// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/arm64/frames-arm64.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the InternalArray function from the native context. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the InternalArray function from the native context. __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result); } void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { // ----------- S t a t e ------------- // -- x0 : number of arguments excluding receiver // -- x1 : target // -- x3 : new target // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument // -- sp[4 * argc] : receiver // ----------------------------------- __ AssertFunction(x1); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); // JumpToExternalReference expects x0 to contain the number of arguments // including the receiver and the extra arguments. const int num_extra_args = 3; __ Add(x0, x0, num_extra_args + 1); // Insert extra arguments. __ SmiTag(x0); __ Push(x0, x1, x3); __ SmiUntag(x0); __ JumpToExternalReference(ExternalReference(address, masm->isolate()), exit_frame_type == BUILTIN_EXIT); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_InternalArrayCode"); Label generic_array_code; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, x1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset)); __ Tst(x10, kSmiTagMask); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction); __ CompareObjectType(x10, x11, x12, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_ArrayCode"); Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the Array function. GenerateLoadArrayFunction(masm, x1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset)); __ Tst(x10, kSmiTagMask); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(x10, x11, x12, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); __ Mov(x3, x1); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : function // -- cp : context // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero-based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_MathMaxMin"); Heap::RootListIndex const root_index = (kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex : Heap::kMinusInfinityValueRootIndex; // Load the accumulator with the default return value (either -Infinity or // +Infinity), with the tagged value in x5 and the double value in d5. __ LoadRoot(x5, root_index); __ Ldr(d5, FieldMemOperand(x5, HeapNumber::kValueOffset)); Label done_loop, loop; __ mov(x4, x0); __ Bind(&loop); { // Check if all parameters done. __ Subs(x4, x4, 1); __ B(lt, &done_loop); // Load the next parameter tagged value into x2. __ Peek(x2, Operand(x4, LSL, kPointerSizeLog2)); // Load the double value of the parameter into d2, maybe converting the // parameter to a number first using the ToNumber builtin if necessary. Label convert_smi, convert_number, done_convert; __ JumpIfSmi(x2, &convert_smi); __ JumpIfHeapNumber(x2, &convert_number); { // Parameter is not a Number, use the ToNumber builtin to convert it. FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(x0); __ SmiTag(x4); __ EnterBuiltinFrame(cp, x1, x0); __ Push(x5, x4); __ Mov(x0, x2); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ Mov(x2, x0); __ Pop(x4, x5); __ LeaveBuiltinFrame(cp, x1, x0); __ SmiUntag(x4); __ SmiUntag(x0); { // Restore the double accumulator value (d5). Label done_restore; __ SmiUntagToDouble(d5, x5, kSpeculativeUntag); __ JumpIfSmi(x5, &done_restore); __ Ldr(d5, FieldMemOperand(x5, HeapNumber::kValueOffset)); __ Bind(&done_restore); } } __ AssertNumber(x2); __ JumpIfSmi(x2, &convert_smi); __ Bind(&convert_number); __ Ldr(d2, FieldMemOperand(x2, HeapNumber::kValueOffset)); __ B(&done_convert); __ Bind(&convert_smi); __ SmiUntagToDouble(d2, x2); __ Bind(&done_convert); // We can use a single fmin/fmax for the operation itself, but we then need // to work out which HeapNumber (or smi) the result came from. __ Fmov(x11, d5); if (kind == MathMaxMinKind::kMin) { __ Fmin(d5, d5, d2); } else { DCHECK(kind == MathMaxMinKind::kMax); __ Fmax(d5, d5, d2); } __ Fmov(x10, d5); __ Cmp(x10, x11); __ Csel(x5, x5, x2, eq); __ B(&loop); } __ Bind(&done_loop); // Drop all slots, including the receiver. __ Add(x0, x0, 1); __ Drop(x0); __ Mov(x0, x5); __ Ret(); } // static void Builtins::Generate_NumberConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- cp : context // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_NumberConstructor"); // 1. Load the first argument into x0. Label no_arguments; { __ Cbz(x0, &no_arguments); __ Mov(x2, x0); // Store argc in x2. __ Sub(x0, x0, 1); __ Ldr(x0, MemOperand(jssp, x0, LSL, kPointerSizeLog2)); } // 2a. Convert first argument to number. { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(x2); __ EnterBuiltinFrame(cp, x1, x2); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ LeaveBuiltinFrame(cp, x1, x2); __ SmiUntag(x2); } { // Drop all arguments. __ Drop(x2); } // 2b. No arguments, return +0 (already in x0). __ Bind(&no_arguments); __ Drop(1); __ Ret(); } // static void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- x3 : new target // -- cp : context // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_NumberConstructor_ConstructStub"); // 1. Make sure we operate in the context of the called function. __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); // 2. Load the first argument into x2. { Label no_arguments, done; __ Move(x6, x0); // Store argc in x6. __ Cbz(x0, &no_arguments); __ Sub(x0, x0, 1); __ Ldr(x2, MemOperand(jssp, x0, LSL, kPointerSizeLog2)); __ B(&done); __ Bind(&no_arguments); __ Mov(x2, Smi::kZero); __ Bind(&done); } // 3. Make sure x2 is a number. { Label done_convert; __ JumpIfSmi(x2, &done_convert); __ JumpIfObjectType(x2, x4, x4, HEAP_NUMBER_TYPE, &done_convert, eq); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(x6); __ EnterBuiltinFrame(cp, x1, x6); __ Push(x3); __ Move(x0, x2); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ Move(x2, x0); __ Pop(x3); __ LeaveBuiltinFrame(cp, x1, x6); __ SmiUntag(x6); } __ Bind(&done_convert); } // 4. Check if new target and constructor differ. Label drop_frame_and_ret, new_object; __ Cmp(x1, x3); __ B(ne, &new_object); // 5. Allocate a JSValue wrapper for the number. __ AllocateJSValue(x0, x1, x2, x4, x5, &new_object); __ B(&drop_frame_and_ret); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(x6); __ EnterBuiltinFrame(cp, x1, x6); __ Push(x2); // first argument __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), RelocInfo::CODE_TARGET); __ Pop(x2); __ LeaveBuiltinFrame(cp, x1, x6); __ SmiUntag(x6); } __ Str(x2, FieldMemOperand(x0, JSValue::kValueOffset)); __ bind(&drop_frame_and_ret); { __ Drop(x6); __ Drop(1); __ Ret(); } } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- cp : context // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_StringConstructor"); // 1. Load the first argument into x0. Label no_arguments; { __ Cbz(x0, &no_arguments); __ Mov(x2, x0); // Store argc in x2. __ Sub(x0, x0, 1); __ Ldr(x0, MemOperand(jssp, x0, LSL, kPointerSizeLog2)); } // 2a. At least one argument, return x0 if it's a string, otherwise // dispatch to appropriate conversion. Label drop_frame_and_ret, to_string, symbol_descriptive_string; { __ JumpIfSmi(x0, &to_string); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CompareObjectType(x0, x3, x3, FIRST_NONSTRING_TYPE); __ B(hi, &to_string); __ B(eq, &symbol_descriptive_string); __ b(&drop_frame_and_ret); } // 2b. No arguments, return the empty string (and pop the receiver). __ Bind(&no_arguments); { __ LoadRoot(x0, Heap::kempty_stringRootIndex); __ Drop(1); __ Ret(); } // 3a. Convert x0 to a string. __ Bind(&to_string); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(x2); __ EnterBuiltinFrame(cp, x1, x2); __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); __ LeaveBuiltinFrame(cp, x1, x2); __ SmiUntag(x2); } __ b(&drop_frame_and_ret); // 3b. Convert symbol in x0 to a string. __ Bind(&symbol_descriptive_string); { __ Drop(x2); __ Drop(1); __ Push(x0); __ TailCallRuntime(Runtime::kSymbolDescriptiveString); } __ bind(&drop_frame_and_ret); { __ Drop(x2); __ Drop(1); __ Ret(); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- x3 : new target // -- cp : context // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_StringConstructor_ConstructStub"); // 1. Make sure we operate in the context of the called function. __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); // 2. Load the first argument into x2. { Label no_arguments, done; __ mov(x6, x0); // Store argc in x6. __ Cbz(x0, &no_arguments); __ Sub(x0, x0, 1); __ Ldr(x2, MemOperand(jssp, x0, LSL, kPointerSizeLog2)); __ B(&done); __ Bind(&no_arguments); __ LoadRoot(x2, Heap::kempty_stringRootIndex); __ Bind(&done); } // 3. Make sure x2 is a string. { Label convert, done_convert; __ JumpIfSmi(x2, &convert); __ JumpIfObjectType(x2, x4, x4, FIRST_NONSTRING_TYPE, &done_convert, lo); __ Bind(&convert); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(x6); __ EnterBuiltinFrame(cp, x1, x6); __ Push(x3); __ Move(x0, x2); __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); __ Move(x2, x0); __ Pop(x3); __ LeaveBuiltinFrame(cp, x1, x6); __ SmiUntag(x6); } __ Bind(&done_convert); } // 4. Check if new target and constructor differ. Label drop_frame_and_ret, new_object; __ Cmp(x1, x3); __ B(ne, &new_object); // 5. Allocate a JSValue wrapper for the string. __ AllocateJSValue(x0, x1, x2, x4, x5, &new_object); __ B(&drop_frame_and_ret); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(x6); __ EnterBuiltinFrame(cp, x1, x6); __ Push(x2); // first argument __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), RelocInfo::CODE_TARGET); __ Pop(x2); __ LeaveBuiltinFrame(cp, x1, x6); __ SmiUntag(x6); } __ Str(x2, FieldMemOperand(x0, JSValue::kValueOffset)); __ bind(&drop_frame_and_ret); { __ Drop(x6); __ Drop(1); __ Ret(); } } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x2, FieldMemOperand(x2, SharedFunctionInfo::kCodeOffset)); __ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag); __ Br(x2); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- x0 : argument count (preserved for callee) // -- x1 : target function (preserved for callee) // -- x3 : new target (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. // Push another copy as a parameter to the runtime call. __ SmiTag(x0); __ Push(x0, x1, x3, x1); __ CallRuntime(function_id, 1); __ Move(x2, x0); // Restore target function and new target. __ Pop(x3, x1, x0); __ SmiUntag(x0); } __ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag); __ Br(x2); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, not // checking may delay installing ready functions, and always checking would be // quite expensive. A good compromise is to first check against stack limit as // a cue for an interrupt signal. Label ok; __ CompareRoot(masm->StackPointer(), Heap::kStackLimitRootIndex); __ B(hs, &ok); GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode); __ Bind(&ok); GenerateTailCallToSharedCode(masm); } namespace { void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_implicit_receiver, bool check_derived_construct) { Label post_instantiation_deopt_entry; // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- x3 : new target // -- lr : return address // -- cp : context pointer // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_JSConstructStubHelper"); Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the four incoming parameters on the stack. Register argc = x0; Register constructor = x1; Register new_target = x3; // Preserve the incoming parameters on the stack. __ SmiTag(argc); __ Push(cp, argc); if (create_implicit_receiver) { // Allocate the new receiver object. __ Push(constructor, new_target); __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), RelocInfo::CODE_TARGET); __ Mov(x4, x0); __ Pop(new_target, constructor); // ----------- S t a t e ------------- // -- x1: constructor function // -- x3: new target // -- x4: newly allocated object // ----------------------------------- // Reload the number of arguments from the stack. // Set it up in x0 for the function call below. // jssp[0]: number of arguments (smi-tagged) __ Peek(argc, 0); // Load number of arguments. } __ SmiUntag(argc); if (create_implicit_receiver) { // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(x4, x4); } else { __ PushRoot(Heap::kTheHoleValueRootIndex); } // Deoptimizer re-enters stub code here. __ Bind(&post_instantiation_deopt_entry); // Set up pointer to last argument. __ Add(x2, fp, StandardFrameConstants::kCallerSPOffset); // Copy arguments and receiver to the expression stack. // Copy 2 values every loop to use ldp/stp. // x0: number of arguments // x1: constructor function // x2: address of last argument (caller sp) // x3: new target // jssp[0]: receiver // jssp[1]: receiver // jssp[2]: number of arguments (smi-tagged) // Compute the start address of the copy in x3. __ Add(x4, x2, Operand(argc, LSL, kPointerSizeLog2)); Label loop, entry, done_copying_arguments; __ B(&entry); __ Bind(&loop); __ Ldp(x10, x11, MemOperand(x4, -2 * kPointerSize, PreIndex)); __ Push(x11, x10); __ Bind(&entry); __ Cmp(x4, x2); __ B(gt, &loop); // Because we copied values 2 by 2 we may have copied one extra value. // Drop it if that is the case. __ B(eq, &done_copying_arguments); __ Drop(1); __ Bind(&done_copying_arguments); // Call the function. // x0: number of arguments // x1: constructor function // x3: new target ParameterCount actual(argc); __ InvokeFunction(constructor, new_target, actual, CALL_FUNCTION, CheckDebugStepCallWrapper()); // Store offset of return address for deoptimizer. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); } // Restore the context from the frame. // x0: result // jssp[0]: receiver // jssp[1]: number of arguments (smi-tagged) __ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); if (create_implicit_receiver) { // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // x0: result // jssp[0]: receiver (newly allocated object) // jssp[1]: number of arguments (smi-tagged) __ JumpIfSmi(x0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. __ JumpIfObjectType(x0, x1, x3, FIRST_JS_RECEIVER_TYPE, &exit, ge); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ Bind(&use_receiver); __ Peek(x0, 0); // Remove the receiver from the stack, remove caller arguments, and // return. __ Bind(&exit); // x0: result // jssp[0]: receiver (newly allocated object) // jssp[1]: number of arguments (smi-tagged) __ Peek(x1, 1 * kXRegSize); } else { __ Peek(x1, 0); } // Leave construct frame. } // ES6 9.2.2. Step 13+ // Check that the result is not a Smi, indicating that the constructor result // from a derived class is neither undefined nor an Object. if (check_derived_construct) { Label dont_throw; __ JumpIfNotSmi(x0, &dont_throw); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject); } __ Bind(&dont_throw); } __ DropBySMI(x1); __ Drop(1); if (create_implicit_receiver) { __ IncrementCounter(isolate->counters()->constructed_objects(), 1, x1, x2); } __ Ret(); // Store offset of trampoline address for deoptimizer. This is the bailout // point after the receiver instantiation but before the function invocation. // We need to restore some registers in order to continue the above code. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); // ----------- S t a t e ------------- // -- x0 : newly allocated object // -- sp[0] : constructor function // ----------------------------------- __ Pop(x1); __ Push(x0, x0); // Retrieve smi-tagged arguments count from the stack. __ Ldr(x0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(x0); // Retrieve the new target value from the stack. This was placed into the // frame description in place of the receiver by the optimizing compiler. __ Add(x3, fp, Operand(StandardFrameConstants::kCallerSPOffset)); __ Ldr(x3, MemOperand(x3, x0, LSL, kPointerSizeLog2)); // Continue with constructor function invocation. __ B(&post_instantiation_deopt_entry); } } } // namespace void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false, false); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, false); } void Builtins::Generate_JSBuiltinsConstructStubForDerived( MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, true); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(x1); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the value to pass to the generator // -- x1 : the JSGeneratorObject to resume // -- x2 : the resume mode (tagged) // -- lr : return address // ----------------------------------- __ AssertGeneratorObject(x1); // Store input value into generator object. __ Str(x0, FieldMemOperand(x1, JSGeneratorObject::kInputOrDebugPosOffset)); __ RecordWriteField(x1, JSGeneratorObject::kInputOrDebugPosOffset, x0, x3, kLRHasNotBeenSaved, kDontSaveFPRegs); // Store resume mode into generator object. __ Str(x2, FieldMemOperand(x1, JSGeneratorObject::kResumeModeOffset)); // Load suspended function and context. __ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset)); __ Ldr(cp, FieldMemOperand(x4, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ Mov(x10, Operand(debug_hook)); __ Ldrsb(x10, MemOperand(x10)); __ CompareAndBranch(x10, Operand(0), ne, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ Mov(x10, Operand(debug_suspended_generator)); __ Ldr(x10, MemOperand(x10)); __ CompareAndBranch(x10, Operand(x1), eq, &prepare_step_in_suspended_generator); __ Bind(&stepping_prepared); // Push receiver. __ Ldr(x5, FieldMemOperand(x1, JSGeneratorObject::kReceiverOffset)); __ Push(x5); // ----------- S t a t e ------------- // -- x1 : the JSGeneratorObject to resume // -- x2 : the resume mode (tagged) // -- x4 : generator function // -- cp : generator context // -- lr : return address // -- jssp[0] : generator receiver // ----------------------------------- // Push holes for arguments to generator function. Since the parser forced // context allocation for any variables in generators, the actual argument // values have already been copied into the context and these dummy values // will never be used. __ Ldr(x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(w10, FieldMemOperand(x10, SharedFunctionInfo::kFormalParameterCountOffset)); __ LoadRoot(x11, Heap::kTheHoleValueRootIndex); __ PushMultipleTimes(x11, w10); // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ Ldr(x3, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset)); __ CompareObjectType(x3, x3, x3, BYTECODE_ARRAY_TYPE); __ Assert(eq, kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { __ Ldr(x0, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(w0, FieldMemOperand( x0, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ Move(x3, x1); __ Move(x1, x4); __ Ldr(x5, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); __ Jump(x5); } __ Bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(x1, x2, x4); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(x2, x1); __ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset)); } __ B(&stepping_prepared); __ Bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(x1, x2); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(x2, x1); __ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset)); } __ B(&stepping_prepared); } enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt }; // Clobbers x10, x15; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, IsTagged argc_is_tagged) { // Check the stack for overflow. // We are not trying to catch interruptions (e.g. debug break and // preemption) here, so the "real stack limit" is checked. Label enough_stack_space; __ LoadRoot(x10, Heap::kRealStackLimitRootIndex); // Make x10 the space we have left. The stack might already be overflowed // here which will cause x10 to become negative. // TODO(jbramley): Check that the stack usage here is safe. __ Sub(x10, jssp, x10); // Check if the arguments will overflow the stack. if (argc_is_tagged == kArgcIsSmiTagged) { __ Cmp(x10, Operand::UntagSmiAndScale(argc, kPointerSizeLog2)); } else { DCHECK(argc_is_tagged == kArgcIsUntaggedInt); __ Cmp(x10, Operand(argc, LSL, kPointerSizeLog2)); } __ B(gt, &enough_stack_space); __ CallRuntime(Runtime::kThrowStackOverflow); // We should never return from the APPLY_OVERFLOW builtin. if (__ emit_debug_code()) { __ Unreachable(); } __ Bind(&enough_stack_space); } // Input: // x0: new.target. // x1: function. // x2: receiver. // x3: argc. // x4: argv. // Output: // x0: result. static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody(). Register new_target = x0; Register function = x1; Register receiver = x2; Register argc = x3; Register argv = x4; Register scratch = x10; ProfileEntryHookStub::MaybeCallEntryHook(masm); { // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). __ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, masm->isolate()))); __ Ldr(cp, MemOperand(scratch)); __ InitializeRootRegister(); // Push the function and the receiver onto the stack. __ Push(function, receiver); // Check if we have enough stack space to push all arguments. // Expects argument count in eax. Clobbers ecx, edx, edi. Generate_CheckStackOverflow(masm, argc, kArgcIsUntaggedInt); // Copy arguments to the stack in a loop, in reverse order. // x3: argc. // x4: argv. Label loop, entry; // Compute the copy end address. __ Add(scratch, argv, Operand(argc, LSL, kPointerSizeLog2)); __ B(&entry); __ Bind(&loop); __ Ldr(x11, MemOperand(argv, kPointerSize, PostIndex)); __ Ldr(x12, MemOperand(x11)); // Dereference the handle. __ Push(x12); // Push the argument. __ Bind(&entry); __ Cmp(scratch, argv); __ B(ne, &loop); __ Mov(scratch, argc); __ Mov(argc, new_target); __ Mov(new_target, scratch); // x0: argc. // x3: new.target. // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. // The original values have been saved in JSEntryStub::GenerateBody(). __ LoadRoot(x19, Heap::kUndefinedValueRootIndex); __ Mov(x20, x19); __ Mov(x21, x19); __ Mov(x22, x19); __ Mov(x23, x19); __ Mov(x24, x19); __ Mov(x25, x19); // Don't initialize the reserved registers. // x26 : root register (root). // x27 : context pointer (cp). // x28 : JS stack pointer (jssp). // x29 : frame pointer (fp). Handle<Code> builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS internal frame and remove the parameters (except function), // and return. } // Result is in x0. Return. __ Ret(); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ ldr(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Ldr(args_count.W(), FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::JAVA_SCRIPT); // Drop receiver + arguments. __ Drop(args_count, 1); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // - x1: the JS function object being called. // - x3: the new target // - cp: our context. // - fp: our caller's frame pointer. // - jssp: stack pointer. // - lr: return address. // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ Push(lr, fp, cp, x1); __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); // Get the bytecode array from the function object (or from the DebugInfo if // it is present) and load it into kInterpreterBytecodeArrayRegister. __ Ldr(x0, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); Register debug_info = kInterpreterBytecodeArrayRegister; Label load_debug_bytecode_array, bytecode_array_loaded; DCHECK(!debug_info.is(x0)); __ Ldr(debug_info, FieldMemOperand(x0, SharedFunctionInfo::kDebugInfoOffset)); __ JumpIfNotSmi(debug_info, &load_debug_bytecode_array); __ Ldr(kInterpreterBytecodeArrayRegister, FieldMemOperand(x0, SharedFunctionInfo::kFunctionDataOffset)); __ Bind(&bytecode_array_loaded); // Check whether we should continue to use the interpreter. Label switch_to_different_code_kind; __ Ldr(x0, FieldMemOperand(x0, SharedFunctionInfo::kCodeOffset)); __ Cmp(x0, Operand(masm->CodeObject())); // Self-reference to this code. __ B(ne, &switch_to_different_code_kind); // Increment invocation count for the function. __ Ldr(x11, FieldMemOperand(x1, JSFunction::kFeedbackVectorOffset)); __ Ldr(x11, FieldMemOperand(x11, Cell::kValueOffset)); __ Ldr(x10, FieldMemOperand( x11, FeedbackVector::kInvocationCountIndex * kPointerSize + FeedbackVector::kHeaderSize)); __ Add(x10, x10, Operand(Smi::FromInt(1))); __ Str(x10, FieldMemOperand( x11, FeedbackVector::kInvocationCountIndex * kPointerSize + FeedbackVector::kHeaderSize)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ AssertNotSmi(kInterpreterBytecodeArrayRegister, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, x0, x0, BYTECODE_ARRAY_TYPE); __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age. __ Mov(x10, Operand(BytecodeArray::kNoAgeBytecodeAge)); __ Strb(x10, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset)); // Load the initial bytecode offset. __ Mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push new.target, bytecode array and Smi tagged bytecode array offset. __ SmiTag(x0, kInterpreterBytecodeOffsetRegister); __ Push(x3, kInterpreterBytecodeArrayRegister, x0); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; DCHECK(jssp.Is(__ StackPointer())); __ Sub(x10, jssp, Operand(x11)); __ CompareRoot(x10, Heap::kRealStackLimitRootIndex); __ B(hs, &ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ Bind(&ok); // If ok, push undefined as the initial value for all register file entries. // Note: there should always be at least one stack slot for the return // register in the register file. Label loop_header; __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); // TODO(rmcilroy): Ensure we always have an even number of registers to // allow stack to be 16 bit aligned (and remove need for jssp). __ Lsr(x11, x11, kPointerSizeLog2); __ PushMultipleTimes(x10, x11); __ Bind(&loop_header); } // Load accumulator and dispatch table into registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ Mov(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Dispatch to the first bytecode handler for the function. __ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ Mov(x1, Operand(x1, LSL, kPointerSizeLog2)); __ Ldr(ip0, MemOperand(kInterpreterDispatchTableRegister, x1)); __ Call(ip0); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // The return value is in x0. LeaveInterpreterFrame(masm, x2); __ Ret(); // Load debug copy of the bytecode array. __ Bind(&load_debug_bytecode_array); __ Ldr(kInterpreterBytecodeArrayRegister, FieldMemOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex)); __ B(&bytecode_array_loaded); // If the shared code is no longer this entry trampoline, then the underlying // function has been switched to a different kind of code and we heal the // closure by switching the code entry field over to the new code as well. __ bind(&switch_to_different_code_kind); __ LeaveFrame(StackFrame::JAVA_SCRIPT); __ Ldr(x7, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x7, FieldMemOperand(x7, SharedFunctionInfo::kCodeOffset)); __ Add(x7, x7, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Str(x7, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); __ RecordWriteCodeEntryField(x1, x7, x5); __ Jump(x7); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch, Label* stack_overflow) { // Check the stack for overflow. // We are not trying to catch interruptions (e.g. debug break and // preemption) here, so the "real stack limit" is checked. Label enough_stack_space; __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); // Make scratch the space we have left. The stack might already be overflowed // here which will cause scratch to become negative. __ Sub(scratch, jssp, scratch); // Check if the arguments will overflow the stack. __ Cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2)); __ B(le, stack_overflow); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register last_arg, Register stack_addr, Register scratch, Label* stack_overflow) { // Add a stack check before pushing arguments. Generate_StackOverflowCheck(masm, num_args, scratch, stack_overflow); __ Mov(scratch, num_args); __ lsl(scratch, scratch, kPointerSizeLog2); __ sub(last_arg, index, scratch); // Set stack pointer and where to stop. __ Mov(stack_addr, jssp); __ Claim(scratch, 1); // Push the arguments. Label loop_header, loop_check; __ B(&loop_check); __ Bind(&loop_header); // TODO(rmcilroy): Push two at a time once we ensure we keep stack aligned. __ Ldr(scratch, MemOperand(index, -kPointerSize, PostIndex)); __ Str(scratch, MemOperand(stack_addr, -kPointerSize, PreIndex)); __ Bind(&loop_check); __ Cmp(index, last_arg); __ B(gt, &loop_header); } // static void Builtins::Generate_InterpreterPushArgsAndCallImpl( MacroAssembler* masm, TailCallMode tail_call_mode, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- x1 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; // Add one for the receiver. __ add(x3, x0, Operand(1)); // Push the arguments. x2, x4, x5, x6 will be modified. Generate_InterpreterPushArgs(masm, x3, x2, x4, x5, x6, &stack_overflow); // Call the target. if (mode == InterpreterPushArgsMode::kJSFunction) { __ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny, tail_call_mode), RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(masm->isolate()->builtins()->CallWithSpread(), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, tail_call_mode), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); __ Unreachable(); } } // static void Builtins::Generate_InterpreterPushArgsAndConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- x0 : argument count (not including receiver) // -- x3 : new target // -- x1 : constructor to call // -- x2 : allocation site feedback if available, undefined otherwise // -- x4 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver. __ Push(xzr); // Push the arguments. x5, x4, x6, x7 will be modified. Generate_InterpreterPushArgs(masm, x0, x4, x5, x6, x7, &stack_overflow); __ AssertUndefinedOrAllocationSite(x2, x6); if (mode == InterpreterPushArgsMode::kJSFunction) { __ AssertFunction(x1); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset)); __ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag); __ Br(x4); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with x0, x1, and x3 unmodified. __ Jump(masm->isolate()->builtins()->ConstructWithSpread(), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with x0, x1, and x3 unmodified. __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); __ Unreachable(); } } // static void Builtins::Generate_InterpreterPushArgsAndConstructArray( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argument count (not including receiver) // -- x1 : target to call verified to be Array function // -- x2 : allocation site feedback if available, undefined otherwise. // -- x3 : address of the first argument // ----------------------------------- Label stack_overflow; __ add(x4, x0, Operand(1)); // Add one for the receiver. // Push the arguments. x3, x5, x6, x7 will be modified. Generate_InterpreterPushArgs(masm, x4, x3, x5, x6, x7, &stack_overflow); // Array constructor expects constructor in x3. It is same as call target. __ mov(x3, x1); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); __ Unreachable(); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); __ LoadObject(x1, masm->isolate()->builtins()->InterpreterEntryTrampoline()); __ Add(lr, x1, Operand(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); // Initialize the dispatch table register. __ Mov(kInterpreterDispatchTableRegister, Operand(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Get the bytecode array pointer from the frame. __ Ldr(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, x1, x1, BYTECODE_ARRAY_TYPE); __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ Ldr(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ Mov(x1, Operand(x1, LSL, kPointerSizeLog2)); __ Ldr(ip0, MemOperand(kInterpreterDispatchTableRegister, x1)); __ Jump(ip0); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Advance the current bytecode offset stored within the given interpreter // stack frame. This simulates what all bytecode handlers do upon completion // of the underlying operation. __ Ldr(x1, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Ldr(x2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(kInterpreterAccumulatorRegister, x1, x2); __ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset); __ Mov(x2, x0); // Result is the new bytecode offset. __ Pop(kInterpreterAccumulatorRegister); } __ Str(x2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argument count (preserved for callee) // -- x3 : new target (preserved for callee) // -- x1 : target function (preserved for callee) // ----------------------------------- // First lookup code, maybe we don't need to compile! Label gotta_call_runtime; Label try_shared; Label loop_top, loop_bottom; Register closure = x1; Register map = x13; Register index = x2; // Do we have a valid feedback vector? __ Ldr(index, FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset)); __ Ldr(index, FieldMemOperand(index, Cell::kValueOffset)); __ JumpIfRoot(index, Heap::kUndefinedValueRootIndex, &gotta_call_runtime); __ Ldr(map, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(map, FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset)); __ Ldrsw(index, UntagSmiFieldMemOperand(map, FixedArray::kLengthOffset)); __ Cmp(index, Operand(2)); __ B(lt, &try_shared); // x3 : native context // x2 : length / index // x13 : optimized code map // stack[0] : new target // stack[4] : closure Register native_context = x4; __ Ldr(native_context, NativeContextMemOperand()); __ Bind(&loop_top); Register temp = x5; Register array_pointer = x6; // Does the native context match? __ Add(array_pointer, map, Operand(index, LSL, kPointerSizeLog2)); __ Ldr(temp, FieldMemOperand(array_pointer, SharedFunctionInfo::kOffsetToPreviousContext)); __ Ldr(temp, FieldMemOperand(temp, WeakCell::kValueOffset)); __ Cmp(temp, native_context); __ B(ne, &loop_bottom); // Code available? Register entry = x7; __ Ldr(entry, FieldMemOperand(array_pointer, SharedFunctionInfo::kOffsetToPreviousCachedCode)); __ Ldr(entry, FieldMemOperand(entry, WeakCell::kValueOffset)); __ JumpIfSmi(entry, &try_shared); // Found code. Get it into the closure and return. __ Add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Str(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset)); __ RecordWriteCodeEntryField(closure, entry, x5); // Link the closure into the optimized function list. // x7 : code entry // x4 : native context // x1 : closure __ Ldr(x8, ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST)); __ Str(x8, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset)); __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, x8, x13, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); const int function_list_offset = Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST); __ Str(closure, ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST)); __ Mov(x5, closure); __ RecordWriteContextSlot(native_context, function_list_offset, x5, x13, kLRHasNotBeenSaved, kDontSaveFPRegs); __ Jump(entry); __ Bind(&loop_bottom); __ Sub(index, index, Operand(SharedFunctionInfo::kEntryLength)); __ Cmp(index, Operand(1)); __ B(gt, &loop_top); // We found no code. __ Bind(&try_shared); __ Ldr(entry, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); // Is the shared function marked for tier up? __ Ldrb(temp, FieldMemOperand( entry, SharedFunctionInfo::kMarkedForTierUpByteOffset)); __ TestAndBranchIfAnySet( temp, 1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte, &gotta_call_runtime); // If SFI points to anything other than CompileLazy, install that. __ Ldr(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset)); __ Move(temp, masm->CodeObject()); __ Cmp(entry, temp); __ B(eq, &gotta_call_runtime); // Install the SFI's code entry. __ Add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Str(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset)); __ RecordWriteCodeEntryField(closure, entry, x5); __ Jump(entry); __ Bind(&gotta_call_runtime); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } void Builtins::Generate_CompileBaseline(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_NotConcurrent); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argument count (preserved for callee) // -- x1 : new target (preserved for callee) // -- x3 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ Move(x4, x0); // Push a copy of the target function and the new target. __ SmiTag(x0); // Push another copy as a parameter to the runtime call. __ Push(x0, x1, x3, x1); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ cmp(x4, Operand(j)); __ B(ne, &over); } for (int i = j - 1; i >= 0; --i) { __ ldr(x4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(x4); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(x0, &failed); __ Drop(2); __ pop(x4); __ SmiUntag(x4); scope.GenerateLeaveFrame(); __ add(x4, x4, Operand(1)); __ Drop(x4); __ Ret(); __ bind(&failed); // Restore target function and new target. __ Pop(x3, x1, x0); __ SmiUntag(x0); } // On failure, tail call back to regular js. GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code fast, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // The following caller-saved registers must be saved and restored when // calling through to the runtime: // x0 - The address from which to resume execution. // x1 - isolate // x3 - new target // lr - The return address for the JSFunction itself. It has not yet been // preserved on the stack because the frame setup code was replaced // with a call to this stub, to handle code ageing. { FrameScope scope(masm, StackFrame::MANUAL); __ Push(x0, x1, x3, fp, lr); __ Mov(x1, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ Pop(lr, fp, x3, x1, x0); } // The calling function has been made young again, so return to execute the // real frame set-up code. __ Br(x0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // The following caller-saved registers must be saved and restored when // calling through to the runtime: // x0 - The address from which to resume execution. // x1 - isolate // x3 - new target // lr - The return address for the JSFunction itself. It has not yet been // preserved on the stack because the frame setup code was replaced // with a call to this stub, to handle code ageing. { FrameScope scope(masm, StackFrame::MANUAL); __ Push(x0, x1, x3, fp, lr); __ Mov(x1, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); __ Pop(lr, fp, x3, x1, x0); // Perform prologue operations usually performed by the young code stub. __ EmitFrameSetupForCodeAgePatching(masm); } // Jump to point after the code-age stub. __ Add(x0, x0, kNoCodeAgeSequenceLength); __ Br(x0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. // TODO(jbramley): Is it correct (and appropriate) to use safepoint // registers here? According to the comment above, we should only need to // preserve the registers with parameters. __ PushXRegList(kSafepointSavedRegisters); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles); __ PopXRegList(kSafepointSavedRegisters); } // Ignore state (pushed by Deoptimizer::EntryGenerator::Generate). __ Drop(1); // Jump to the miss handler. Deoptimizer::EntryGenerator::Generate loads this // into lr before it jumps here. __ Br(lr); } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the deoptimization type to the runtime system. __ Mov(x0, Smi::FromInt(static_cast<int>(type))); __ Push(x0); __ CallRuntime(Runtime::kNotifyDeoptimized); } // Get the full codegen state from the stack and untag it. Register state = x6; __ Peek(state, 0); __ SmiUntag(state); // Switch on the state. Label with_tos_register, unknown_state; __ CompareAndBranch(state, static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS), ne, &with_tos_register); __ Drop(1); // Remove state. __ Ret(); __ Bind(&with_tos_register); // Reload TOS register. DCHECK_EQ(kInterpreterAccumulatorRegister.code(), x0.code()); __ Peek(x0, kPointerSize); __ CompareAndBranch(state, static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER), ne, &unknown_state); __ Drop(2); // Remove state and TOS. __ Ret(); __ Bind(&unknown_state); __ Abort(kInvalidFullCodegenState); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver, Register