/* epic100.c: A SMC 83c170 EPIC/100 fast ethernet driver for Etherboot */ FILE_LICENCE ( GPL2_OR_LATER ); /* 05/06/2003 timlegge Fixed relocation and implemented Multicast */ #define LINUX_OUT_MACROS #include "etherboot.h" #include <gpxe/pci.h> #include <gpxe/ethernet.h> #include "nic.h" #include "console.h" #include "epic100.h" /* Condensed operations for readability */ #define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr)) #define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) #define TX_RING_SIZE 2 /* use at least 2 buffers for TX */ #define RX_RING_SIZE 2 #define PKT_BUF_SZ 1536 /* Size of each temporary Tx/Rx buffer.*/ /* #define DEBUG_RX #define DEBUG_TX #define DEBUG_EEPROM */ #define EPIC_DEBUG 0 /* debug level */ /* The EPIC100 Rx and Tx buffer descriptors. */ struct epic_rx_desc { unsigned long status; unsigned long bufaddr; unsigned long buflength; unsigned long next; }; /* description of the tx descriptors control bits commonly used */ #define TD_STDFLAGS TD_LASTDESC struct epic_tx_desc { unsigned long status; unsigned long bufaddr; unsigned long buflength; unsigned long next; }; #define delay(nanosec) do { int _i = 3; while (--_i > 0) \ { __SLOW_DOWN_IO; }} while (0) static void epic100_open(void); static void epic100_init_ring(void); static void epic100_disable(struct nic *nic); static int epic100_poll(struct nic *nic, int retrieve); static void epic100_transmit(struct nic *nic, const char *destaddr, unsigned int type, unsigned int len, const char *data); #ifdef DEBUG_EEPROM static int read_eeprom(int location); #endif static int mii_read(int phy_id, int location); static void epic100_irq(struct nic *nic, irq_action_t action); static struct nic_operations epic100_operations; static int ioaddr; static int command; static int intstat; static int intmask; static int genctl ; static int eectl ; static int test ; static int mmctl ; static int mmdata ; static int lan0 ; static int mc0 ; static int rxcon ; static int txcon ; static int prcdar ; static int ptcdar ; static int eththr ; static unsigned int cur_rx, cur_tx; /* The next free ring entry */ #ifdef DEBUG_EEPROM static unsigned short eeprom[64]; #endif static signed char phys[4]; /* MII device addresses. */ struct { struct epic_rx_desc rx_ring[RX_RING_SIZE] __attribute__ ((aligned(4))); struct epic_tx_desc tx_ring[TX_RING_SIZE] __attribute__ ((aligned(4))); unsigned char rx_packet[PKT_BUF_SZ * RX_RING_SIZE]; unsigned char tx_packet[PKT_BUF_SZ * TX_RING_SIZE]; } epic100_bufs __shared; #define rx_ring epic100_bufs.rx_ring #define tx_ring epic100_bufs.tx_ring #define rx_packet epic100_bufs.rx_packet #define tx_packet epic100_bufs.tx_packet /***********************************************************************/ /* Externally visible functions */ /***********************************************************************/ static int epic100_probe ( struct nic *nic, struct pci_device *pci ) { int i; unsigned short* ap; unsigned int phy, phy_idx; if (pci->ioaddr == 0) return 0; /* Ideally we would detect all network cards in slot order. That would be best done a central PCI probe dispatch, which wouldn't work well with the current structure. So instead we detect just the Epic cards in slot order. */ ioaddr = pci->ioaddr; nic->irqno = 