhs.value, V(::context->getConstantInt32(rhs)))); // } RValue<Byte8> operator+=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs + rhs; } RValue<Byte8> operator-=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs - rhs; } // RValue<Byte8> operator*=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs * rhs; // } // RValue<Byte8> operator/=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs / rhs; // } // RValue<Byte8> operator%=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs % rhs; // } RValue<Byte8> operator&=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs & rhs; } RValue<Byte8> operator|=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs | rhs; } RValue<Byte8> operator^=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs ^ rhs; } // RValue<Byte8> operator<<=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs << rhs; // } // RValue<Byte8> operator>>=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs >> rhs; // } // RValue<Byte8> operator+(RValue<Byte8> val) // { // return val; // } // RValue<Byte8> operator-(RValue<Byte8> val) // { // return RValue<Byte8>(Nucleus::createNeg(val.value)); // } RValue<Byte8> operator~(RValue<Byte8> val) { return RValue<Byte8>(Nucleus::createNot(val.value)); } RValue<Byte> Extract(RValue<Byte8> val, int i) { return RValue<Byte>(Nucleus::createExtractElement(val.value, Byte::getType(), i)); } RValue<Byte8> Insert(RValue<Byte8> val, RValue<Byte> element, int i) { return RValue<Byte8>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<Byte> SaturateUnsigned(RValue<Short> x) { return Byte(IfThenElse(Int(x) > 0xFF, Int(0xFF), IfThenElse(Int(x) < 0, Int(0), Int(x)))); } RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y) { if(emulateIntrinsics) { Byte8 result; result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 0)) + Int(Extract(y, 0)))), 0); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 1)) + Int(Extract(y, 1)))), 1); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 2)) + Int(Extract(y, 2)))), 2); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 3)) + Int(Extract(y, 3)))), 3); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 4)) + Int(Extract(y, 4)))), 4); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 5)) + Int(Extract(y, 5)))), 5); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 6)) + Int(Extract(y, 6)))), 6); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 7)) + Int(Extract(y, 7)))), 7); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto paddusb = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); paddusb->addArg(x.value); paddusb->addArg(y.value); ::basicBlock->appendInst(paddusb); return RValue<Byte8>(V(result)); } } RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y) { if(emulateIntrinsics) { Byte8 result; result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 0)) - Int(Extract(y, 0)))), 0); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 1)) - Int(Extract(y, 1)))), 1); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 2)) - Int(Extract(y, 2)))), 2); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 3)) - Int(Extract(y, 3)))), 3); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 4)) - Int(Extract(y, 4)))), 4); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 5)) - Int(Extract(y, 5)))), 5); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 6)) - Int(Extract(y, 6)))), 6); result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 7)) - Int(Extract(y, 7)))), 7); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto psubusw = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); psubusw->addArg(x.value); psubusw->addArg(y.value); ::basicBlock->appendInst(psubusw); return RValue<Byte8>(V(result)); } } RValue<Short4> Unpack(RValue<Byte4> x) { int shuffle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}; // Real type is v16i8 return As<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle)); } RValue<Short4> Unpack(RValue<Byte4> x, RValue<Byte4> y) { return UnpackLow(As<Byte8>(x), As<Byte8>(y)); } RValue<Short4> UnpackLow(RValue<Byte8> x, RValue<Byte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Short4> UnpackHigh(RValue<Byte8> x, RValue<Byte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE)); } RValue<SByte> Extract(RValue<SByte8> val, int i) { return RValue<SByte>(Nucleus::createExtractElement(val.value, SByte::getType(), i)); } RValue<SByte8> Insert(RValue<SByte8> val, RValue<SByte> element, int i) { return RValue<SByte8>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs) { if(emulateIntrinsics) { SByte8 result; result = Insert(result, Extract(lhs, 0) >> SByte(rhs), 0); result = Insert(result, Extract(lhs, 1) >> SByte(rhs), 1); result = Insert(result, Extract(lhs, 2) >> SByte(rhs), 2); result = Insert(result, Extract(lhs, 3) >> SByte(rhs), 3); result = Insert(result, Extract(lhs, 4) >> SByte(rhs), 4); result = Insert(result, Extract(lhs, 5) >> SByte(rhs), 5); result = Insert(result, Extract(lhs, 6) >> SByte(rhs), 6); result = Insert(result, Extract(lhs, 7) >> SByte(rhs), 7); return result; } else { #if defined(__i386__) || defined(__x86_64__) // SSE2 doesn't support byte vector shifts, so shift as shorts and recombine. RValue<Short4> hi = (As<Short4>(lhs) >> rhs) & Short4(0xFF00u); RValue<Short4> lo = As<Short4>(As<UShort4>((As<Short4>(lhs) << 8) >> rhs) >> 8); return As<SByte8>(hi | lo); #else return RValue<SByte8>(Nucleus::createAShr(lhs.value, V(::context->getConstantInt32(rhs)))); #endif } } RValue<Int> SignMask(RValue<Byte8> x) { if(emulateIntrinsics || CPUID::ARM) { Byte8 xx = As<Byte8>(As<SByte8>(x) >> 7) & Byte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80); return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7)); } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto movmsk = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); movmsk->addArg(x.value); ::basicBlock->appendInst(movmsk); return RValue<Int>(V(result)) & 0xFF; } } // RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y) // { // return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Ugt, x.value, y.value)); // } RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y) { return RValue<Byte8>(Nucleus::createICmpEQ(x.value, y.value)); } Type *Byte8::getType() { return T(Type_v8i8); } SByte8::SByte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7) { int64_t constantVector[8] = { x0, x1, x2, x3, x4, x5, x6, x7 }; Value *vector = V(Nucleus::createConstantVector(constantVector, getType())); storeValue(Nucleus::createBitCast(vector, getType())); } SByte8::SByte8(RValue<SByte8> rhs) { storeValue(rhs.value); } SByte8::SByte8(const SByte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } SByte8::SByte8(const Reference<SByte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<SByte8> SByte8::operator=(RValue<SByte8> rhs) { storeValue(rhs.value); return rhs; } RValue<SByte8> SByte8::operator=(const SByte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte8>(value); } RValue<SByte8> SByte8::operator=(const Reference<SByte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte8>(value); } RValue<SByte8> operator+(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<SByte8> operator-(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<SByte8> operator*(RValue<SByte8> lhs, RValue<SByte8> rhs) // { // return RValue<SByte8>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<SByte8> operator/(RValue<SByte8> lhs, RValue<SByte8> rhs) // { // return RValue<SByte8>(Nucleus::createSDiv(lhs.value, rhs.value)); // } // RValue<SByte8> operator%(RValue<SByte8> lhs, RValue<SByte8> rhs) // { // return RValue<SByte8>(Nucleus::createSRem(lhs.value, rhs.value)); // } RValue<SByte8> operator&(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<SByte8> operator|(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<SByte8> operator^(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createXor(lhs.value, rhs.value)); } // RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs) // { // return RValue<SByte8>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); // } // RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs) // { // return RValue<SByte8>(Nucleus::createAShr(lhs.value, V(::context->getConstantInt32(rhs)))); // } RValue<SByte8> operator+=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs + rhs; } RValue<SByte8> operator-=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs - rhs; } // RValue<SByte8> operator*=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs * rhs; // } // RValue<SByte8> operator/=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs / rhs; // } // RValue<SByte8> operator%=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs % rhs; // } RValue<SByte8> operator&=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs & rhs; } RValue<SByte8> operator|=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs | rhs; } RValue<SByte8> operator^=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs ^ rhs; } // RValue<SByte8> operator<<=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs << rhs; // } // RValue<SByte8> operator>>=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs >> rhs; // } // RValue<SByte8> operator+(RValue<SByte8> val) // { // return val; // } // RValue<SByte8> operator-(RValue<SByte8> val) // { // return RValue<SByte8>(Nucleus::createNeg(val.value)); // } RValue<SByte8> operator~(RValue<SByte8> val) { return RValue<SByte8>(Nucleus::createNot(val.value)); } RValue<SByte> SaturateSigned(RValue<Short> x) { return SByte(IfThenElse(Int(x) > 0x7F, Int(0x7F), IfThenElse(Int(x) < -0x80, Int(0x80), Int(x)))); } RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y) { if(emulateIntrinsics) { SByte8 result; result = Insert(result, SaturateSigned(Short(Int(Extract(x, 0)) + Int(Extract(y, 0)))), 0); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 1)) + Int(Extract(y, 1)))), 1); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 2)) + Int(Extract(y, 2)))), 2); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 3)) + Int(Extract(y, 3)))), 3); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 4)) + Int(Extract(y, 4)))), 4); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 5)) + Int(Extract(y, 5)))), 5); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 6)) + Int(Extract(y, 6)))), 6); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 7)) + Int(Extract(y, 7)))), 7); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto paddsb = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); paddsb->addArg(x.value); paddsb->addArg(y.value); ::basicBlock->appendInst(paddsb); return RValue<SByte8>(V(result)); } } RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y) { if(emulateIntrinsics) { SByte8 result; result = Insert(result, SaturateSigned(Short(Int(Extract(x, 0)) - Int(Extract(y, 0)))), 0); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 