function_template_info, Register scratch0, Register scratch1, Register scratch2, Label* receiver_check_failed) { Register signature = scratch0; Register map = scratch1; Register constructor = scratch2; // If there is no signature, return the holder. __ Ldr(signature, FieldMemOperand(function_template_info, FunctionTemplateInfo::kSignatureOffset)); __ CompareRoot(signature, Heap::kUndefinedValueRootIndex); Label receiver_check_passed; __ B(eq, &receiver_check_passed); // Walk the prototype chain. __ Ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); Label prototype_loop_start; __ Bind(&prototype_loop_start); // Get the constructor, if any __ GetMapConstructor(constructor, map, x16, x16); __ cmp(x16, Operand(JS_FUNCTION_TYPE)); Label next_prototype; __ B(ne, &next_prototype); Register type = constructor; __ Ldr(type, FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset)); // Loop through the chain of inheriting function templates. Label function_template_loop; __ Bind(&function_template_loop); // If the signatures match, we have a compatible receiver. __ Cmp(signature, type); __ B(eq, &receiver_check_passed); // If the current type is not a FunctionTemplateInfo, load the next prototype // in the chain. __ JumpIfSmi(type, &next_prototype); __ CompareObjectType(type, x16, x17, FUNCTION_TEMPLATE_INFO_TYPE); __ B(ne, &next_prototype); // Otherwise load the parent function template and iterate. __ Ldr(type, FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset)); __ B(&function_template_loop); // Load the next prototype. __ Bind(&next_prototype); __ Ldr(x16, FieldMemOperand(map, Map::kBitField3Offset)); __ Tst(x16, Operand(Map::HasHiddenPrototype::kMask)); __ B(eq, receiver_check_failed); __ Ldr(receiver, FieldMemOperand(map, Map::kPrototypeOffset)); __ Ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Iterate. __ B(&prototype_loop_start); __ Bind(&receiver_check_passed); } void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments excluding receiver // -- x1 : callee // -- lr : return address // -- sp[0] : last argument // -- ... // -- sp[8 * (argc - 1)] : first argument // -- sp[8 * argc] : receiver // ----------------------------------- // Load the FunctionTemplateInfo. __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset)); // Do the compatible receiver check. Label receiver_check_failed; __ Ldr(x2, MemOperand(jssp, x0, LSL, kPointerSizeLog2)); CompatibleReceiverCheck(masm, x2, x3, x4, x5, x6, &receiver_check_failed); // Get the callback offset from the FunctionTemplateInfo, and jump to the // beginning of the code. __ Ldr(x4, FieldMemOperand(x3, FunctionTemplateInfo::kCallCodeOffset)); __ Ldr(x4, FieldMemOperand(x4, CallHandlerInfo::kFastHandlerOffset)); __ Add(x4, x4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(x4); // Compatible receiver check failed: throw an Illegal Invocation exception. __ Bind(&receiver_check_failed); // Drop the arguments (including the receiver) __ add(x0, x0, Operand(1)); __ Drop(x0); __ TailCallRuntime(Runtime::kThrowIllegalInvocation); } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ Ldr(x0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(x0, MemOperand(x0, JavaScriptFrameConstants::kFunctionOffset)); } else { __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ Push(x0); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. Label skip; __ CompareAndBranch(x0, Smi::kZero, ne, &skip); __ Ret(); __ Bind(&skip); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ Ldr(x1, MemOperand(x0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ Ldrsw(w1, UntagSmiFieldMemOperand( x1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex))); // Compute the target address = code_obj + header_size + osr_offset // <entry_addr> = <code_obj> + #header_size + <osr_offset> __ Add(x0, x0, x1); __ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argc // -- jssp[0] : argArray (if argc == 2) // -- jssp[8] : thisArg (if argc >= 1) // -- jssp[16] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_FunctionPrototypeApply"); Register argc = x0; Register arg_array = x0; Register receiver = x1; Register this_arg = x2; Register undefined_value = x3; Register null_value = x4; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); __ LoadRoot(null_value, Heap::kNullValueRootIndex); // 1. Load receiver into x1, argArray into x0 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { // Claim (2 - argc) dummy arguments from the stack, to put the stack in a // consistent state for a simple pop operation. __ Claim(2); __ Drop(argc); // ----------- S t a t e ------------- // -- x0 : argc // -- jssp[0] : argArray (dummy value if argc <= 1) // -- jssp[8] : thisArg (dummy value if argc == 0) // -- jssp[16] : receiver // ----------------------------------- __ Cmp(argc, 1); __ Pop(arg_array, this_arg); // Overwrites argc. __ CmovX(this_arg, undefined_value, lo); // undefined if argc == 0. __ CmovX(arg_array, undefined_value, ls); // undefined if argc <= 1. __ Peek(receiver, 0); __ Poke(this_arg, 0); } // ----------- S t a t e ------------- // -- x0 : argArray // -- x1 : receiver // -- x3 : undefined root value // -- jssp[0] : thisArg // ----------------------------------- // 2. Make sure the receiver is actually callable. Label receiver_not_callable; __ JumpIfSmi(receiver, &receiver_not_callable); __ Ldr(x10, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ Ldrb(w10, FieldMemOperand(x10, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x10, 1 << Map::kIsCallable, &receiver_not_callable); // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ Cmp(arg_array, null_value); __ Ccmp(arg_array, undefined_value, ZFlag, ne); __ B(eq, &no_arguments); // 4a. Apply the receiver to the given argArray (passing undefined for // new.target in x3). DCHECK(undefined_value.Is(x3)); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ Bind(&no_arguments); { __ Mov(x0, 0); DCHECK(receiver.Is(x1)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // 4c. The receiver is not callable, throw an appropriate TypeError. __ Bind(&receiver_not_callable); { __ Poke(receiver, 0); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { Register argc = x0; Register function = x1; Register scratch1 = x10; Register scratch2 = x11; ASM_LOCATION("Builtins::Generate_FunctionPrototypeCall"); // 1. Make sure we have at least one argument. { Label done; __ Cbnz(argc, &done); __ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex); __ Push(scratch1); __ Mov(argc, 1); __ Bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. __ Peek(function, Operand(argc, LSL, kXRegSizeLog2)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; // Calculate the copy start address (destination). Copy end address is jssp. __ Add(scratch2, jssp, Operand(argc, LSL, kPointerSizeLog2)); __ Sub(scratch1, scratch2, kPointerSize); __ Bind(&loop); __ Ldr(x12, MemOperand(scratch1, -kPointerSize, PostIndex)); __ Str(x12, MemOperand(scratch2, -kPointerSize, PostIndex)); __ Cmp(scratch1, jssp); __ B(ge, &loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Sub(argc, argc, 1); __ Drop(1); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argc // -- jssp[0] : argumentsList (if argc == 3) // -- jssp[8] : thisArgument (if argc >= 2) // -- jssp[16] : target (if argc >= 1) // -- jssp[24] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_ReflectApply"); Register argc = x0; Register arguments_list = x0; Register target = x1; Register this_argument = x2; Register undefined_value = x3; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load target into x1 (if present), argumentsList into x0 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { // Claim (3 - argc) dummy arguments from the stack, to put the stack in a // consistent state for a simple pop operation. __ Claim(3); __ Drop(argc); // ----------- S t a t e ------------- // -- x0 : argc // -- jssp[0] : argumentsList (dummy value if argc <= 2) // -- jssp[8] : thisArgument (dummy value if argc <= 1) // -- jssp[16] : target (dummy value if argc == 0) // -- jssp[24] : receiver // ----------------------------------- __ Adds(x10, argc, 0); // Preserve argc, and set the Z flag if it is zero. __ Pop(arguments_list, this_argument, target); // Overwrites argc. __ CmovX(target, undefined_value, eq); // undefined if argc == 0. __ Cmp(x10, 2); __ CmovX(this_argument, undefined_value, lo); // undefined if argc <= 1. __ CmovX(arguments_list, undefined_value, ls); // undefined if argc <= 2. __ Poke(this_argument, 0); // Overwrite receiver. } // ----------- S t a t e ------------- // -- x0 : argumentsList // -- x1 : target // -- jssp[0] : thisArgument // ----------------------------------- // 2. Make sure the target is actually callable. Label target_not_callable; __ JumpIfSmi(target, &target_not_callable); __ Ldr(x10, FieldMemOperand(target, HeapObject::kMapOffset)); __ Ldr(x10, FieldMemOperand(x10, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x10, 1 << Map::kIsCallable, &target_not_callable); // 3a. Apply the target to the given argumentsList (passing undefined for // new.target in x3). DCHECK(undefined_value.Is(x3)); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 3b. The target is not callable, throw an appropriate TypeError. __ Bind(&target_not_callable); { __ Poke(target, 0); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argc // -- jssp[0] : new.target (optional) // -- jssp[8] : argumentsList // -- jssp[16] : target // -- jssp[24] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_ReflectConstruct"); Register argc = x0; Register arguments_list = x0; Register target = x1; Register new_target = x3; Register undefined_value = x4; __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); // 1. Load target into x1 (if present), argumentsList into x0 (if present), // new.target into x3 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { // Claim (3 - argc) dummy arguments from the stack, to put the stack in a // consistent state for a simple pop operation. __ Claim(3); __ Drop(argc); // ----------- S t a t e ------------- // -- x0 : argc // -- jssp[0] : new.target (dummy value if argc <= 2) // -- jssp[8] : argumentsList (dummy value if argc <= 1) // -- jssp[16] : target (dummy value if argc == 0) // -- jssp[24] : receiver // ----------------------------------- __ Adds(x10, argc, 0); // Preserve argc, and set the Z flag if it is zero. __ Pop(new_target, arguments_list, target); // Overwrites argc. __ CmovX(target, undefined_value, eq); // undefined if argc == 0. __ Cmp(x10, 2); __ CmovX(arguments_list, undefined_value, lo); // undefined if argc <= 1. __ CmovX(new_target, target, ls); // target if argc <= 2. __ Poke(undefined_value, 0); // Overwrite receiver. } // ----------- S t a t e ------------- // -- x0 : argumentsList // -- x1 : target // -- x3 : new.target // -- jssp[0] : receiver (undefined) // ----------------------------------- // 2. Make sure the target is actually a constructor. Label target_not_constructor; __ JumpIfSmi(target, &target_not_constructor); __ Ldr(x10, FieldMemOperand(target, HeapObject::kMapOffset)); __ Ldrb(x10, FieldMemOperand(x10, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x10, 1 << Map::kIsConstructor, &target_not_constructor); // 3. Make sure the new.target is actually a constructor. Label new_target_not_constructor; __ JumpIfSmi(new_target, &new_target_not_constructor); __ Ldr(x10, FieldMemOperand(new_target, HeapObject::kMapOffset)); __ Ldrb(x10, FieldMemOperand(x10, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x10, 1 << Map::kIsConstructor, &new_target_not_constructor); // 4a. Construct the target with the given new.target and argumentsList. __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The target is not a constructor, throw an appropriate TypeError. __ Bind(&target_not_constructor); { __ Poke(target, 0); __ TailCallRuntime(Runtime::kThrowNotConstructor); } // 4c. The new.target is not a constructor, throw an appropriate TypeError. __ Bind(&new_target_not_constructor); { __ Poke(new_target, 0); __ TailCallRuntime(Runtime::kThrowNotConstructor); } } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(x10, x0); __ Mov(x11, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)); __ Push(lr, fp); __ Push(x11, x1, x10); __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then drop the parameters and the receiver. __ Ldr(x10, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ Mov(jssp, fp); __ Pop(fp, lr); __ DropBySMI(x10, kXRegSize); __ Drop(1); } // static void Builtins::Generate_Apply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argumentsList // -- x1 : target // -- x3 : new.target (checked to be constructor or undefined) // -- jssp[0] : thisArgument // ----------------------------------- Register arguments_list = x0; Register target = x1; Register new_target = x3; Register args = x0; Register len = x2; // Create the list of arguments from the array-like argumentsList. { Label create_arguments, create_array, create_holey_array, create_runtime, done_create; __ JumpIfSmi(arguments_list, &create_runtime); // Load native context. Register native_context = x4; __ Ldr(native_context, NativeContextMemOperand()); // Load the map of argumentsList. Register arguments_list_map = x2; __ Ldr(arguments_list_map, FieldMemOperand(arguments_list, HeapObject::kMapOffset)); // Check if argumentsList is an (unmodified) arguments object. __ Ldr(x10, ContextMemOperand(native_context, Context::SLOPPY_ARGUMENTS_MAP_INDEX)); __ Ldr(x11, ContextMemOperand(native_context, Context::STRICT_ARGUMENTS_MAP_INDEX)); __ Cmp(arguments_list_map, x10); __ Ccmp(arguments_list_map, x11, ZFlag, ne); __ B(eq, &create_arguments); // Check if argumentsList is a fast JSArray. __ CompareInstanceType(arguments_list_map, x10, JS_ARRAY_TYPE); __ B(eq, &create_array); // Ask the runtime to create the list (actually a FixedArray). __ Bind(&create_runtime); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(target, new_target, arguments_list); __ CallRuntime(Runtime::kCreateListFromArrayLike); __ Pop(new_target, target); __ Ldrsw(len, UntagSmiFieldMemOperand(arguments_list, FixedArray::kLengthOffset)); } __ B(&done_create); // Try to create the list from an arguments object. __ Bind(&create_arguments); __ Ldrsw(len, UntagSmiFieldMemOperand(arguments_list, JSArgumentsObject::kLengthOffset)); __ Ldr(x10, FieldMemOperand(arguments_list, JSObject::kElementsOffset)); __ Ldrsw(x11, UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset)); __ CompareAndBranch(len, x11, ne, &create_runtime); __ Mov(args, x10); __ B(&done_create); // For holey JSArrays we need to check that the array prototype chain // protector is intact and our prototype is the Array.prototype actually. __ Bind(&create_holey_array); // -- x2 : arguments_list_map // -- x4 : native_context Register arguments_list_prototype = x2; __ Ldr(arguments_list_prototype, FieldMemOperand(arguments_list_map, Map::kPrototypeOffset)); __ Ldr(x10, ContextMemOperand(native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX)); __ Cmp(arguments_list_prototype, x10); __ B(ne, &create_runtime); __ LoadRoot(x10, Heap::kArrayProtectorRootIndex); __ Ldrsw(x11, UntagSmiFieldMemOperand(x10, PropertyCell::kValueOffset)); __ Cmp(x11, Isolate::kProtectorValid); __ B(ne, &create_runtime); __ Ldrsw(len, UntagSmiFieldMemOperand(arguments_list, JSArray::kLengthOffset)); __ Ldr(args, FieldMemOperand(arguments_list, JSArray::kElementsOffset)); __ B(&done_create); // Try to create the list from a JSArray object. __ Bind(&create_array); __ Ldr(x10, FieldMemOperand(arguments_list_map, Map::kBitField2Offset)); __ DecodeField<Map::ElementsKindBits>(x10); STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); // Check if it is a holey array, the order of the cmp is important as // anything higher than FAST_HOLEY_ELEMENTS will fall back to runtime. __ Cmp(x10, FAST_HOLEY_ELEMENTS); __ B(hi, &create_runtime); // Only FAST_XXX after this point, FAST_HOLEY_XXX are odd values. __ Tbnz(x10, 0, &create_holey_array); // FAST_SMI_ELEMENTS or FAST_ELEMENTS after this point. __ Ldrsw(len, UntagSmiFieldMemOperand(arguments_list, JSArray::kLengthOffset)); __ Ldr(args, FieldMemOperand(arguments_list, JSArray::kElementsOffset)); __ Bind(&done_create); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(x10, Heap::kRealStackLimitRootIndex); // Make x10 the space we have left. The stack might already be overflowed // here which will cause x10 to become negative. __ Sub(x10, masm->StackPointer(), x10); // Check if the arguments will overflow the stack. __ Cmp(x10, Operand(len, LSL, kPointerSizeLog2)); __ B(gt, &done); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ Bind(&done); } // ----------- S t a t e ------------- // -- x0 : args (a FixedArray built from argumentsList) // -- x1 : target // -- x2 : len (number of elements to push from args) // -- x3 : new.target (checked to be constructor or undefined) // -- jssp[0] : thisArgument // ----------------------------------- // Push arguments onto the stack (thisArgument is already on the stack). { Label done, push, loop; Register src = x4; __ Add(src, args, FixedArray::kHeaderSize - kHeapObjectTag); __ Mov(x0, len); // The 'len' argument for Call() or Construct(). __ Cbz(len, &done); Register the_hole_value = x11; Register undefined_value = x12; // We do not use the CompareRoot macro as it would do a LoadRoot behind the // scenes and we want to avoid that in a loop. __ LoadRoot(the_hole_value, Heap::kTheHoleValueRootIndex); __ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex); __ Claim(len); __ Bind(&loop); __ Sub(len, len, 1); __ Ldr(x10, MemOperand(src, kPointerSize, PostIndex)); __ Cmp(x10, the_hole_value); __ Csel(x10, x10, undefined_value, ne); __ Poke(x10, Operand(len, LSL, kPointerSizeLog2)); __ Cbnz(len, &loop); __ Bind(&done); } // ----------- S t a t e ------------- // -- x0 : argument count (len) // -- x1 : target // -- x3 : new.target (checked to be constructor or undefined) // -- jssp[0] : args[len-1] // -- jssp[8] : args[len-2] // ... : ... // -- jssp[8*(len-2)] : args[1] // -- jssp[8*(len-1)] : args[0] // ----------------------------------- // Dispatch to Call or Construct depending on whether new.target is undefined. { __ CompareRoot(new_target, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET, eq); __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- x1 : the target to call (can be any Object) // -- x2 : start index (to support rest parameters) // -- lr : return address. // -- sp[0] : thisArgument // ----------------------------------- // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ Ldr(x3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(x4, MemOperand(x3, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Cmp(x4, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)); __ B(eq, &arguments_adaptor); { __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Ldr(x0, FieldMemOperand(x0, JSFunction::kSharedFunctionInfoOffset)); __ Ldrsw(x0, FieldMemOperand( x0, SharedFunctionInfo::kFormalParameterCountOffset)); __ Mov(x3, fp); } __ B(&arguments_done); __ Bind(&arguments_adaptor); { // Just load the length from ArgumentsAdaptorFrame. __ Ldrsw(x0, UntagSmiMemOperand( x3, ArgumentsAdaptorFrameConstants::kLengthOffset)); } __ Bind(&arguments_done); Label stack_empty, stack_done, stack_overflow; __ Subs(x0, x0, x2); __ B(le, &stack_empty); { // Check for stack overflow. Generate_StackOverflowCheck(masm, x0, x2, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ Add(x3, x3, kPointerSize); __ Mov(x2, x0); __ bind(&loop); { __ Ldr(x4, MemOperand(x3, x2, LSL, kPointerSizeLog2)); __ Push(x4); __ Subs(x2, x2, 1); __ B(ne, &loop); } } } __ B(&stack_done); __ Bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ Bind(&stack_empty); { // We just pass the receiver, which is already on the stack. __ Mov(x0, 0); } __ Bind(&stack_done); __ Jump(code, RelocInfo::CODE_TARGET); } namespace { // Drops top JavaScript frame and an arguments adaptor frame below it (if // present) preserving all the arguments prepared for current call. // Does nothing if debugger is currently