0; nic->ioaddr = pci->ioaddr & ~3; /* compute all used static epic100 registers address */ command = ioaddr + COMMAND; /* Control Register */ intstat = ioaddr + INTSTAT; /* Interrupt Status */ intmask = ioaddr + INTMASK; /* Interrupt Mask */ genctl = ioaddr + GENCTL; /* General Control */ eectl = ioaddr + EECTL; /* EEPROM Control */ test = ioaddr + TEST; /* Test register (clocks) */ mmctl = ioaddr + MMCTL; /* MII Management Interface Control */ mmdata = ioaddr + MMDATA; /* MII Management Interface Data */ lan0 = ioaddr + LAN0; /* MAC address. (0x40-0x48) */ mc0 = ioaddr + MC0; /* Multicast Control */ rxcon = ioaddr + RXCON; /* Receive Control */ txcon = ioaddr + TXCON; /* Transmit Control */ prcdar = ioaddr + PRCDAR; /* PCI Receive Current Descr Address */ ptcdar = ioaddr + PTCDAR; /* PCI Transmit Current Descr Address */ eththr = ioaddr + ETHTHR; /* Early Transmit Threshold */ /* Reset the chip & bring it out of low-power mode. */ outl(GC_SOFT_RESET, genctl); /* Disable ALL interrupts by setting the interrupt mask. */ outl(INTR_DISABLE, intmask); /* * set the internal clocks: * Application Note 7.15 says: * In order to set the CLOCK TEST bit in the TEST register, * perform the following: * * Write 0x0008 to the test register at least sixteen * consecutive times. * * The CLOCK TEST bit is Write-Only. Writing it several times * consecutively insures a successful write to the bit... */ for (i = 0; i < 16; i++) { outl(0x00000008, test); } #ifdef DEBUG_EEPROM { unsigned short sum = 0; unsigned short value; for (i = 0; i < 64; i++) { value = read_eeprom(i); eeprom[i] = value; sum += value; } } #if (EPIC_DEBUG > 1) printf("EEPROM contents\n"); for (i = 0; i < 64; i++) { printf(" %hhX%s", eeprom[i], i % 16 == 15 ? "\n" : ""); } #endif #endif /* This could also be read from the EEPROM. */ ap = (unsigned short*)nic->node_addr; for (i = 0; i < 3; i++) *ap++ = inw(lan0 + i*4); DBG ( " I/O %4.4x %s ", ioaddr, eth_ntoa ( nic->node_addr ) ); /* Find the connected MII xcvrs. */ for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(phys); phy++) { int mii_status = mii_read(phy, 0); if (mii_status != 0xffff && mii_status != 0x0000) { phys[phy_idx++] = phy; #if (EPIC_DEBUG > 1) printf("MII transceiver found at address %d.\n", phy); #endif } } if (phy_idx == 0) { #if (EPIC_DEBUG > 1) printf("***WARNING***: No MII transceiver found!\n"); #endif /* Use the known PHY address of the EPII. */ phys[0] = 3; } epic100_open(); nic->nic_op = &epic100_operations; return 1; } static void set_rx_mode(void) { unsigned char mc_filter[8]; int i; memset(mc_filter, 0xff, sizeof(mc_filter)); outl(0x0C, rxcon); for(i = 0; i < 4; i++) outw(((unsigned short *)mc_filter)[i], mc0 + i*4); return; } static void epic100_open(void) { int mii_reg5; int full_duplex = 0; unsigned long tmp; epic100_init_ring(); /* Pull the chip out of low-power mode, and set for PCI read multiple. */ outl(GC_RX_FIFO_THR_64 | GC_MRC_READ_MULT | GC_ONE_COPY, genctl); outl(TX_FIFO_THRESH, eththr); tmp = TC_EARLY_TX_ENABLE | TX_SLOT_TIME; mii_reg5 = mii_read(phys[0], 5); if (mii_reg5 != 0xffff && (mii_reg5 & 0x0100)) { full_duplex = 1; printf(" full-duplex mode"); tmp |= TC_LM_FULL_DPX; } else tmp |= TC_LM_NORMAL; outl(tmp, txcon); /* Give adress of RX and TX ring to the chip */ outl(virt_to_le32desc(&rx_ring), prcdar); outl(virt_to_le32desc(&tx_ring), ptcdar); /* Start the chip's Rx process: receive unicast and broadcast */ set_rx_mode(); outl(CR_START_RX | CR_QUEUE_RX, command); putchar('\n'); } /* Initialize the Rx and Tx rings. */ static void epic100_init_ring(void) { int i; cur_rx = cur_tx = 0; for (i = 0; i < RX_RING_SIZE; i++) { rx_ring[i].status = cpu_to_le32(RRING_OWN); /* Owned by Epic chip */ rx_ring[i].buflength = cpu_to_le32(PKT_BUF_SZ); rx_ring[i].bufaddr = virt_to_bus(&rx_packet[i * PKT_BUF_SZ]); rx_ring[i].next = virt_to_le32desc(&rx_ring[i + 1]) ; } /* Mark the last entry as wrapping the ring. */ rx_ring[i-1].next = virt_to_le32desc(&rx_ring[0]); /* *The Tx buffer descriptor is filled in as needed, * but we do need to clear the ownership bit. */ for (i = 0; i < TX_RING_SIZE; i++) { tx_ring[i].status = 0x0000; /* Owned by CPU */ tx_ring[i].buflength = 0x0000 | cpu_to_le32(TD_STDFLAGS << 16); tx_ring[i].bufaddr = virt_to_bus(&tx_packet[i * PKT_BUF_SZ]); tx_ring[i].next = virt_to_le32desc(&tx_ring[i + 1]); } tx_ring[i-1].next = virt_to_le32desc(&tx_ring[0]); } /* function: epic100_transmit * This transmits a packet. * * Arguments: char d[6]: destination ethernet address. * unsigned short t: ethernet protocol type. * unsigned short s: size of the data-part of the packet. * char *p: the data for the packet. * returns: void. */ static void epic100_transmit(struct nic *nic, const char *destaddr, unsigned int type, unsigned int len, const char *data) { unsigned short nstype; unsigned char *txp; int entry; unsigned long ct; /* Calculate the next Tx descriptor entry. */ entry = cur_tx % TX_RING_SIZE; if ((tx_ring[entry].status & TRING_OWN) == TRING_OWN) { printf("eth_transmit: Unable to transmit. status=%4.4lx. Resetting...\n", tx_ring[entry].status); epic100_open(); return; } txp = tx_packet + (entry * PKT_BUF_SZ); memcpy(txp, destaddr, ETH_ALEN); memcpy(txp + ETH_ALEN, nic->node_addr, ETH_ALEN); nstype = htons(type); memcpy(txp + 12, (char*)&nstype, 2); memcpy(txp + ETH_HLEN, data, len); len += ETH_HLEN; len &= 0x0FFF; while(len < ETH_ZLEN) txp[len++] = '\0'; /* * Caution: the write order is important here, * set the base address with the "ownership" * bits last. */ tx_ring[entry].buflength |= cpu_to_le32(len); tx_ring[entry].status = cpu_to_le32(len << 16) | cpu_to_le32(TRING_OWN); /* Pass ownership to the chip. */ cur_tx++; /* Trigger an immediate transmit demand. */ outl(CR_QUEUE_TX, command); ct = currticks(); /* timeout 10 ms for transmit */ while ((le32_to_cpu(tx_ring[entry].status) & (TRING_OWN)) && ct + 10*1000 < currticks()) /* Wait */; if ((le32_to_cpu(tx_ring[entry].status) & TRING_OWN) != 0) printf("Oops, transmitter timeout, status=%4.4lX\n", tx_ring[entry].status); } /* function: epic100_poll / eth_poll * This receives a packet from the network. * * Arguments: none * * returns: 1 if a packet was received. * 0 if no pacet was received. * side effects: * returns the packet in the array nic->packet. * returns the length of the packet in nic->packetlen. */ static int epic100_poll(struct nic *nic, int retrieve) { int entry; int retcode; int status; entry = cur_rx % RX_RING_SIZE; if ((rx_ring[entry].status & cpu_to_le32(RRING_OWN)) == RRING_OWN) return (0); if ( ! retrieve ) return 1; status = le32_to_cpu(rx_ring[entry].status); /* We own the next entry, it's a new packet. Send it up. */ #if (EPIC_DEBUG > 4) printf("epic_poll: entry %d status %hX\n", entry, status); #endif cur_rx++; if (status & 0x2000) { printf("epic_poll: Giant packet\n"); retcode = 0; } else if (status & 0x0006) { /* Rx Frame errors are counted in hardware. */ printf("epic_poll: Frame received with errors\n"); retcode = 0; } else { /* Omit the four octet CRC from the length. */ nic->packetlen = le32_to_cpu((rx_ring[entry].buflength))- 4; memcpy(nic->packet, &rx_packet[entry * PKT_BUF_SZ], nic->packetlen); retcode = 1; } /* Clear all error sources. */ outl(status & INTR_CLEARERRS, intstat); /* Give the descriptor back to the chip */ rx_ring[entry].status = RRING_OWN; /* Restart Receiver */ outl(CR_START_RX | CR_QUEUE_RX, command); return retcode; } static void epic100_disable ( struct nic *nic __unused ) { /* Soft reset the chip. */ outl(GC_SOFT_RESET, genctl); } static void epic100_irq(struct nic *nic __unused, irq_action_t action __unused) { switch ( action ) { case DISABLE : break; case ENABLE : break; case FORCE : break; } } #ifdef DEBUG_EEPROM /* Serial EEPROM section. */ /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ #define EE_CS 0x02 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ #define EE_WRITE_0 0x01 #define EE_WRITE_1 0x09 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ #define EE_ENB (0x0001 | EE_CS) /* The EEPROM commands include the alway-set leading bit. */ #define EE_WRITE_CMD (5 << 6) #define EE_READ_CMD (6 << 6) #define EE_ERASE_CMD (7 << 6) #define eeprom_delay(n) delay(n) static int read_eeprom(int location) { int i; int retval = 0; int read_cmd = location | EE_READ_CMD; outl(EE_ENB & ~EE_CS, eectl); outl(EE_ENB, eectl); /* Shift the read command bits out. */ for (i = 10; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; outl(EE_ENB | dataval, eectl); eeprom_delay(100); outl(EE_ENB | dataval | EE_SHIFT_CLK, eectl); eeprom_delay(150); outl(EE_ENB | dataval, eectl); /* Finish EEPROM a clock tick. */ eeprom_delay(250); } outl(EE_ENB, eectl); for (i = 16; i > 0; i--) { outl(EE_ENB | EE_SHIFT_CLK, eectl); eeprom_delay(100); retval = (retval << 1) | ((inl(eectl) & EE_DATA_READ) ? 1 : 0); outl(EE_ENB, eectl); eeprom_delay(100); } /* Terminate the EEPROM access. */ outl(EE_ENB & ~EE_CS, eectl); return retval; } #endif #define MII_READOP 1 #define MII_WRITEOP 2 static int mii_read(int phy_id, int location) { int i; outl((phy_id << 9) | (location << 4) | MII_READOP, mmctl); /* Typical operation takes < 50 ticks. */ for (i = 4000; i > 0; i--) if ((inl(mmctl) & MII_READOP) == 0) break; return inw(mmdata); } static struct nic_operations epic100_operations = { .connect = dummy_connect, .poll = epic100_poll, .transmit = epic100_transmit, .irq = epic100_irq, }; static struct pci_device_id epic100_nics[] = { PCI_ROM(0x10b8, 0x0005, "epic100", "SMC EtherPowerII", 0), /* SMC 83c170 EPIC/100 */ PCI_ROM(0x10b8, 0x0006, "smc-83c175", "SMC EPIC/C 83c175", 0), }; PCI_DRIVER ( epic100_driver, epic100_nics, PCI_NO_CLASS ); DRIVER ( "EPIC100", nic_driver, pci_driver, epic100_driver, epic100_probe, epic100_disable ); /* * Local variables: * c-basic-offset: 8 * c-indent-level: 8 * tab-width: 8 * End: */