1)) - Int(Extract(y, 1)))), 1); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 2)) - Int(Extract(y, 2)))), 2); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 3)) - Int(Extract(y, 3)))), 3); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 4)) - Int(Extract(y, 4)))), 4); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 5)) - Int(Extract(y, 5)))), 5); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 6)) - Int(Extract(y, 6)))), 6); result = Insert(result, SaturateSigned(Short(Int(Extract(x, 7)) - Int(Extract(y, 7)))), 7); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto psubsb = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); psubsb->addArg(x.value); psubsb->addArg(y.value); ::basicBlock->appendInst(psubsb); return RValue<SByte8>(V(result)); } } RValue<Short4> UnpackLow(RValue<SByte8> x, RValue<SByte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Short4> UnpackHigh(RValue<SByte8> x, RValue<SByte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE)); } RValue<Int> SignMask(RValue<SByte8> x) { if(emulateIntrinsics || CPUID::ARM) { SByte8 xx = (x >> 7) & SByte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80); return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7)); } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto movmsk = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); movmsk->addArg(x.value); ::basicBlock->appendInst(movmsk); return RValue<Int>(V(result)) & 0xFF; } } RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y) { return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Sgt, x.value, y.value)); } RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y) { return RValue<Byte8>(Nucleus::createICmpEQ(x.value, y.value)); } Type *SByte8::getType() { return T(Type_v8i8); } Byte16::Byte16(RValue<Byte16> rhs) { storeValue(rhs.value); } Byte16::Byte16(const Byte16 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Byte16::Byte16(const Reference<Byte16> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Byte16> Byte16::operator=(RValue<Byte16> rhs) { storeValue(rhs.value); return rhs; } RValue<Byte16> Byte16::operator=(const Byte16 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte16>(value); } RValue<Byte16> Byte16::operator=(const Reference<Byte16> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte16>(value); } Type *Byte16::getType() { return T(Ice::IceType_v16i8); } Type *SByte16::getType() { return T(Ice::IceType_v16i8); } Short2::Short2(RValue<Short4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Type *Short2::getType() { return T(Type_v2i16); } UShort2::UShort2(RValue<UShort4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Type *UShort2::getType() { return T(Type_v2i16); } Short4::Short4(RValue<Int> cast) { Value *vector = loadValue(); Value *element = Nucleus::createTrunc(cast.value, Short::getType()); Value *insert = Nucleus::createInsertElement(vector, element, 0); Value *swizzle = Swizzle(RValue<Short4>(insert), 0x00).value; storeValue(swizzle); } Short4::Short4(RValue<Int4> cast) { int select[8] = {0, 2, 4, 6, 0, 2, 4, 6}; Value *short8 = Nucleus::createBitCast(cast.value, Short8::getType()); Value *packed = Nucleus::createShuffleVector(short8, short8, select); Value *int2 = RValue<Int2>(Int2(As<Int4>(packed))).value; Value *short4 = Nucleus::createBitCast(int2, Short4::getType()); storeValue(short4); } // Short4::Short4(RValue<Float> cast) // { // } Short4::Short4(RValue<Float4> cast) { assert(false && "UNIMPLEMENTED"); } Short4::Short4(short xyzw) { int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short4::Short4(short x, short y, short z, short w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short4::Short4(RValue<Short4> rhs) { storeValue(rhs.value); } Short4::Short4(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short4::Short4(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short4::Short4(RValue<UShort4> rhs) { storeValue(rhs.value); } Short4::Short4(const UShort4 &rhs) { storeValue(rhs.loadValue()); } Short4::Short4(const Reference<UShort4> &rhs) { storeValue(rhs.loadValue()); } RValue<Short4> Short4::operator=(RValue<Short4> rhs) { storeValue(rhs.value); return rhs; } RValue<Short4> Short4::operator=(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> Short4::operator=(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> Short4::operator=(RValue<UShort4> rhs) { storeValue(rhs.value); return RValue<Short4>(rhs); } RValue<Short4> Short4::operator=(const UShort4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> Short4::operator=(const Reference<UShort4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> operator+(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Short4> operator-(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Short4> operator*(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createMul(lhs.value, rhs.value)); } // RValue<Short4> operator/(RValue<Short4> lhs, RValue<Short4> rhs) // { // return RValue<Short4>(Nucleus::createSDiv(lhs.value, rhs.value)); // } // RValue<Short4> operator%(RValue<Short4> lhs, RValue<Short4> rhs) // { // return RValue<Short4>(Nucleus::createSRem(lhs.value, rhs.value)); // } RValue<Short4> operator&(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Short4> operator|(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Short4> operator^(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs) { if(emulateIntrinsics) { Short4 result; result = Insert(result, Extract(lhs, 0) << Short(rhs), 0); result = Insert(result, Extract(lhs, 1) << Short(rhs), 1); result = Insert(result, Extract(lhs, 2) << Short(rhs), 2); result = Insert(result, Extract(lhs, 3) << Short(rhs), 3); return result; } else { return RValue<Short4>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs) { if(emulateIntrinsics) { Short4 result; result = Insert(result, Extract(lhs, 0) >> Short(rhs), 0); result = Insert(result, Extract(lhs, 1) >> Short(rhs), 1); result = Insert(result, Extract(lhs, 2) >> Short(rhs), 2); result = Insert(result, Extract(lhs, 3) >> Short(rhs), 3); return result; } else { return RValue<Short4>(Nucleus::createAShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Short4> operator+=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs + rhs; } RValue<Short4> operator-=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs - rhs; } RValue<Short4> operator*=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs * rhs; } // RValue<Short4> operator/=(Short4 &lhs, RValue<Short4> rhs) // { // return lhs = lhs / rhs; // } // RValue<Short4> operator%=(Short4 &lhs, RValue<Short4> rhs) // { // return lhs = lhs % rhs; // } RValue<Short4> operator&=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs & rhs; } RValue<Short4> operator|=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs | rhs; } RValue<Short4> operator^=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs ^ rhs; } RValue<Short4> operator<<=(Short4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<Short4> operator>>=(Short4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } // RValue<Short4> operator+(RValue<Short4> val) // { // return val; // } RValue<Short4> operator-(RValue<Short4> val) { return RValue<Short4>(Nucleus::createNeg(val.value)); } RValue<Short4> operator~(RValue<Short4> val) { return RValue<Short4>(Nucleus::createNot(val.value)); } RValue<Short4> RoundShort4(RValue<Float4> cast) { RValue<Int4> int4 = RoundInt(cast); return As<Short4>(PackSigned(int4, int4)); } RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<Short4>(V(result)); } RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<Short4>(V(result)); } RValue<Short> SaturateSigned(RValue<Int> x) { return Short(IfThenElse(x > 0x7FFF, Int(0x7FFF), IfThenElse(x < -0x8000, Int(0x8000), x))); } RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y) { if(emulateIntrinsics) { Short4 result; result = Insert(result, SaturateSigned(Int(Extract(x, 0)) + Int(Extract(y, 0))), 0); result = Insert(result, SaturateSigned(Int(Extract(x, 1)) + Int(Extract(y, 1))), 1); result = Insert(result, SaturateSigned(Int(Extract(x, 2)) + Int(Extract(y, 2))), 2); result = Insert(result, SaturateSigned(Int(Extract(x, 3)) + Int(Extract(y, 3))), 3); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto paddsw = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); paddsw->addArg(x.value); paddsw->addArg(y.value); ::basicBlock->appendInst(paddsw); return RValue<Short4>(V(result)); } } RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y) { if(emulateIntrinsics) { Short4 result; result = Insert(result, SaturateSigned(Int(Extract(x, 0)) - Int(Extract(y, 0))), 0); result = Insert(result, SaturateSigned(Int(Extract(x, 1)) - Int(Extract(y, 1))), 1); result = Insert(result, SaturateSigned(Int(Extract(x, 2)) - Int(Extract(y, 2))), 2); result = Insert(result, SaturateSigned(Int(Extract(x, 3)) - Int(Extract(y, 3))), 3); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto psubsw = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); psubsw->addArg(x.value); psubsw->addArg(y.value); ::basicBlock->appendInst(psubsw); return RValue<Short4>(V(result)); } } RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y) { if(emulateIntrinsics) { Short4 result; result = Insert(result, Short((Int(Extract(x, 0)) * Int(Extract(y, 0))) >> 16), 0); result = Insert(result, Short((Int(Extract(x, 1)) * Int(Extract(y, 1))) >> 16), 1); result = Insert(result, Short((Int(Extract(x, 2)) * Int(Extract(y, 2))) >> 16), 2); result = Insert(result, Short((Int(Extract(x, 3)) * Int(Extract(y, 3))) >> 16), 3); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::MultiplyHighSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto pmulhw = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); pmulhw->addArg(x.value); pmulhw->addArg(y.value); ::basicBlock->appendInst(pmulhw); return RValue<Short4>(V(result)); } } RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y) { if(emulateIntrinsics) { Int2 result; result = Insert(result, Int(Extract(x, 0)) * Int(Extract(y, 0)) + Int(Extract(x, 1)) * Int(Extract(y, 1)), 0); result = Insert(result, Int(Extract(x, 2)) * Int(Extract(y, 2)) + Int(Extract(x, 3)) * Int(Extract(y, 3)), 1); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::MultiplyAddPairs, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto pmaddwd = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); pmaddwd->addArg(x.value); pmaddwd->addArg(y.value); ::basicBlock->appendInst(pmaddwd); return As<Int2>(V(result)); } } RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y) { if(emulateIntrinsics) { SByte8 result; result = Insert(result, SaturateSigned(Extract(x, 0)), 0); result = Insert(result, SaturateSigned(Extract(x, 1)), 1); result = Insert(result, SaturateSigned(Extract(x, 2)), 2); result = Insert(result, SaturateSigned(Extract(x, 3)), 3); result = Insert(result, SaturateSigned(Extract(y, 0)), 4); result = Insert(result, SaturateSigned(Extract(y, 1)), 5); result = Insert(result, SaturateSigned(Extract(y, 2)), 6); result = Insert(result, SaturateSigned(Extract(y, 3)), 7); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto pack = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); pack->addArg(x.value); pack->addArg(y.value); ::basicBlock->appendInst(pack); return As<SByte8>(Swizzle(As<Int4>(V(result)), 0x88)); } } RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y) { if(emulateIntrinsics) { Byte8 result; result = Insert(result, SaturateUnsigned(Extract(x, 0)), 0); result = Insert(result, SaturateUnsigned(Extract(x, 1)), 1); result = Insert(result, SaturateUnsigned(Extract(x, 2)), 2); result = Insert(result, SaturateUnsigned(Extract(x, 3)), 3); result = Insert(result, SaturateUnsigned(Extract(y, 0)), 4); result = Insert(result, SaturateUnsigned(Extract(y, 1)), 5); result = Insert(result, SaturateUnsigned(Extract(y, 2)), 6); result = Insert(result, SaturateUnsigned(Extract(y, 3)), 7); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto pack = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); pack->addArg(x.value); pack->addArg(y.value); ::basicBlock->appendInst(pack); return As<Byte8>(Swizzle(As<Int4>(V(result)), 0x88)); } } RValue<Int2> UnpackLow(RValue<Short4> x, RValue<Short4> y) { int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; // Real type is v8i16 return As<Int2>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Int2> UnpackHigh(RValue<Short4> x, RValue<Short4> y) { int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; // Real type is v8i16 auto lowHigh = RValue<Short8>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Int2>(Swizzle(As<Int4>(lowHigh), 0xEE)); } RValue<Short4> Swizzle(RValue<Short4> x, unsigned char select) { // Real type is v8i16 int shuffle[8] = { (select >> 0) & 0x03, (select >> 2) & 0x03, (select >> 4) & 0x03, (select >> 6) & 0x03, (select >> 0) & 0x03, (select >> 2) & 0x03, (select >> 4) & 0x03, (select >> 6) & 0x03, }; return RValue<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle)); } RValue<Short4> Insert(RValue<Short4> val, RValue<Short> element, int i) { return RValue<Short4>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<Short> Extract(RValue<Short4> val, int i) { return RValue<Short>(Nucleus::createExtractElement(val.value, Short::getType(), i)); } RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y) { return RValue<Short4>(createIntCompare(Ice::InstIcmp::Sgt, x.value, y.value)); } RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y) { return RValue<Short4>(Nucleus::createICmpEQ(x.value, y.value)); } Type *Short4::getType() { return T(Type_v4i16); } UShort4::UShort4(RValue<Int4> cast) { *this = Short4(cast); } UShort4::UShort4(RValue<Float4> cast, bool saturate) { if(saturate) { if(CPUID::SSE4_1) { // x86 produces 0x80000000 on 32-bit integer overflow/underflow. // PackUnsigned takes care of 0x0000 saturation. Int4 int4(Min(cast, Float4(0xFFFF))); *this = As<UShort4>(PackUnsigned(int4, int4)); } else if(CPUID::ARM) { // ARM saturates the 32-bit integer result on overflow/undeflow. Int4 int4(cast); *this = As<UShort4>(PackUnsigned(int4, int4)); } else { *this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000)))); } } else { *this = Short4(Int4(cast)); } } UShort4::UShort4(unsigned short xyzw) { int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort4::UShort4(unsigned short x, unsigned short y, unsigned short z, unsigned short w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort4::UShort4(RValue<UShort4> rhs) { storeValue(rhs.value); } UShort4::UShort4(const UShort4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort4::UShort4(const Reference<UShort4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort4::UShort4(RValue<Short4> rhs) { storeValue(rhs.value); } UShort4::UShort4(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort4::UShort4(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UShort4> UShort4::operator=(RValue<UShort4> rhs) { storeValue(rhs.value); return rhs; } RValue<UShort4> UShort4::operator=(const UShort4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> UShort4::operator=(const Reference<UShort4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> UShort4::operator=(RValue<Short4> rhs) { storeValue(rhs.value); return RValue<UShort4>(rhs); } RValue<UShort4> UShort4::operator=(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> UShort4::operator=(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> operator+(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UShort4> operator-(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UShort4> operator*(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UShort4> operator&(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UShort4> operator|(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UShort4> operator^(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UShort> Extract(RValue<UShort4> val, int i) { return RValue<UShort>(Nucleus::createExtractElement(val.value, UShort::getType(), i)); } RValue<UShort4> Insert(RValue<UShort4> val, RValue<UShort> element, int i) { return RValue<UShort4>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs) { if(emulateIntrinsics) { UShort4 result; result = Insert(result, Extract(lhs, 0) << UShort(rhs), 0); result = Insert(result, Extract(lhs, 1) << UShort(rhs), 1); result = Insert(result, Extract(lhs, 2) << UShort(rhs), 2); result = Insert(result, Extract(lhs, 3) << UShort(rhs), 3); return result; } else { return RValue<UShort4>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs) { if(emulateIntrinsics) { UShort4 result; result = Insert(result, Extract(lhs, 0) >> UShort(rhs), 0); result = Insert(result, Extract(lhs, 1) >> UShort(rhs), 1); result = Insert(result, Extract(lhs, 2) >> UShort(rhs), 2); result = Insert(result, Extract(lhs, 3) >> UShort(rhs), 3); return result; } else { return RValue<UShort4>(Nucleus::createLShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UShort4> operator<<=(UShort4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<UShort4> operator>>=(UShort4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } RValue<UShort4> operator~(RValue<UShort4> val) { return RValue<UShort4>(Nucleus::createNot(val.value)); } RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<UShort4>(V(result)); } RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<UShort4>(V(result)); } RValue<UShort> SaturateUnsigned(RValue<Int> x) { return UShort(IfThenElse(x > 0xFFFF, Int(0xFFFF), IfThenElse(x < 0, Int(0), x))); } RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y) { if(emulateIntrinsics) { UShort4 result; result = Insert(result, SaturateUnsigned(Int(Extract(x, 0)) + Int(Extract(y, 0))), 0); result = Insert(result, SaturateUnsigned(Int(Extract(x, 1)) + Int(Extract(y, 1))), 1); result = Insert(result, SaturateUnsigned(Int(Extract(x, 2)) + Int(Extract(y, 2))), 2); result = Insert(result, SaturateUnsigned(Int(Extract(x, 3)) + Int(Extract(y, 3))), 3); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto paddusw = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); paddusw->addArg(x.value); paddusw->addArg(y.value); ::basicBlock->appendInst(paddusw); return RValue<UShort4>(V(result)); } } RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y) { if(emulateIntrinsics) { UShort4 result; result = Insert(result, SaturateUnsigned(Int(Extract(x, 0)) - Int(Extract(y, 0))), 0); result = Insert(result, SaturateUnsigned(Int(Extract(x, 1)) - Int(Extract(y, 1))), 1); result = Insert(result, SaturateUnsigned(Int(Extract(x, 2)) - Int(Extract(y, 2))), 2); result = Insert(result, SaturateUnsigned(Int(Extract(x, 3)) - Int(Extract(y, 3))), 3); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto psubusw = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); psubusw->addArg(x.value); psubusw->addArg(y.value); ::basicBlock->appendInst(psubusw); return RValue<UShort4>(V(result)); } } RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y) { if(emulateIntrinsics) { UShort4 result; result = Insert(result, UShort((UInt(Extract(x, 0)) * UInt(Extract(y, 0))) >> 16), 0); result = Insert(result, UShort((UInt(Extract(x, 1)) * UInt(Extract(y, 1))) >> 16), 1); result = Insert(result, UShort((UInt(Extract(x, 2)) * UInt(Extract(y, 2))) >> 16), 2); result = Insert(result, UShort((UInt(Extract(x, 3)) * UInt(Extract(y, 3))) >> 16), 3); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::MultiplyHighUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto pmulhuw = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); pmulhuw->addArg(x.value); pmulhuw->addArg(y.value); ::basicBlock->appendInst(pmulhuw); return RValue<UShort4>(V(result)); } } RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y) { assert(false && "UNIMPLEMENTED"); return RValue<UShort4>(V(nullptr)); } Type *UShort4::getType() { return T(Type_v4i16); } Short8::Short8(short c) { int64_t constantVector[8] = {c, c, c, c, c, c, c, c}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short8::Short8(short c0, short c1, short c2, short c3, short c4, short c5, short c6, short c7) { int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short8::Short8(RValue<Short8> rhs) { storeValue(rhs.value); } Short8::Short8(const Reference<Short8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short8::Short8(RValue<Short4> lo, RValue<Short4> hi) { int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11}; // Real type is v8i16 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } RValue<Short8> operator+(RValue<Short8> lhs, RValue<Short8> rhs) { return RValue<Short8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Short8> operator&(RValue<Short8> lhs, RValue<Short8> rhs) { return RValue<Short8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Short> Extract(RValue<Short8> val, int i) { return RValue<Short>(Nucleus::createExtractElement(val.value, Short::getType(), i)); } RValue<Short8> Insert(RValue<Short8> val, RValue<Short> element, int i) { return RValue<Short8>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs) { if(emulateIntrinsics) { Short8 result; result = Insert(result, Extract(lhs, 0) << Short(rhs), 0); result = Insert(result, Extract(lhs, 1) << Short(rhs), 1); result = Insert(result, Extract(lhs, 2) << Short(rhs), 2); result = Insert(result, Extract(lhs, 3) << Short(rhs), 3); result = Insert(result, Extract(lhs, 4) << Short(rhs), 4); result = Insert(result, Extract(lhs, 5) << Short(rhs), 5); result = Insert(result, Extract(lhs, 6) << Short(rhs), 6); result = Insert(result, Extract(lhs, 7) << Short(rhs), 7); return result; } else { return RValue<Short8>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs) { if(emulateIntrinsics) { Short8 result; result = Insert(result, Extract(lhs, 0) >> Short(rhs), 0); result = Insert(result, Extract(lhs, 1) >> Short(rhs), 1); result = Insert(result, Extract(lhs, 2) >> Short(rhs), 2); result = Insert(result, Extract(lhs, 3) >> Short(rhs), 3); result = Insert(result, Extract(lhs, 4) >> Short(rhs), 4); result = Insert(result, Extract(lhs, 5) >> Short(rhs), 5); result = Insert(result, Extract(lhs, 6) >> Short(rhs), 6); result = Insert(result, Extract(lhs, 7) >> Short(rhs), 7); return result; } else { return RValue<Short8>(Nucleus::createAShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y) { assert(false && "UNIMPLEMENTED"); return RValue<Int4>(V(nullptr)); } RValue<Int4> Abs(RValue<Int4> x) { auto negative = x >> 31; return (x ^ negative) - negative; } RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y) { assert(false && "UNIMPLEMENTED"); return RValue<Short8>(V(nullptr)); } Type *Short8::getType() { return T(Ice::IceType_v8i16); } UShort8::UShort8(unsigned short c) { int64_t constantVector[8] = {c, c, c, c, c, c, c, c}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort8::UShort8(unsigned short c0, unsigned short c1, unsigned short c2, unsigned short c3, unsigned short c4, unsigned short c5, unsigned short c6, unsigned short c7) { int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort8::UShort8(RValue<UShort8> rhs) { storeValue(rhs.value); } UShort8::UShort8(const Reference<UShort8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort8::UShort8(RValue<UShort4> lo, RValue<UShort4> hi) { int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11}; // Real type is v8i16 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } RValue<UShort8> UShort8::operator=(RValue<UShort8> rhs) { storeValue(rhs.value); return rhs; } RValue<UShort8> UShort8::operator=(const UShort8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort8>(value); } RValue<UShort8> UShort8::operator=(const Reference<UShort8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort8>(value); } RValue<UShort8> operator&(RValue<UShort8> lhs, RValue<UShort8> rhs) { return RValue<UShort8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UShort> Extract(RValue<UShort8> val, int i) { return RValue<UShort>(Nucleus::createExtractElement(val.value, UShort::getType(), i)); } RValue<UShort8> Insert(RValue<UShort8> val, RValue<UShort> element, int i) { return RValue<UShort8>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs) { if(emulateIntrinsics) { UShort8 result; result = Insert(result, Extract(lhs, 0) << UShort(rhs), 0); result = Insert(result, Extract(lhs, 1) << UShort(rhs), 1); result = Insert(result, Extract(lhs, 2) << UShort(rhs), 2); result = Insert(result, Extract(lhs, 3) << UShort(rhs), 3); result = Insert(result, Extract(lhs, 4) << UShort(rhs), 4); result = Insert(result, Extract(lhs, 5) << UShort(rhs), 5); result = Insert(result, Extract(lhs, 6) << UShort(rhs), 6); result = Insert(result, Extract(lhs, 7) << UShort(rhs), 7); return result; } else { return RValue<UShort8>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs) { if(emulateIntrinsics) { UShort8 result; result = Insert(result, Extract(lhs, 0) >> UShort(rhs), 0); result = Insert(result, Extract(lhs, 1) >> UShort(rhs), 1); result = Insert(result, Extract(lhs, 2) >> UShort(rhs), 2); result = Insert(result, Extract(lhs, 3) >> UShort(rhs), 3); result = Insert(result, Extract(lhs, 4) >> UShort(rhs), 4); result = Insert(result, Extract(lhs, 5) >> UShort(rhs), 5); result = Insert(result, Extract(lhs, 6) >> UShort(rhs), 6); result = Insert(result, Extract(lhs, 7) >> UShort(rhs), 7); return result; } else { return RValue<UShort8>(Nucleus::createLShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UShort8> operator+(RValue<UShort8> lhs, RValue<UShort8> rhs) { return RValue<UShort8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UShort8> operator*(RValue<UShort8> lhs, RValue<UShort8> rhs) { return RValue<UShort8>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UShort8> operator+=(UShort8 &lhs, RValue<UShort8> rhs) { return lhs = lhs + rhs; } RValue<UShort8> operator~(RValue<UShort8> val) { return RValue<UShort8>(Nucleus::createNot(val.value)); } RValue<UShort8> Swizzle(RValue<UShort8> x, char select0, char select1, char select2, char select3, char select4, char select5, char select6, char select7) { assert(false && "UNIMPLEMENTED"); return RValue<UShort8>(V(nullptr)); } RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y) { assert(false && "UNIMPLEMENTED"); return RValue<UShort8>(V(nullptr)); } // FIXME: Implement as Shuffle(x, y, Select(i0, ..., i16)) and Shuffle(x, y, SELECT_PACK_REPEAT(element)) // RValue<UShort8> PackRepeat(RValue<Byte16> x, RValue<Byte16> y, int element) // { // assert(false && "UNIMPLEMENTED"); return RValue<UShort8>(V(nullptr)); // } Type *UShort8::getType() { return T(Ice::IceType_v8i16); } Int::Int(Argument<Int> argument) { storeValue(argument.value); } Int::Int(RValue<Byte> cast) { Value *integer = Nucleus::createZExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<SByte> cast) { Value *integer = Nucleus::createSExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<Short> cast) { Value *integer = Nucleus::createSExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<UShort> cast) { Value *integer = Nucleus::createZExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<Int2> cast) { *this = Extract(cast, 0); } Int::Int(RValue<Long> cast) { Value *integer = Nucleus::createTrunc(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<Float> cast) { Value *integer = Nucleus::createFPToSI(cast.value, Int::getType()); storeValue(integer); } Int::Int(int x) { storeValue(Nucleus::createConstantInt(x)); } Int::Int(RValue<Int> rhs) { storeValue(rhs.value); } Int::Int(RValue<UInt> rhs) { storeValue(rhs.value); } Int::Int(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int::Int(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int::Int(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int::Int(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Int> Int::operator=(int rhs) { return RValue<Int>(storeValue(Nucleus::createConstantInt(rhs))); } RValue<Int> Int::operator=(RValue<Int> rhs) { storeValue(rhs.value); return rhs; } RValue<Int> Int::operator=(RValue<UInt> rhs) { storeValue(rhs.value); return RValue<Int>(rhs); } RValue<Int> Int::operator=(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> Int::operator=(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> Int::operator=(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> Int::operator=(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> operator+(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Int> operator-(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Int> operator*(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Int> operator/(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<Int> operator%(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<Int> operator&(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Int> operator|(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Int> operator^(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Int> operator<<(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Int> operator>>(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<Int> operator+=(Int &lhs, RValue<Int> rhs) { return lhs = lhs + rhs; } RValue<Int> operator-=(Int &lhs, RValue<Int> rhs) { return lhs = lhs - rhs; } RValue<Int> operator*=(Int &lhs, RValue<Int> rhs) { return lhs = lhs * rhs; } RValue<Int> operator/=(Int &lhs, RValue<Int> rhs) { return lhs = lhs / rhs; } RValue<Int> operator%=(Int &lhs, RValue<Int> rhs) { return lhs = lhs % rhs; } RValue<Int> operator&=(Int &lhs, RValue<Int> rhs) { return lhs = lhs & rhs; } RValue<Int> operator|=(Int &lhs, RValue<Int> rhs) { return lhs = lhs | rhs; } RValue<Int> operator^=(Int &lhs, RValue<Int> rhs) { return lhs = lhs ^ rhs; } RValue<Int> operator<<=(Int &lhs, RValue<Int> rhs) { return lhs = lhs << rhs; } RValue<Int> operator>>=(Int &lhs, RValue<Int> rhs) { return lhs = lhs >> rhs; } RValue<Int> operator+(RValue<Int> val) { return val; } RValue<Int> operator-(RValue<Int> val) { return RValue<Int>(Nucleus::createNeg(val.value)); } RValue<Int> operator~(RValue<Int> val) { return RValue<Int>(Nucleus::createNot(val.value)); } RValue<Int> operator++(Int &val, int) // Post-increment { RValue<Int> res = val; val += 1; return res; } const Int &operator++(Int &val) // Pre-increment { val += 1; return val; } RValue<Int> operator--(Int &val, int) // Post-decrement { RValue<Int> res = val; val -= 1; return res; } const Int &operator--(Int &val) // Pre-decrement { val -= 1; return val; } RValue<Bool> operator<(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } RValue<Int> Max(RValue<Int> x, RValue<Int> y) { return IfThenElse(x > y, x, y); } RValue<Int> Min(RValue<Int> x, RValue<Int> y) { return IfThenElse(x < y, x, y); } RValue<Int> Clamp(RValue<Int> x, RValue<Int> min, RValue<Int> max) { return Min(Max(x, min), max); } RValue<Int> RoundInt(RValue<Float> cast) { if(emulateIntrinsics || CPUID::ARM) { // Push the fractional part off the mantissa. Accurate up to +/-2^22. return Int((cast + Float(0x00C00000)) - Float(0x00C00000)); } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto nearbyint = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); nearbyint->addArg(cast.value); ::basicBlock->appendInst(nearbyint); return RValue<Int>(V(result)); } } Type *Int::getType() { return T(Ice::IceType_i32); } Long::Long(RValue<Int> cast) { Value *integer = Nucleus::createSExt(cast.value, Long::getType()); storeValue(integer); } Long::Long(RValue<UInt> cast) { Value *integer = Nucleus::createZExt(cast.value, Long::getType()); storeValue(integer); } Long::Long(RValue<Long> rhs) { storeValue(rhs.value); } RValue<Long> Long::operator=(int64_t rhs) { return RValue<Long>(storeValue(Nucleus::createConstantLong(rhs))); } RValue<Long> Long::operator=(RValue<Long> rhs) { storeValue(rhs.value); return rhs; } RValue<Long> Long::operator=(const Long &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Long>(value); } RValue<Long> Long::operator=(const Reference<Long> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Long>(value); } RValue<Long> operator+(RValue<Long> lhs, RValue<Long> rhs) { return RValue<Long>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Long> operator-(RValue<Long> lhs, RValue<Long> rhs) { return RValue<Long>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Long> operator+=(Long &lhs, RValue<Long> rhs) { return lhs = lhs + rhs; } RValue<Long> operator-=(Long &lhs, RValue<Long> rhs) { return lhs = lhs - rhs; } RValue<Long> AddAtomic(RValue<Pointer<Long> > x, RValue<Long> y) { return RValue<Long>(Nucleus::createAtomicAdd(x.value, y.value)); } Type *Long::getType() { return T(Ice::IceType_i64); } UInt::UInt(Argument<UInt> argument) { storeValue(argument.value); } UInt::UInt(RValue<UShort> cast) { Value *integer = Nucleus::createZExt(cast.value, UInt::getType()); storeValue(integer); } UInt::UInt(RValue<Long> cast) { Value *integer = Nucleus::createTrunc(cast.value, UInt::getType()); storeValue(integer); } UInt::UInt(RValue<Float> cast) { // Smallest positive value representable in UInt, but not in Int const unsigned int ustart = 0x80000000u; const float ustartf = float(ustart); // If the value is negative, store 0, otherwise store the result of the conversion storeValue((~(As<Int>(cast) >> 31) & // Check if the value can be represented as an Int IfThenElse(cast >= ustartf, // If the value is too large, subtract ustart and re-add it after conversion. As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)), // Otherwise, just convert normally Int(cast))).value); } UInt::UInt(int x) { storeValue(Nucleus::createConstantInt(x)); } UInt::UInt(unsigned int x) { storeValue(Nucleus::createConstantInt(x)); } UInt::UInt(RValue<UInt> rhs) { storeValue(rhs.value); } UInt::UInt(RValue<Int> rhs) { storeValue(rhs.value); } UInt::UInt(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt::UInt(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt::UInt(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt::UInt(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UInt> UInt::operator=(unsigned int rhs) { return RValue<UInt>(storeValue(Nucleus::createConstantInt(rhs))); } RValue<UInt> UInt::operator=(RValue<UInt> rhs) { storeValue(rhs.value); return rhs; } RValue<UInt> UInt::operator=(RValue<Int> rhs) { storeValue(rhs.value); return RValue<UInt>(rhs); } RValue<UInt> UInt::operator=(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> UInt::operator=(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> UInt::operator=(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> UInt::operator=(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> operator+(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UInt> operator-(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UInt> operator*(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UInt> operator/(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<UInt> operator%(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<UInt> operator&(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UInt> operator|(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UInt> operator^(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UInt> operator<<(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<UInt> operator>>(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<UInt> operator+=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs + rhs; } RValue<UInt> operator-=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs - rhs; } RValue<UInt> operator*=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs * rhs; } RValue<UInt> operator/=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs / rhs; } RValue<UInt> operator%=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs % rhs; } RValue<UInt> operator&=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs & rhs; } RValue<UInt> operator|=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs | rhs; } RValue<UInt> operator^=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs ^ rhs; } RValue<UInt> operator<<=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs << rhs; } RValue<UInt> operator>>=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs >> rhs; } RValue<UInt> operator+(RValue<UInt> val) { return val; } RValue<UInt> operator-(RValue<UInt> val) { return RValue<UInt>(Nucleus::createNeg(val.value)); } RValue<UInt> operator~(RValue<UInt> val) { return RValue<UInt>(Nucleus::createNot(val.value)); } RValue<UInt> operator++(UInt &val, int) // Post-increment { RValue<UInt> res = val; val += 1; return res; } const UInt &operator++(UInt &val) // Pre-increment { val += 1; return val; } RValue<UInt> operator--(UInt &val, int) // Post-decrement { RValue<UInt> res = val; val -= 1; return res; } const UInt &operator--(UInt &val) // Pre-decrement { val -= 1; return val; } RValue<UInt> Max(RValue<UInt> x, RValue<UInt> y) { return IfThenElse(x > y, x, y); } RValue<UInt> Min(RValue<UInt> x, RValue<UInt> y) { return IfThenElse(x < y, x, y); } RValue<UInt> Clamp(RValue<UInt> x, RValue<UInt> min, RValue<UInt> max) { return Min(Max(x, min), max); } RValue<Bool> operator<(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } // RValue<UInt> RoundUInt(RValue<Float> cast) // { // assert(false && "UNIMPLEMENTED"); return RValue<UInt>(V(nullptr)); // } Type *UInt::getType() { return T(Ice::IceType_i32); } // Int2::Int2(RValue<Int> cast) // { // Value *extend = Nucleus::createZExt(cast.value, Long::getType()); // Value *vector = Nucleus::createBitCast(extend, Int2::getType()); // // Constant *shuffle[2]; // shuffle[0] = Nucleus::createConstantInt(0); // shuffle[1] = Nucleus::createConstantInt(0); // // Value *replicate = Nucleus::createShuffleVector(vector, UndefValue::get(Int2::getType()), Nucleus::createConstantVector(shuffle, 2)); // // storeValue(replicate); // } Int2::Int2(RValue<Int4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Int2::Int2(int x, int y) { int64_t constantVector[2] = {x, y}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Int2::Int2(RValue<Int2> rhs) { storeValue(rhs.value); } Int2::Int2(const Int2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int2::Int2(const Reference<Int2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int2::Int2(RValue<Int> lo, RValue<Int> hi) { int shuffle[4] = {0, 4, 1, 5}; Value *packed = Nucleus::createShuffleVector(Int4(lo).loadValue(), Int4(hi).loadValue(), shuffle); storeValue(Nucleus::createBitCast(packed, Int2::getType())); } RValue<Int2> Int2::operator=(RValue<Int2> rhs) { storeValue(rhs.value); return rhs; } RValue<Int2> Int2::operator=(const Int2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int2>(value); } RValue<Int2> Int2::operator=(const Reference<Int2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int2>(value); } RValue<Int2> operator+(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Int2> operator-(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<Int2> operator*(RValue<Int2> lhs, RValue<Int2> rhs) // { // return RValue<Int2>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<Int2> operator/(RValue<Int2> lhs, RValue<Int2> rhs) // { // return RValue<Int2>(Nucleus::createSDiv(lhs.value, rhs.value)); // } // RValue<Int2> operator%(RValue<Int2> lhs, RValue<Int2> rhs) // { // return RValue<Int2>(Nucleus::createSRem(lhs.value, rhs.value)); // } RValue<Int2> operator&(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Int2> operator|(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Int2> operator^(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs) { if(emulateIntrinsics) { Int2 result; result = Insert(result, Extract(lhs, 0) << Int(rhs), 0); result = Insert(result, Extract(lhs, 1) << Int(rhs), 1); return result; } else { return RValue<Int2>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs) { if(emulateIntrinsics) { Int2 result; result = Insert(result, Extract(lhs, 0) >> Int(rhs), 0); result = Insert(result, Extract(lhs, 1) >> Int(rhs), 1); return result; } else { return RValue<Int2>(Nucleus::createAShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Int2> operator+=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs + rhs; } RValue<Int2> operator-=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs - rhs; } // RValue<Int2> operator*=(Int2 &lhs, RValue<Int2> rhs) // { // return lhs = lhs * rhs; // } // RValue<Int2> operator/=(Int2 &lhs, RValue<Int2> rhs) // { // return lhs = lhs / rhs; // } // RValue<Int2> operator%=(Int2 &lhs, RValue<Int2> rhs) // { // return lhs = lhs % rhs; // } RValue<Int2> operator&=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs & rhs; } RValue<Int2> operator|=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs | rhs; } RValue<Int2> operator^=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs ^ rhs; } RValue<Int2> operator<<=(Int2 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<Int2> operator>>=(Int2 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } // RValue<Int2> operator+(RValue<Int2> val) // { // return val; // } // RValue<Int2> operator-(RValue<Int2> val) // { // return RValue<Int2>(Nucleus::createNeg(val.value)); // } RValue<Int2> operator~(RValue<Int2> val) { return RValue<Int2>(Nucleus::createNot(val.value)); } RValue<Short4> UnpackLow(RValue<Int2> x, RValue<Int2> y) { int shuffle[4] = {0, 4, 1, 5}; // Real type is v4i32 return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Short4> UnpackHigh(RValue<Int2> x, RValue<Int2> y) { int shuffle[4] = {0, 4, 1, 5}; // Real type is v4i32 auto lowHigh = RValue<Int4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Short4>(Swizzle(lowHigh, 0xEE)); } RValue<Int> Extract(RValue<Int2> val, int i) { return RValue<Int>(Nucleus::createExtractElement(val.value, Int::getType(), i)); } RValue<Int2> Insert(RValue<Int2> val, RValue<Int> element, int i) { return RValue<Int2>(Nucleus::createInsertElement(val.value, element.value, i)); } Type *Int2::getType() { return T(Type_v2i32); } UInt2::UInt2(unsigned int x, unsigned int y) { int64_t constantVector[2] = {x, y}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UInt2::UInt2(RValue<UInt2> rhs) { storeValue(rhs.value); } UInt2::UInt2(const UInt2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt2::UInt2(const Reference<UInt2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UInt2> UInt2::operator=(RValue<UInt2> rhs) { storeValue(rhs.value); return rhs; } RValue<UInt2> UInt2::operator=(const UInt2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt2>(value); } RValue<UInt2> UInt2::operator=(const Reference<UInt2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt2>(value); } RValue<UInt2> operator+(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UInt2> operator-(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<UInt2> operator*(RValue<UInt2> lhs, RValue<UInt2> rhs) // { // return RValue<UInt2>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<UInt2> operator/(RValue<UInt2> lhs, RValue<UInt2> rhs) // { // return RValue<UInt2>(Nucleus::createUDiv(lhs.value, rhs.value)); // } // RValue<UInt2> operator%(RValue<UInt2> lhs, RValue<UInt2> rhs) // { // return RValue<UInt2>(Nucleus::createURem(lhs.value, rhs.value)); // } RValue<UInt2> operator&(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UInt2> operator|(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UInt2> operator^(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UInt> Extract(RValue<UInt2> val, int i) { return RValue<UInt>(Nucleus::createExtractElement(val.value, UInt::getType(), i)); } RValue<UInt2> Insert(RValue<UInt2> val, RValue<UInt> element, int i) { return RValue<UInt2>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs) { if(emulateIntrinsics) { UInt2 result; result = Insert(result, Extract(lhs, 0) << UInt(rhs), 0); result = Insert(result, Extract(lhs, 1) << UInt(rhs), 1); return result; } else { return RValue<UInt2>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs) { if(emulateIntrinsics) { UInt2 result; result = Insert(result, Extract(lhs, 0) >> UInt(rhs), 0); result = Insert(result, Extract(lhs, 1) >> UInt(rhs), 1); return result; } else { return RValue<UInt2>(Nucleus::createLShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UInt2> operator+=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs + rhs; } RValue<UInt2> operator-=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs - rhs; } // RValue<UInt2> operator*=(UInt2 &lhs, RValue<UInt2> rhs) // { // return lhs = lhs * rhs; // } // RValue<UInt2> operator/=(UInt2 &lhs, RValue<UInt2> rhs) // { // return lhs = lhs / rhs; // } // RValue<UInt2> operator%=(UInt2 &lhs, RValue<UInt2> rhs) // { // return lhs = lhs % rhs; // } RValue<UInt2> operator&=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs & rhs; } RValue<UInt2> operator|=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs | rhs; } RValue<UInt2> operator^=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs ^ rhs; } RValue<UInt2> operator<<=(UInt2 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<UInt2> operator>>=(UInt2 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } // RValue<UInt2> operator+(RValue<UInt2> val) // { // return val; // } // RValue<UInt2> operator-(RValue<UInt2> val) // { // return RValue<UInt2>(Nucleus::createNeg(val.value)); // } RValue<UInt2> operator~(RValue<UInt2> val) { return RValue<UInt2>(Nucleus::createNot(val.value)); } Type *UInt2::getType() { return T(Type_v2i32); } Int4::Int4() : XYZW(this) { } Int4::Int4(RValue<Byte4> cast) : XYZW(this) { Value *x = Nucleus::createBitCast(cast.value, Int::getType()); Value *a = Nucleus::createInsertElement(loadValue(), x, 0); Value *e; int swizzle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; Value *b = Nucleus::createBitCast(a, Byte16::getType()); Value *c = Nucleus::createShuffleVector(b, V(Nucleus::createNullValue(Byte16::getType())), swizzle); int swizzle2[8] = {0, 8, 1, 9, 2, 10, 3, 11}; Value *d = Nucleus::createBitCast(c, Short8::getType()); e = Nucleus::createShuffleVector(d, V(Nucleus::createNullValue(Short8::getType())), swizzle2); Value *f = Nucleus::createBitCast(e, Int4::getType()); storeValue(f); } Int4::Int4(RValue<SByte4> cast) : XYZW(this) { Value *x = Nucleus::createBitCast(cast.value, Int::getType()); Value *a = Nucleus::createInsertElement(loadValue(), x, 0); int swizzle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}; Value *b = Nucleus::createBitCast(a, Byte16::getType()); Value *c = Nucleus::createShuffleVector(b, b, swizzle); int swizzle2[8] = {0, 0, 1, 1, 2, 2, 3, 3}; Value *d = Nucleus::createBitCast(c, Short8::getType()); Value *e = Nucleus::createShuffleVector(d, d, swizzle2); *this = As<Int4>(e) >> 24; } Int4::Int4(RValue<Float4> cast) : XYZW(this) { Value *xyzw = Nucleus::createFPToSI(cast.value, Int4::getType()); storeValue(xyzw); } Int4::Int4(RValue<Short4> cast) : XYZW(this) { int swizzle[8] = {0, 0, 1, 1, 2, 2, 3, 3}; Value *c = Nucleus::createShuffleVector(cast.value, cast.value, swizzle); *this = As<Int4>(c) >> 16; } Int4::Int4(RValue<UShort4> cast) : XYZW(this) { int swizzle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; Value *c = Nucleus::createShuffleVector(cast.value, Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle); Value *d = Nucleus::createBitCast(c, Int4::getType()); storeValue(d); } Int4::Int4(int xyzw) : XYZW(this) { constant(xyzw, xyzw, xyzw, xyzw); } Int4::Int4(int x, int yzw) : XYZW(this) { constant(x, yzw, yzw, yzw); } Int4::Int4(int x, int y, int zw) : XYZW(this) { constant(x, y, zw, zw); } Int4::Int4(int x, int y, int z, int w) : XYZW(this) { constant(x, y, z, w); } void Int4::constant(int x, int y, int z, int w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Int4::Int4(RValue<Int4> rhs) : XYZW(this) { storeValue(rhs.value); } Int4::Int4(const Int4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(const Reference<Int4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(RValue<UInt4> rhs) : XYZW(this) { storeValue(rhs.value); } Int4::Int4(const UInt4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(const Reference<UInt4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(RValue<Int2> lo, RValue<Int2> hi) : XYZW(this) { int shuffle[4] = {0, 1, 4, 5}; // Real type is v4i32 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } Int4::Int4(RValue<Int> rhs) : XYZW(this) { Value *vector = Nucleus::createBitCast(rhs.value, Int4::getType()); int swizzle[4] = {0, 0, 0, 0}; Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); storeValue(replicate); } Int4::Int4(const Int &rhs) : XYZW(this) { *this = RValue<Int>(rhs.loadValue()); } Int4::Int4(const Reference<Int> &rhs) : XYZW(this) { *this = RValue<Int>(rhs.loadValue()); } RValue<Int4> Int4::operator=(RValue<Int4> rhs) { storeValue(rhs.value); return rhs; } RValue<Int4> Int4::operator=(const Int4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int4>(value); } RValue<Int4> Int4::operator=(const Reference<Int4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int4>(value); } RValue<Int4> operator+(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Int4> operator-(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Int4> operator*(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Int4> operator/(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<Int4> operator%(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<Int4> operator&(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Int4> operator|(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Int4> operator^(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs) { if(emulateIntrinsics) { Int4 result; result = Insert(result, Extract(lhs, 0) << Int(rhs), 0); result = Insert(result, Extract(lhs, 1) << Int(rhs), 1); result = Insert(result, Extract(lhs, 2) << Int(rhs), 2); result = Insert(result, Extract(lhs, 3) << Int(rhs), 3); return result; } else { return RValue<Int4>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs) { if(emulateIntrinsics) { Int4 result; result = Insert(result, Extract(lhs, 0) >> Int(rhs), 0); result = Insert(result, Extract(lhs, 1) >> Int(rhs), 1); result = Insert(result, Extract(lhs, 2) >> Int(rhs), 2); result = Insert(result, Extract(lhs, 3) >> Int(rhs), 3); return result; } else { return RValue<Int4>(Nucleus::createAShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<Int4> operator<<(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Int4> operator>>(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<Int4> operator+=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs + rhs; } RValue<Int4> operator-=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs - rhs; } RValue<Int4> operator*=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs * rhs; } // RValue<Int4> operator/=(Int4 &lhs, RValue<Int4> rhs) // { // return lhs = lhs / rhs; // } // RValue<Int4> operator%=(Int4 &lhs, RValue<Int4> rhs) // { // return lhs = lhs % rhs; // } RValue<Int4> operator&=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs & rhs; } RValue<Int4> operator|=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs | rhs; } RValue<Int4> operator^=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs ^ rhs; } RValue<Int4> operator<<=(Int4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<Int4> operator>>=(Int4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } RValue<Int4> operator+(RValue<Int4> val) { return val; } RValue<Int4> operator-(RValue<Int4> val) { return RValue<Int4>(Nucleus::createNeg(val.value)); } RValue<Int4> operator~(RValue<Int4> val) { return RValue<Int4>(Nucleus::createNot(val.value)); } RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y) { return RValue<Int4>(Nucleus::createICmpEQ(x.value, y.value)); } RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y) { return RValue<Int4>(Nucleus::createICmpSLT(x.value, y.value)); } RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y) { return RValue<Int4>(Nucleus::createICmpSLE(x.value, y.value)); } RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y) { return RValue<Int4>(Nucleus::createICmpNE(x.value, y.value)); } RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y) { return RValue<Int4>(Nucleus::createICmpSGE(x.value, y.value)); } RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y) { return RValue<Int4>(Nucleus::createICmpSGT(x.value, y.value)); } RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<Int4>(V(result)); } RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<Int4>(V(result)); } RValue<Int4> RoundInt(RValue<Float4> cast) { if(emulateIntrinsics || CPUID::ARM) { // Push the fractional part off the mantissa. Accurate up to +/-2^22. return Int4((cast + Float4(0x00C00000)) - Float4(0x00C00000)); } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto nearbyint = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); nearbyint->addArg(cast.value); ::basicBlock->appendInst(nearbyint); return RValue<Int4>(V(result)); } } RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y) { if(emulateIntrinsics) { Short8 result; result = Insert(result, SaturateSigned(Extract(x, 0)), 0); result = Insert(result, SaturateSigned(Extract(x, 1)), 1); result = Insert(result, SaturateSigned(Extract(x, 2)), 2); result = Insert(result, SaturateSigned(Extract(x, 3)), 3); result = Insert(result, SaturateSigned(Extract(y, 0)), 4); result = Insert(result, SaturateSigned(Extract(y, 1)), 5); result = Insert(result, SaturateSigned(Extract(y, 2)), 6); result = Insert(result, SaturateSigned(Extract(y, 3)), 7); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto pack = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); pack->addArg(x.value); pack->addArg(y.value); ::basicBlock->appendInst(pack); return RValue<Short8>(V(result)); } } RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y) { if(emulateIntrinsics || !(CPUID::SSE4_1 || CPUID::ARM)) { RValue<Int4> sx = As<Int4>(x); RValue<Int4> bx = (sx & ~(sx >> 31)) - Int4(0x8000); RValue<Int4> sy = As<Int4>(y); RValue<Int4> by = (sy & ~(sy >> 31)) - Int4(0x8000); return As<UShort8>(PackSigned(bx, by) + Short8(0x8000u)); } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto pack = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); pack->addArg(x.value); pack->addArg(y.value); ::basicBlock->appendInst(pack); return RValue<UShort8>(V(result)); } } RValue<Int> Extract(RValue<Int4> x, int i) { return RValue<Int>(Nucleus::createExtractElement(x.value, Int::getType(), i)); } RValue<Int4> Insert(RValue<Int4> x, RValue<Int> element, int i) { return RValue<Int4>(Nucleus::createInsertElement(x.value, element.value, i)); } RValue<Int> SignMask(RValue<Int4> x) { if(emulateIntrinsics || CPUID::ARM) { Int4 xx = (x >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008); return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3); } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto movmsk = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); movmsk->addArg(x.value); ::basicBlock->appendInst(movmsk); return RValue<Int>(V(result)); } } RValue<Int4> Swizzle(RValue<Int4> x, unsigned char select) { return RValue<Int4>(createSwizzle4(x.value, select)); } Type *Int4::getType() { return T(Ice::IceType_v4i32); } UInt4::UInt4() : XYZW(this) { } UInt4::UInt4(RValue<Float4> cast) : XYZW(this) { // Smallest positive value representable in UInt, but not in Int const unsigned int ustart = 0x80000000u; const float ustartf = float(ustart); // Check if the value can be represented as an Int Int4 uiValue = CmpNLT(cast, Float4(ustartf)); // If the value is too large, subtract ustart and re-add it after conversion. uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) | // Otherwise, just convert normally (~uiValue & Int4(cast)); // If the value is negative, store 0, otherwise store the result of the conversion storeValue((~(As<Int4>(cast) >> 31) & uiValue).value); } UInt4::UInt4(int xyzw) : XYZW(this) { constant(xyzw, xyzw, xyzw, xyzw); } UInt4::UInt4(int x, int yzw) : XYZW(this) { constant(x, yzw, yzw, yzw); } UInt4::UInt4(int x, int y, int zw) : XYZW(this) { constant(x, y, zw, zw); } UInt4::UInt4(int x, int y, int z, int w) : XYZW(this) { constant(x, y, z, w); } void UInt4::constant(int x, int y, int z, int w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UInt4::UInt4(RValue<UInt4> rhs) : XYZW(this) { storeValue(rhs.value); } UInt4::UInt4(const UInt4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(const Reference<UInt4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(RValue<Int4> rhs) : XYZW(this) { storeValue(rhs.value); } UInt4::UInt4(const Int4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(const Reference<Int4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(RValue<UInt2> lo, RValue<UInt2> hi) : XYZW(this) { int shuffle[4] = {0, 1, 4, 5}; // Real type is v4i32 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } RValue<UInt4> UInt4::operator=(RValue<UInt4> rhs) { storeValue(rhs.value); return rhs; } RValue<UInt4> UInt4::operator=(const UInt4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt4>(value); } RValue<UInt4> UInt4::operator=(const Reference<UInt4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt4>(value); } RValue<UInt4> operator+(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UInt4> operator-(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UInt4> operator*(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UInt4> operator/(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<UInt4> operator%(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<UInt4> operator&(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UInt4> operator|(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UInt4> operator^(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UInt> Extract(RValue<UInt4> x, int i) { return RValue<UInt>(Nucleus::createExtractElement(x.value, UInt::getType(), i)); } RValue<UInt4> Insert(RValue<UInt4> x, RValue<UInt> element, int i) { return RValue<UInt4>(Nucleus::createInsertElement(x.value, element.value, i)); } RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs) { if(emulateIntrinsics) { UInt4 result; result = Insert(result, Extract(lhs, 0) << UInt(rhs), 0); result = Insert(result, Extract(lhs, 1) << UInt(rhs), 1); result = Insert(result, Extract(lhs, 2) << UInt(rhs), 2); result = Insert(result, Extract(lhs, 3) << UInt(rhs), 3); return result; } else { return RValue<UInt4>(Nucleus::createShl(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs) { if(emulateIntrinsics) { UInt4 result; result = Insert(result, Extract(lhs, 0) >> UInt(rhs), 0); result = Insert(result, Extract(lhs, 1) >> UInt(rhs), 1); result = Insert(result, Extract(lhs, 2) >> UInt(rhs), 2); result = Insert(result, Extract(lhs, 3) >> UInt(rhs), 3); return result; } else { return RValue<UInt4>(Nucleus::createLShr(lhs.value, V(::context->getConstantInt32(rhs)))); } } RValue<UInt4> operator<<(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<UInt4> operator>>(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<UInt4> operator+=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs + rhs; } RValue<UInt4> operator-=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs - rhs; } RValue<UInt4> operator*=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs * rhs; } // RValue<UInt4> operator/=(UInt4 &lhs, RValue<UInt4> rhs) // { // return lhs = lhs / rhs; // } // RValue<UInt4> operator%=(UInt4 &lhs, RValue<UInt4> rhs) // { // return lhs = lhs % rhs; // } RValue<UInt4> operator&=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs & rhs; } RValue<UInt4> operator|=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs | rhs; } RValue<UInt4> operator^=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs ^ rhs; } RValue<UInt4> operator<<=(UInt4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<UInt4> operator>>=(UInt4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } RValue<UInt4> operator+(RValue<UInt4> val) { return val; } RValue<UInt4> operator-(RValue<UInt4> val) { return RValue<UInt4>(Nucleus::createNeg(val.value)); } RValue<UInt4> operator~(RValue<UInt4> val) { return RValue<UInt4>(Nucleus::createNot(val.value)); } RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createICmpEQ(x.value, y.value)); } RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createICmpULT(x.value, y.value)); } RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createICmpULE(x.value, y.value)); } RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createICmpNE(x.value, y.value)); } RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createICmpUGE(x.value, y.value)); } RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createICmpUGT(x.value, y.value)); } RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<UInt4>(V(result)); } RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); auto select = Ice::InstSelect::create(::function, result, condition, y.value, x.value); ::basicBlock->appendInst(select); return RValue<UInt4>(V(result)); } Type *UInt4::getType() { return T(Ice::IceType_v4i32); } Float::Float(RValue<Int> cast) { Value *integer = Nucleus::createSIToFP(cast.value, Float::getType()); storeValue(integer); } Float::Float(RValue<UInt> cast) { RValue<Float> result = Float(Int(cast & UInt(0x7FFFFFFF))) + As<Float>((As<Int>(cast) >> 31) & As<Int>(Float(0x80000000u))); storeValue(result.value); } Float::Float(float x) { storeValue(Nucleus::createConstantFloat(x)); } Float::Float(RValue<Float> rhs) { storeValue(rhs.value); } Float::Float(const Float &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Float::Float(const Reference<Float> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Float> Float::operator=(RValue<Float> rhs) { storeValue(rhs.value); return rhs; } RValue<Float> Float::operator=(const Float &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float>(value); } RValue<Float> Float::operator=(const Reference<Float> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float>(value); } RValue<Float> operator+(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFAdd(lhs.value, rhs.value)); } RValue<Float> operator-(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFSub(lhs.value, rhs.value)); } RValue<Float> operator*(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFMul(lhs.value, rhs.value)); } RValue<Float> operator/(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFDiv(lhs.value, rhs.value)); } RValue<Float> operator+=(Float &lhs, RValue<Float> rhs) { return lhs = lhs + rhs; } RValue<Float> operator-=(Float &lhs, RValue<Float> rhs) { return lhs = lhs - rhs; } RValue<Float> operator*=(Float &lhs, RValue<Float> rhs) { return lhs = lhs * rhs; } RValue<Float> operator/=(Float &lhs, RValue<Float> rhs) { return lhs = lhs / rhs; } RValue<Float> operator+(RValue<Float> val) { return val; } RValue<Float> operator-(RValue<Float> val) { return RValue<Float>(Nucleus::createFNeg(val.value)); } RValue<Bool> operator<(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpONE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOEQ(lhs.value, rhs.value)); } RValue<Float> Abs(RValue<Float> x) { return IfThenElse(x > 0.0f, x, -x); } RValue<Float> Max(RValue<Float> x, RValue<Float> y) { return IfThenElse(x > y, x, y); } RValue<Float> Min(RValue<Float> x, RValue<Float> y) { return IfThenElse(x < y, x, y); } RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2) { return 1.0f / x; } RValue<Float> RcpSqrt_pp(RValue<Float> x) { return Rcp_pp(Sqrt(x)); } RValue<Float> Sqrt(RValue<Float> x) { Ice::Variable *result = ::function->makeVariable(Ice::IceType_f32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto sqrt = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); sqrt->addArg(x.value); ::basicBlock->appendInst(sqrt); return RValue<Float>(V(result)); } RValue<Float> Round(RValue<Float> x) { return Float4(Round(Float4(x))).x; } RValue<Float> Trunc(RValue<Float> x) { return Float4(Trunc(Float4(x))).x; } RValue<Float> Frac(RValue<Float> x) { return Float4(Frac(Float4(x))).x; } RValue<Float> Floor(RValue<Float> x) { return Float4(Floor(Float4(x))).x; } RValue<Float> Ceil(RValue<Float> x) { return Float4(Ceil(Float4(x))).x; } Type *Float::getType() { return T(Ice::IceType_f32); } Float2::Float2(RValue<Float4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Type *Float2::getType() { return T(Type_v2f32); } Float4::Float4(RValue<Byte4> cast) : XYZW(this) { Value *a = Int4(cast).loadValue(); Value *xyzw = Nucleus::createSIToFP(a, Float4::getType()); storeValue(xyzw); } Float4::Float4(RValue<SByte4> cast) : XYZW(this) { Value *a = Int4(cast).loadValue(); Value *xyzw = Nucleus::createSIToFP(a, Float4::getType()); storeValue(xyzw); } Float4::Float4(RValue<Short4> cast) : XYZW(this) { Int4 c(cast); storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType())); } Float4::Float4(RValue<UShort4> cast) : XYZW(this) { Int4 c(cast); storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType())); } Float4::Float4(RValue<Int4> cast) : XYZW(this) { Value *xyzw = Nucleus::createSIToFP(cast.value, Float4::getType()); storeValue(xyzw); } Float4::Float4(RValue<UInt4> cast) : XYZW(this) { RValue<Float4> result = Float4(Int4(cast & UInt4(0x7FFFFFFF))) + As<Float4>((As<Int4>(cast) >> 31) & As<Int4>(Float4(0x80000000u))); storeValue(result.value); } Float4::Float4() : XYZW(this) { } Float4::Float4(float xyzw) : XYZW(this) { constant(xyzw, xyzw, xyzw, xyzw); } Float4::Float4(float x, float yzw) : XYZW(this) { constant(x, yzw, yzw, yzw); } Float4::Float4(float x, float y, float zw) : XYZW(this) { constant(x, y, zw, zw); } Float4::Float4(float x, float y, float z, float w) : XYZW(this) { constant(x, y, z, w); } void Float4::constant(float x, float y, float z, float w) { double constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Float4::Float4(RValue<Float4> rhs) : XYZW(this) { storeValue(rhs.value); } Float4::Float4(const Float4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Float4::Float4(const Reference<Float4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Float4::Float4(RValue<Float> rhs) : XYZW(this) { Value *vector = Nucleus::createBitCast(rhs.value, Float4::getType()); int swizzle[4] = {0, 0, 0, 0}; Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); storeValue(replicate); } Float4::Float4(const Float &rhs) : XYZW(this) { *this = RValue<Float>(rhs.loadValue()); } Float4::Float4(const Reference<Float> &rhs) : XYZW(this) { *this = RValue<Float>(rhs.loadValue()); } RValue<Float4> Float4::operator=(float x) { return *this = Float4(x, x, x, x); } RValue<Float4> Float4::operator=(RValue<Float4> rhs) { storeValue(rhs.value); return rhs; } RValue<Float4> Float4::operator=(const Float4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float4>(value); } RValue<Float4> Float4::operator=(const Reference<Float4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float4>(value); } RValue<Float4> Float4::operator=(RValue<Float> rhs) { return *this = Float4(rhs); } RValue<Float4> Float4::operator=(const Float &rhs) { return *this = Float4(rhs); } RValue<Float4> Float4::operator=(const Reference<Float> &rhs) { return *this = Float4(rhs); } RValue<Float4> operator+(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFAdd(lhs.value, rhs.value)); } RValue<Float4> operator-(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFSub(lhs.value, rhs.value)); } RValue<Float4> operator*(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFMul(lhs.value, rhs.value)); } RValue<Float4> operator/(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFDiv(lhs.value, rhs.value)); } RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFRem(lhs.value, rhs.value)); } RValue<Float4> operator+=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs + rhs; } RValue<Float4> operator-=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs - rhs; } RValue<Float4> operator*=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs * rhs; } RValue<Float4> operator/=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs / rhs; } RValue<Float4> operator%=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs % rhs; } RValue<Float4> operator+(RValue<Float4> val) { return val; } RValue<Float4> operator-(RValue<Float4> val) { return RValue<Float4>(Nucleus::createFNeg(val.value)); } RValue<Float4> Abs(RValue<Float4> x) { Value *vector = Nucleus::createBitCast(x.value, Int4::getType()); int64_t constantVector[4] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; Value *result = Nucleus::createAnd(vector, V(Nucleus::createConstantVector(constantVector, Int4::getType()))); return As<Float4>(result); } RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Ogt, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); auto select = Ice::InstSelect::create(::function, result, condition, x.value, y.value); ::basicBlock->appendInst(select); return RValue<Float4>(V(result)); } RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y) { Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Olt, condition, x.value, y.value); ::basicBlock->appendInst(cmp); Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); auto select = Ice::InstSelect::create(::function, result, condition, x.value, y.value); ::basicBlock->appendInst(select); return RValue<Float4>(V(result)); } RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2) { return Float4(1.0f) / x; } RValue<Float4> RcpSqrt_pp(RValue<Float4> x) { return Rcp_pp(Sqrt(x)); } RValue<Float4> Sqrt(RValue<Float4> x) { if(emulateIntrinsics || CPUID::ARM) { Float4 result; result.x = Sqrt(Float(Float4(x).x)); result.y = Sqrt(Float(Float4(x).y)); result.z = Sqrt(Float(Float4(x).z)); result.w = Sqrt(Float(Float4(x).w)); return result; } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto sqrt = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); sqrt->addArg(x.value); ::basicBlock->appendInst(sqrt); return RValue<Float4>(V(result)); } } RValue<Float4> Insert(RValue<Float4> x, RValue<Float> element, int i) { return RValue<Float4>(Nucleus::createInsertElement(x.value, element.value, i)); } RValue<Float> Extract(RValue<Float4> x, int i) { return RValue<Float>(Nucleus::createExtractElement(x.value, Float::getType(), i)); } RValue<Float4> Swizzle(RValue<Float4> x, unsigned char select) { return RValue<Float4>(createSwizzle4(x.value, select)); } RValue<Float4> ShuffleLowHigh(RValue<Float4> x, RValue<Float4> y, unsigned char imm) { int shuffle[4] = { ((imm >> 0) & 0x03) + 0, ((imm >> 2) & 0x03) + 0, ((imm >> 4) & 0x03) + 4, ((imm >> 6) & 0x03) + 4, }; return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Float4> UnpackLow(RValue<Float4> x, RValue<Float4> y) { int shuffle[4] = {0, 4, 1, 5}; return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Float4> UnpackHigh(RValue<Float4> x, RValue<Float4> y) { int shuffle[4] = {2, 6, 3, 7}; return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Float4> Mask(Float4 &lhs, RValue<Float4> rhs, unsigned char select) { Value *vector = lhs.loadValue(); Value *result = createMask4(vector, rhs.value, select); lhs.storeValue(result); return RValue<Float4>(result); } RValue<Int> SignMask(RValue<Float4> x) { if(emulateIntrinsics || CPUID::ARM) { Int4 xx = (As<Int4>(x) >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008); return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3); } else { Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto movmsk = Ice::InstIntrinsicCall::create(::function, 1, result, target, intrinsic); movmsk->addArg(x.value); ::basicBlock->appendInst(movmsk); return RValue<Int>(V(result)); } } RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y) { return RValue<Int4>(Nucleus::createFCmpOEQ(x.value, y.value)); } RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y) { return RValue<Int4>(Nucleus::createFCmpOLT(x.value, y.value)); } RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y) { return RValue<Int4>(Nucleus::createFCmpOLE(x.value, y.value)); } RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y) { return RValue<Int4>(Nucleus::createFCmpONE(x.value, y.value)); } RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y) { return RValue<Int4>(Nucleus::createFCmpOGE(x.value, y.value)); } RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y) { return RValue<Int4>(Nucleus::createFCmpOGT(x.value, y.value)); } RValue<Int4> IsInf(RValue<Float4> x) { return CmpEQ(As<Int4>(x) & Int4(0x7FFFFFFF), Int4(0x7F800000)); } RValue<Int4> IsNan(RValue<Float4> x) { return ~CmpEQ(x, x); } RValue<Float4> Round(RValue<Float4> x) { if(emulateIntrinsics || CPUID::ARM) { // Push the fractional part off the mantissa. Accurate up to +/-2^22. return (x + Float4(0x00C00000)) - Float4(0x00C00000); } else if(CPUID::SSE4_1) { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto round = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); round->addArg(x.value); round->addArg(::context->getConstantInt32(0)); ::basicBlock->appendInst(round); return RValue<Float4>(V(result)); } else { return Float4(RoundInt(x)); } } RValue<Float4> Trunc(RValue<Float4> x) { if(CPUID::SSE4_1) { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto round = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); round->addArg(x.value); round->addArg(::context->getConstantInt32(3)); ::basicBlock->appendInst(round); return RValue<Float4>(V(result)); } else { return Float4(Int4(x)); } } RValue<Float4> Frac(RValue<Float4> x) { Float4 frc; if(CPUID::SSE4_1) { frc = x - Floor(x); } else { frc = x - Float4(Int4(x)); // Signed fractional part. frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1, 1, 1, 1))); // Add 1.0 if negative. } // x - floor(x) can be 1.0 for very small negative x. // Clamp against the value just below 1.0. return Min(frc, As<Float4>(Int4(0x3F7FFFFF))); } RValue<Float4> Floor(RValue<Float4> x) { if(CPUID::SSE4_1) { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto round = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); round->addArg(x.value); round->addArg(::context->getConstantInt32(1)); ::basicBlock->appendInst(round); return RValue<Float4>(V(result)); } else { return x - Frac(x); } } RValue<Float4> Ceil(RValue<Float4> x) { if(CPUID::SSE4_1) { Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); const Ice::Intrinsics::IntrinsicInfo intrinsic = {Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F}; auto target = ::context->getConstantUndef(Ice::IceType_i32); auto round = Ice::InstIntrinsicCall::create(::function, 2, result, target, intrinsic); round->addArg(x.value); round->addArg(::context->getConstantInt32(2)); ::basicBlock->appendInst(round); return RValue<Float4>(V(result)); } else { return -Floor(-x); } } Type *Float4::getType() { return T(Ice::IceType_v4f32); } RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, int offset) { return lhs + RValue<Int>(Nucleus::createConstantInt(offset)); } RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<Int> offset) { return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, false)); } RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<UInt> offset) { return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, true)); } RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, int offset) { return lhs = lhs + offset; } RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<Int> offset) { return lhs = lhs + offset; } RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<UInt> offset) { return lhs = lhs + offset; } RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, int offset) { return lhs + -offset; } RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<Int> offset) { return lhs + -offset; } RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<UInt> offset) { return lhs + -offset; } RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, int offset) { return lhs = lhs - offset; } RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<Int> offset) { return lhs = lhs - offset; } RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<UInt> offset) { return lhs = lhs - offset; } void Return() { Nucleus::createRetVoid(); Nucleus::setInsertBlock(Nucleus::createBasicBlock()); Nucleus::createUnreachable(); } void Return(RValue<Int> ret) { Nucleus::createRet(ret.value); Nucleus::setInsertBlock(Nucleus::createBasicBlock()); Nucleus::createUnreachable(); } void branch(RValue<Bool> cmp, BasicBlock *bodyBB, BasicBlock *endBB) { Nucleus::createCondBr(cmp.value, bodyBB, endBB); Nucleus::setInsertBlock(bodyBB); } RValue<Long> Ticks() { assert(false && "UNIMPLEMENTED"); return RValue<Long>(V(nullptr)); } }