active. // ES6 14.6.3. PrepareForTailCall // // Stack structure for the function g() tail calling f(): // // ------- Caller frame: ------- // | ... // | g()'s arg M // | ... // | g()'s arg 1 // | g()'s receiver arg // | g()'s caller pc // ------- g()'s frame: ------- // | g()'s caller fp <- fp // | g()'s context // | function pointer: g // | ------------------------- // | ... // | ... // | f()'s arg N // | ... // | f()'s arg 1 // | f()'s receiver arg <- sp (f()'s caller pc is not on the stack yet!) // ---------------------- // void PrepareForTailCall(MacroAssembler* masm, Register args_reg, Register scratch1, Register scratch2, Register scratch3) { DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); Comment cmnt(masm, "[ PrepareForTailCall"); // Prepare for tail call only if ES2015 tail call elimination is enabled. Label done; ExternalReference is_tail_call_elimination_enabled = ExternalReference::is_tail_call_elimination_enabled_address( masm->isolate()); __ Mov(scratch1, Operand(is_tail_call_elimination_enabled)); __ Ldrb(scratch1, MemOperand(scratch1)); __ Cmp(scratch1, Operand(0)); __ B(eq, &done); // Drop possible interpreter handler/stub frame. { Label no_interpreter_frame; __ Ldr(scratch3, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Cmp(scratch3, Operand(StackFrame::TypeToMarker(StackFrame::STUB))); __ B(ne, &no_interpreter_frame); __ Ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ bind(&no_interpreter_frame); } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(scratch3, MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Cmp(scratch3, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ B(ne, &no_arguments_adaptor); // Drop current frame and load arguments count from arguments adaptor frame. __ mov(fp, scratch2); __ Ldr(caller_args_count_reg, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); __ B(&formal_parameter_count_loaded); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count __ Ldr(scratch1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Ldr(scratch1, FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); __ Ldrsw(caller_args_count_reg, FieldMemOperand(scratch1, SharedFunctionInfo::kFormalParameterCountOffset)); __ bind(&formal_parameter_count_loaded); ParameterCount callee_args_count(args_reg); __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, scratch3); __ bind(&done); } } // namespace // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { ASM_LOCATION("Builtins::Generate_CallFunction"); // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(x1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that function is not a "classConstructor". Label class_constructor; __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kCompilerHintsOffset)); __ TestAndBranchIfAnySet(w3, FunctionKind::kClassConstructor << SharedFunctionInfo::kFunctionKindShift, &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ TestAndBranchIfAnySet(w3, (1 << SharedFunctionInfo::kNative) | (1 << SharedFunctionInfo::kStrictModeFunction), &done_convert); { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSFunction) // -- x2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(x3); } else { Label convert_to_object, convert_receiver; __ Peek(x3, Operand(x0, LSL, kXRegSizeLog2)); __ JumpIfSmi(x3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE); __ B(hs, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(x3, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(x3, Heap::kNullValueRootIndex, &convert_to_object); __ Bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(x3); } __ B(&convert_receiver); } __ Bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(x0); __ Push(x0, x1); __ Mov(x0, x3); __ Push(cp); __ Call(masm->isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET); __ Pop(cp); __ Mov(x3, x0); __ Pop(x1, x0); __ SmiUntag(x0); } __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Bind(&convert_receiver); } __ Poke(x3, Operand(x0, LSL, kXRegSizeLog2)); } __ Bind(&done_convert); // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSFunction) // -- x2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, x0, x3, x4, x5); } __ Ldrsw( x2, FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(x0); ParameterCount expected(x2); __ InvokeFunctionCode(x1, no_reg, expected, actual, JUMP_FUNCTION, CheckDebugStepCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(x1); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : target (checked to be a JSBoundFunction) // -- x3 : new.target (only in case of [[Construct]]) // ----------------------------------- // Load [[BoundArguments]] into x2 and length of that into x4. Label no_bound_arguments; __ Ldr(x2, FieldMemOperand(x1, JSBoundFunction::kBoundArgumentsOffset)); __ Ldrsw(x4, UntagSmiFieldMemOperand(x2, FixedArray::kLengthOffset)); __ Cmp(x4, 0); __ B(eq, &no_bound_arguments); { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : target (checked to be a JSBoundFunction) // -- x2 : the [[BoundArguments]] (implemented as FixedArray) // -- x3 : new.target (only in case of [[Construct]]) // -- x4 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ Claim(x4); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(jssp, Heap::kRealStackLimitRootIndex); __ B(gt, &done); // Signed comparison. // Restore the stack pointer. __ Drop(x4); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ Bind(&done); } // Relocate arguments down the stack. { Label loop, done_loop; __ Mov(x5, 0); __ Bind(&loop); __ Cmp(x5, x0); __ B(gt, &done_loop); __ Peek(x10, Operand(x4, LSL, kPointerSizeLog2)); __ Poke(x10, Operand(x5, LSL, kPointerSizeLog2)); __ Add(x4, x4, 1); __ Add(x5, x5, 1); __ B(&loop); __ Bind(&done_loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ Ldrsw(x4, UntagSmiFieldMemOperand(x2, FixedArray::kLengthOffset)); __ Add(x2, x2, FixedArray::kHeaderSize - kHeapObjectTag); __ Bind(&loop); __ Sub(x4, x4, 1); __ Ldr(x10, MemOperand(x2, x4, LSL, kPointerSizeLog2)); __ Poke(x10, Operand(x0, LSL, kPointerSizeLog2)); __ Add(x0, x0, 1); __ Cmp(x4, 0); __ B(gt, &loop); } } __ Bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(x1); if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, x0, x3, x4, x5); } // Patch the receiver to [[BoundThis]]. __ Ldr(x10, FieldMemOperand(x1, JSBoundFunction::kBoundThisOffset)); __ Poke(x10, Operand(x0, LSL, kPointerSizeLog2)); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ Ldr(x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Mov(x10, ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate())); __ Ldr(x11, MemOperand(x10)); __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); __ Br(x12); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(x1, &non_callable); __ Bind(&non_smi); __ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode), RelocInfo::CODE_TARGET, eq); __ Cmp(x5, JS_BOUND_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Call]] internal method. __ Ldrb(x4, FieldMemOperand(x4, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x4, 1 << Map::kIsCallable, &non_callable); __ Cmp(x5, JS_PROXY_TYPE); __ B(ne, &non_function); // 0. Prepare for tail call if necessary. if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, x0, x3, x4, x5); } // 1. Runtime fallback for Proxy [[Call]]. __ Push(x1); // Increase the arguments size to include the pushed function and the // existing receiver on the stack. __ Add(x0, x0, Operand(2)); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyCall, masm->isolate())); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ Bind(&non_function); // Overwrite the original receiver with the (original) target. __ Poke(x1, Operand(x0, LSL, kXRegSizeLog2)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, x1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(x1); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } static void CheckSpreadAndPushToStack(MacroAssembler* masm) { Register argc = x0; Register constructor = x1; Register new_target = x3; Register scratch = x2; Register scratch2 = x6; Register spread = x4; Register spread_map = x5; Register spread_len = x5; Label runtime_call, push_args; __ Peek(spread, 0); __ JumpIfSmi(spread, &runtime_call); __ Ldr(spread_map, FieldMemOperand(spread, HeapObject::kMapOffset)); // Check that the spread is an array. __ CompareInstanceType(spread_map, scratch, JS_ARRAY_TYPE); __ B(ne, &runtime_call); // Check that we have the original ArrayPrototype. __ Ldr(scratch, FieldMemOperand(spread_map, Map::kPrototypeOffset)); __ Ldr(scratch2, NativeContextMemOperand()); __ Ldr(scratch2, ContextMemOperand(scratch2, Context::INITIAL_ARRAY_PROTOTYPE_INDEX)); __ Cmp(scratch, scratch2); __ B(ne, &runtime_call); // Check that the ArrayPrototype hasn't been modified in a way that would // affect iteration. __ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex); __ Ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); __ Cmp(scratch, Smi::FromInt(Isolate::kProtectorValid)); __ B(ne, &runtime_call); // Check that the map of the initial array iterator hasn't changed. __ Ldr(scratch2, NativeContextMemOperand()); __ Ldr(scratch, ContextMemOperand(scratch2, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX)); __ Ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); __ Ldr(scratch2, ContextMemOperand( scratch2, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX)); __ Cmp(scratch, scratch2); __ B(ne, &runtime_call); // For FastPacked kinds, iteration will have the same effect as simply // accessing each property in order. Label no_protector_check; __ Ldr(scratch, FieldMemOperand(spread_map, Map::kBitField2Offset)); __ DecodeField<Map::ElementsKindBits>(scratch); __ Cmp(scratch, FAST_HOLEY_ELEMENTS); __ B(hi, &runtime_call); // For non-FastHoley kinds, we can skip the protector check. __ Cmp(scratch, FAST_SMI_ELEMENTS); __ B(eq, &no_protector_check); __ Cmp(scratch, FAST_ELEMENTS); __ B(eq, &no_protector_check); // Check the ArrayProtector cell. __ LoadRoot(scratch, Heap::kArrayProtectorRootIndex); __ Ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); __ Cmp(scratch, Smi::FromInt(Isolate::kProtectorValid)); __ B(ne, &runtime_call); __ Bind(&no_protector_check); // Load the FixedArray backing store, but use the length from the array. __ Ldrsw(spread_len, UntagSmiFieldMemOperand(spread, JSArray::kLengthOffset)); __ Ldr(spread, FieldMemOperand(spread, JSArray::kElementsOffset)); __ B(&push_args); __ Bind(&runtime_call); { // Call the builtin for the result of the spread. FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(argc); __ Push(constructor, new_target, argc, spread); __ CallRuntime(Runtime::kSpreadIterableFixed); __ Mov(spread, x0); __ Pop(argc, new_target, constructor); __ SmiUntag(argc); } { // Calculate the new nargs including the result of the spread. __ Ldrsw(spread_len, UntagSmiFieldMemOperand(spread, FixedArray::kLengthOffset)); __ Bind(&push_args); // argc += spread_len - 1. Subtract 1 for the spread itself. __ Add(argc, argc, spread_len); __ Sub(argc, argc, 1); // Pop the spread argument off the stack. __ Pop(scratch); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); // Make scratch the space we have left. The stack might already be // overflowed here which will cause scratch to become negative. __ Sub(scratch, masm->StackPointer(), scratch); // Check if the arguments will overflow the stack. __ Cmp(scratch, Operand(spread_len, LSL, kPointerSizeLog2)); __ B(gt, &done); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ Bind(&done); } // Put the evaluated spread onto the stack as additional arguments. { __ Mov(scratch, 0); Label done, push, loop; __ Bind(&loop); __ Cmp(scratch, spread_len); __ B(eq, &done); __ Add(scratch2, spread, Operand(scratch, LSL, kPointerSizeLog2)); __ Ldr(scratch2, FieldMemOperand(scratch2, FixedArray::kHeaderSize)); __ JumpIfNotRoot(scratch2, Heap::kTheHoleValueRootIndex, &push); __ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex); __ bind(&push); __ Push(scratch2); __ Add(scratch, scratch, Operand(1)); __ B(&loop); __ Bind(&done); } } // static void Builtins::Generate_CallWithSpread(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (can be any Object) // ----------------------------------- // CheckSpreadAndPushToStack will push r3 to save it. __ LoadRoot(x3, Heap::kUndefinedValueRootIndex); CheckSpreadAndPushToStack(masm); __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, TailCallMode::kDisallow), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (checked to be a JSFunction) // -- x3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertFunction(x1); // Calling convention for function specific ConstructStubs require // x2 to contain either an AllocationSite or undefined. __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset)); __ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag); __ Br(x4); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSBoundFunction) // -- x3 : the new target (checked to be a constructor) // ----------------------------------- __ AssertBoundFunction(x1); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ Cmp(x1, x3); __ B(ne, &done); __ Ldr(x3, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ Ldr(x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset)); __ Mov(x10, ExternalReference(Builtins::kConstruct, masm->isolate())); __ Ldr(x11, MemOperand(x10)); __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); __ Br(x12); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (checked to be a JSProxy) // -- x3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Call into the Runtime for Proxy [[Construct]]. __ Push(x1); __ Push(x3); // Include the pushed new_target, constructor and the receiver. __ Add(x0, x0, 3); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyConstruct, masm->isolate())); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (can be any Object) // -- x3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(x1, &non_constructor); // Dispatch based on instance type. __ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Construct]] internal method. __ Ldrb(x2, FieldMemOperand(x4, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x2, 1 << Map::kIsConstructor, &non_constructor); // Only dispatch to bound functions after checking whether they are // constructors. __ Cmp(x5, JS_BOUND_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->ConstructBoundFunction(), RelocInfo::CODE_TARGET, eq); // Only dispatch to proxies after checking whether they are constructors. __ Cmp(x5, JS_PROXY_TYPE); __ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET, eq); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ Poke(x1, Operand(x0, LSL, kXRegSizeLog2)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, x1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructWithSpread(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (can be any Object) // -- x3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- CheckSpreadAndPushToStack(masm); __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_AllocateInNewSpace"); // ----------- S t a t e ------------- // -- x1 : requested object size (untagged) // -- lr : return address // ----------------------------------- __ SmiTag(x1); __ Push(x1); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInNewSpace); } // static void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_AllocateInOldSpace"); // ----------- S t a t e ------------- // -- x1 : requested object size (untagged) // -- lr : return address // ----------------------------------- __ SmiTag(x1); __ Move(x2, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); __ Push(x1, x2); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInTargetSpace); } // static void Builtins::Generate_Abort(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_Abort"); // ----------- S t a t e ------------- // -- x1 : message_id as Smi // -- lr : return address // ----------------------------------- MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); __ Push(x1); __ Move(cp, Smi::kZero); __ TailCallRuntime(Runtime::kAbort); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline"); // ----------- S t a t e ------------- // -- x0 : actual number of arguments // -- x1 : function (passed through to callee) // -- x2 : expected number of arguments // -- x3 : new target (passed through to callee) // ----------------------------------- Register argc_actual = x0; // Excluding the receiver. Register argc_expected = x2; // Excluding the receiver. Register function = x1; Register code_entry = x10; Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ Cmp(argc_actual, argc_expected); __ B(lt, &too_few); __ Cmp(argc_expected, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ B(eq, &dont_adapt_arguments); { // Enough parameters: actual >= expected EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, x2, x10, &stack_overflow); Register copy_start = x10; Register copy_end = x11; Register copy_to = x12; Register scratch1 = x13, scratch2 = x14; __ Lsl(scratch2, argc_expected, kPointerSizeLog2); // Adjust for fp, lr, and the receiver. __ Add(copy_start, fp, 3 * kPointerSize); __ Add(copy_start, copy_start, Operand(argc_actual, LSL, kPointerSizeLog2)); __ Sub(copy_end, copy_start, scratch2); __ Sub(copy_end, copy_end, kPointerSize); __ Mov(copy_to, jssp); // Claim space for the arguments, the receiver, and one extra slot. // The extra slot ensures we do not write under jssp. It will be popped // later. __ Add(scratch1, scratch2, 2 * kPointerSize); __ Claim(scratch1, 1); // Copy the arguments (including the receiver) to the new stack frame. Label copy_2_by_2; __ Bind(©_2_by_2); __ Ldp(scratch1, scratch2, MemOperand(copy_start, -2 * kPointerSize, PreIndex)); __ Stp(scratch1, scratch2, MemOperand(copy_to, -2 * kPointerSize, PreIndex)); __ Cmp(copy_start, copy_end); __ B(hi, ©_2_by_2); // Correct the space allocated for the extra slot. __ Drop(1); __ B(&invoke); } { // Too few parameters: Actual < expected __ Bind(&too_few); Register copy_from = x10; Register copy_end = x11; Register copy_to = x12; Register scratch1 = x13, scratch2 = x14; EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, x2, x10, &stack_overflow); __ Lsl(scratch2, argc_expected, kPointerSizeLog2); __ Lsl(argc_actual, argc_actual, kPointerSizeLog2); // Adjust for fp, lr, and the receiver. __ Add(copy_from, fp, 3 * kPointerSize); __ Add(copy_from, copy_from, argc_actual); __ Mov(copy_to, jssp); __ Sub(copy_end, copy_to, 1 * kPointerSize); // Adjust for the receiver. __ Sub(copy_end, copy_end, argc_actual); // Claim space for the arguments, the receiver, and one extra slot. // The extra slot ensures we do not write under jssp. It will be popped // later. __ Add(scratch1, scratch2, 2 * kPointerSize); __ Claim(scratch1, 1); // Copy the arguments (including the receiver) to the new stack frame. Label copy_2_by_2; __ Bind(©_2_by_2); __ Ldp(scratch1, scratch2, MemOperand(copy_from, -2 * kPointerSize, PreIndex)); __ Stp(scratch1, scratch2, MemOperand(copy_to, -2 * kPointerSize, PreIndex)); __ Cmp(copy_to, copy_end); __ B(hi, ©_2_by_2); __ Mov(copy_to, copy_end); // Fill the remaining expected arguments with undefined. __ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex); __ Add(copy_end, jssp, kPointerSize); Label fill; __ Bind(&fill); __ Stp(scratch1, scratch1, MemOperand(copy_to, -2 * kPointerSize, PreIndex)); __ Cmp(copy_to, copy_end); __ B(hi, &fill); // Correct the space allocated for the extra slot. __ Drop(1); } // Arguments have been adapted. Now call the entry point. __ Bind(&invoke); __ Mov(argc_actual, argc_expected); // x0 : expected number of arguments // x1 : function (passed through to callee) // x3 : new target (passed through to callee) __ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); __ Call(code_entry); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // Call the entry point without adapting the arguments. __ Bind(&dont_adapt_arguments); __ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); __ Jump(code_entry); __ Bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ Unreachable(); } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM