// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/code-factory.h" #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/ia32/frames-ia32.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { // ----------- S t a t e ------------- // -- eax : number of arguments excluding receiver // -- edi : target // -- edx : new.target // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[4 * argc] : first argument // -- esp[4 * (argc +1)] : receiver // ----------------------------------- __ AssertFunction(edi); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // JumpToExternalReference expects eax to contain the number of arguments // including the receiver and the extra arguments. const int num_extra_args = 3; __ add(eax, Immediate(num_extra_args + 1)); // Insert extra arguments. __ PopReturnAddressTo(ecx); __ SmiTag(eax); __ Push(eax); __ SmiUntag(eax); __ Push(edi); __ Push(edx); __ PushReturnAddressFrom(ecx); __ JumpToExternalReference(ExternalReference(address, masm->isolate()), exit_frame_type == BUILTIN_EXIT); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- eax : argument count (preserved for callee) // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push the number of arguments to the callee. __ SmiTag(eax); __ push(eax); // Push a copy of the target function and the new target. __ push(edi); __ push(edx); // Function is also the parameter to the runtime call. __ push(edi); __ CallRuntime(function_id, 1); __ mov(ebx, eax); // Restore target function and new target. __ pop(edx); __ pop(edi); __ pop(eax); __ SmiUntag(eax); } __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize)); __ jmp(ebx); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kCodeOffset)); __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize)); __ jmp(ebx); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm->isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode); __ bind(&ok); GenerateTailCallToSharedCode(masm); } namespace { void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_implicit_receiver, bool check_derived_construct) { Label post_instantiation_deopt_entry; // ----------- S t a t e ------------- // -- eax: number of arguments // -- esi: context // -- edi: constructor function // -- edx: new target // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(eax); __ push(esi); __ push(eax); if (create_implicit_receiver) { // Allocate the new receiver object. __ Push(edi); __ Push(edx); __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), RelocInfo::CODE_TARGET); __ mov(ebx, eax); __ Pop(edx); __ Pop(edi); // ----------- S t a t e ------------- // -- edi: constructor function // -- ebx: newly allocated object // -- edx: new target // ----------------------------------- // Retrieve smi-tagged arguments count from the stack. __ mov(eax, Operand(esp, 0)); } __ SmiUntag(eax); if (create_implicit_receiver) { // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(ebx); __ push(ebx); } else { __ PushRoot(Heap::kTheHoleValueRootIndex); } // Deoptimizer re-enters stub code here. __ bind(&post_instantiation_deopt_entry); // Set up pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); __ jmp(&entry); __ bind(&loop); __ push(Operand(ebx, ecx, times_4, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. ParameterCount actual(eax); __ InvokeFunction(edi, edx, actual, CALL_FUNCTION, CheckDebugStepCallWrapper()); // Store offset of return address for deoptimizer. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); } // Restore context from the frame. __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); if (create_implicit_receiver) { // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(eax, &use_receiver, Label::kNear); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx); __ j(above_equal, &exit, Label::kNear); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ mov(eax, Operand(esp, 0)); // Restore the arguments count and leave the construct frame. The // arguments count is stored below the receiver. __ bind(&exit); __ mov(ebx, Operand(esp, 1 * kPointerSize)); } else { __ mov(ebx, Operand(esp, 0)); } // Leave construct frame. } // ES6 9.2.2. Step 13+ // Check that the result is not a Smi, indicating that the constructor result // from a derived class is neither undefined nor an Object. if (check_derived_construct) { Label dont_throw; __ JumpIfNotSmi(eax, &dont_throw); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject); } __ bind(&dont_throw); } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); if (create_implicit_receiver) { __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); } __ ret(0); // Store offset of trampoline address for deoptimizer. This is the bailout // point after the receiver instantiation but before the function invocation. // We need to restore some registers in order to continue the above code. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); // ----------- S t a t e ------------- // -- eax : newly allocated object // -- esp[0] : constructor function // ----------------------------------- __ pop(edi); __ push(eax); __ push(eax); // Retrieve smi-tagged arguments count from the stack. __ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(eax); // Retrieve the new target value from the stack. This was placed into the // frame description in place of the receiver by the optimizing compiler. __ mov(edx, Operand(ebp, eax, times_pointer_size, StandardFrameConstants::kCallerSPOffset)); // Continue with constructor function invocation. __ jmp(&post_instantiation_deopt_entry); } } } // namespace void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false, false); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, false); } void Builtins::Generate_JSBuiltinsConstructStubForDerived( MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false, true); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ push(edi); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } enum IsTagged { kEaxIsSmiTagged, kEaxIsUntaggedInt }; // Clobbers ecx, edx, edi; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, IsTagged eax_is_tagged) { // eax : the number of items to be pushed to the stack // // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(edi, Operand::StaticVariable(real_stack_limit)); // Make ecx the space we have left. The stack might already be overflowed // here which will cause ecx to become negative. __ mov(ecx, esp); __ sub(ecx, edi); // Make edx the space we need for the array when it is unrolled onto the // stack. __ mov(edx, eax); int smi_tag = eax_is_tagged == kEaxIsSmiTagged ? kSmiTagSize : 0; __ shl(edx, kPointerSizeLog2 - smi_tag); // Check if the arguments will overflow the stack. __ cmp(ecx, edx); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { ProfileEntryHookStub::MaybeCallEntryHook(masm); { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ mov(esi, Operand::StaticVariable(context_address)); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Push the function and the receiver onto the stack. __ push(Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset)); // Load the number of arguments and setup pointer to the arguments. __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset)); __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset)); // Check if we have enough stack space to push all arguments. // Expects argument count in eax. Clobbers ecx, edx, edi. Generate_CheckStackOverflow(masm, kEaxIsUntaggedInt); // Copy arguments to the stack in a loop. Label loop, entry; __ Move(ecx, Immediate(0)); __ jmp(&entry, Label::kNear); __ bind(&loop); __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv __ push(Operand(edx, 0)); // dereference handle __ inc(ecx); __ bind(&entry); __ cmp(ecx, eax); __ j(not_equal, &loop); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Get the new.target and function from the frame. __ mov(edx, Operand(ebx, EntryFrameConstants::kNewTargetArgOffset)); __ mov(edi, Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); // Invoke the code. Handle<Code> builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty. // context and the function left on the stack by the code // invocation. } __ ret(kPointerSize); // Remove receiver. } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the value to pass to the generator // -- ebx : the JSGeneratorObject to resume // -- edx : the resume mode (tagged) // -- esp[0] : return address // ----------------------------------- __ AssertGeneratorObject(ebx); // Store input value into generator object. __ mov(FieldOperand(ebx, JSGeneratorObject::kInputOrDebugPosOffset), eax); __ RecordWriteField(ebx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx, kDontSaveFPRegs); // Store resume mode into generator object. __ mov(FieldOperand(ebx, JSGeneratorObject::kResumeModeOffset), edx); // Load suspended function and context. __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset)); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ cmpb(Operand::StaticVariable(debug_hook), Immediate(0)); __ j(not_equal, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ cmp(ebx, Operand::StaticVariable(debug_suspended_generator)); __ j(equal, &prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Pop return address. __ PopReturnAddressTo(eax); // Push receiver. __ Push(FieldOperand(ebx, JSGeneratorObject::kReceiverOffset)); // ----------- S t a t e ------------- // -- eax : return address // -- ebx : the JSGeneratorObject to resume // -- edx : the resume mode (tagged) // -- edi : generator function // -- esi : generator context // -- esp[0] : generator receiver // ----------------------------------- // Push holes for arguments to generator function. Since the parser forced // context allocation for any variables in generators, the actual argument // values have already been copied into the context and these dummy values // will never be used. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset)); { Label done_loop, loop; __ bind(&loop); __ sub(ecx, Immediate(Smi::FromInt(1))); __ j(carry, &done_loop, Label::kNear); __ PushRoot(Heap::kTheHoleValueRootIndex); __ jmp(&loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset)); __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx); __ Assert(equal, kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { __ PushReturnAddressFrom(eax); __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ mov(edx, ebx); __ jmp(FieldOperand(edi, JSFunction::kCodeEntryOffset)); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(ebx); __ Push(edx); __ Push(edi); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(edx); __ Pop(ebx); __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(ebx); __ Push(edx); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(edx); __ Pop(ebx); __ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, Register scratch2) { Register args_count = scratch1; Register return_pc = scratch2; // Get the arguments + reciever count. __ mov(args_count, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(args_count, FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments. __ pop(return_pc); __ add(esp, args_count); __ push(return_pc); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o edi: the JS function object being called // o edx: the new target // o esi: our context // o ebp: the caller's frame pointer // o esp: stack pointer (pointing to return address) // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS function. __ push(edx); // Callee's new target. // Get the bytecode array from the function object (or from the DebugInfo if // it is present) and load it into kInterpreterBytecodeArrayRegister. __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); Label load_debug_bytecode_array, bytecode_array_loaded; __ JumpIfNotSmi(FieldOperand(eax, SharedFunctionInfo::kDebugInfoOffset), &load_debug_bytecode_array); __ mov(kInterpreterBytecodeArrayRegister, FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset)); __ bind(&bytecode_array_loaded); // Check whether we should continue to use the interpreter. Label switch_to_different_code_kind; __ Move(ecx, masm->CodeObject()); // Self-reference to this code. __ cmp(ecx, FieldOperand(eax, SharedFunctionInfo::kCodeOffset)); __ j(not_equal, &switch_to_different_code_kind); // Increment invocation count for the function. __ EmitLoadFeedbackVector(ecx); __ add( FieldOperand(ecx, FeedbackVector::kInvocationCountIndex * kPointerSize + FeedbackVector::kHeaderSize), Immediate(Smi::FromInt(1))); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, eax); __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age. __ mov_b(FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset), Immediate(BytecodeArray::kNoAgeBytecodeAge)); // Push bytecode array. __ push(kInterpreterBytecodeArrayRegister); // Push Smi tagged initial bytecode array offset. __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag))); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ mov(ecx, esp); __ sub(ecx, ebx); ExternalReference stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ cmp(ecx, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ mov(eax, Immediate(masm->isolate()->factory()->undefined_value())); __ jmp(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(eax); // Continue loop if not done. __ bind(&loop_check); __ sub(ebx, Immediate(kPointerSize)); __ j(greater_equal, &loop_header); } // Load accumulator, bytecode offset and dispatch table into registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ mov(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ mov(kInterpreterDispatchTableRegister, Immediate(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Dispatch to the first bytecode handler for the function. __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ mov(ebx, Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0)); __ call(ebx); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // The return value is in eax. LeaveInterpreterFrame(masm, ebx, ecx); __ ret(0); // Load debug copy of the bytecode array. __ bind(&load_debug_bytecode_array); Register debug_info = kInterpreterBytecodeArrayRegister; __ mov(debug_info, FieldOperand(eax, SharedFunctionInfo::kDebugInfoOffset)); __ mov(kInterpreterBytecodeArrayRegister, FieldOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex)); __ jmp(&bytecode_array_loaded); // If the shared code is no longer this entry trampoline, then the underlying // function has been switched to a different kind of code and we heal the // closure by switching the code entry field over to the new code as well. __ bind(&switch_to_different_code_kind); __ pop(edx); // Callee's new target. __ pop(edi); // Callee's JS function. __ pop(esi); // Callee's context. __ leave(); // Leave the frame so we can tail call. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset)); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ mov(FieldOperand(edi, JSFunction::kCodeEntryOffset), ecx); __ RecordWriteCodeEntryField(edi, ecx, ebx); __ jmp(ecx); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch1, Register scratch2, Label* stack_overflow, bool include_receiver = false) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(scratch1, Operand::StaticVariable(real_stack_limit)); // Make scratch2 the space we have left. The stack might already be overflowed // here which will cause scratch2 to become negative. __ mov(scratch2, esp); __ sub(scratch2, scratch1); // Make scratch1 the space we need for the array when it is unrolled onto the // stack. __ mov(scratch1, num_args); if (include_receiver) { __ add(scratch1, Immediate(1)); } __ shl(scratch1, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(scratch2, scratch1); __ j(less_equal, stack_overflow); // Signed comparison. } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register array_limit, Register start_address) { // ----------- S t a t e ------------- // -- start_address : Pointer to the last argument in the args array. // -- array_limit : Pointer to one before the first argument in the // args array. // ----------------------------------- Label loop_header, loop_check; __ jmp(&loop_check); __ bind(&loop_header); __ Push(Operand(start_address, 0)); __ sub(start_address, Immediate(kPointerSize)); __ bind(&loop_check); __ cmp(start_address, array_limit); __ j(greater, &loop_header, Label::kNear); } // static void Builtins::Generate_InterpreterPushArgsAndCallImpl( MacroAssembler* masm, TailCallMode tail_call_mode, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- ebx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- edi : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; // Compute the expected number of arguments. __ mov(ecx, eax); __ add(ecx, Immediate(1)); // Add one for receiver. // Add a stack check before pushing the arguments. We need an extra register // to perform a stack check. So push it onto the stack temporarily. This // might cause stack overflow, but it will be detected by the check. __ Push(edi); Generate_StackOverflowCheck(masm, ecx, edx, edi, &stack_overflow); __ Pop(edi); // Pop return address to allow tail-call after pushing arguments. __ Pop(edx); // Find the address of the last argument. __ shl(ecx, kPointerSizeLog2); __ neg(ecx); __ add(ecx, ebx); Generate_InterpreterPushArgs(masm, ecx, ebx); // Call the target. __ Push(edx); // Re-push return address. if (mode == InterpreterPushArgsMode::kJSFunction) { __ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny, tail_call_mode), RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(masm->isolate()->builtins()->CallWithSpread(), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, tail_call_mode), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { // Pop the temporary registers, so that return address is on top of stack. __ Pop(edi); __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } namespace { // This function modified start_addr, and only reads the contents of num_args // register. scratch1 and scratch2 are used as temporary registers. Their // original values are restored after the use. void Generate_InterpreterPushArgsAndReturnAddress( MacroAssembler* masm, Register num_args, Register start_addr, Register scratch1, Register scratch2, bool receiver_in_args, int num_slots_above_ret_addr, Label* stack_overflow) { // We have to move return address and the temporary registers above it // before we can copy arguments onto the stack. To achieve this: // Step 1: Increment the stack pointer by num_args + 1 (for receiver). // Step 2: Move the return address and values above it to the top of stack. // Step 3: Copy the arguments into the correct locations. // current stack =====> required stack layout // | | | scratch1 | (2) <-- esp(1) // | | | .... | (2) // | | | scratch-n | (2) // | | | return addr | (2) // | | | arg N | (3) // | scratch1 | <-- esp | .... | // | .... | | arg 0 | // | scratch-n | | arg 0 | // | return addr | | receiver slot | // Check for stack overflow before we increment the stack pointer. Generate_StackOverflowCheck(masm, num_args, scratch1, scratch2, stack_overflow, true); // Step 1 - Update the stack pointer. scratch1 already contains the required // increment to the stack. i.e. num_args + 1 stack slots. This is computed in // the Generate_StackOverflowCheck. #ifdef _MSC_VER // TODO(mythria): Move it to macro assembler. // In windows, we cannot increment the stack size by more than one page // (mimimum page size is 4KB) without accessing at least one byte on the // page. Check this: // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx. const int page_size = 4 * 1024; Label check_offset, update_stack_pointer; __ bind(&check_offset); __ cmp(scratch1, page_size); __ j(less, &update_stack_pointer); __ sub(esp, Immediate(page_size)); // Just to touch the page, before we increment further. __ mov(Operand(esp, 0), Immediate(0)); __ sub(scratch1, Immediate(page_size)); __ jmp(&check_offset); __ bind(&update_stack_pointer); #endif __ sub(esp, scratch1); // Step 2 move return_address and slots above it to the correct locations. // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1, // basically when the source and destination overlap. We at least need one // extra slot for receiver, so no extra checks are required to avoid copy. for (int i = 0; i < num_slots_above_ret_addr + 1; i++) { __ mov(scratch1, Operand(esp, num_args, times_pointer_size, (i + 1) * kPointerSize)); __ mov(Operand(esp, i * kPointerSize), scratch1); } // Step 3 copy arguments to correct locations. if (receiver_in_args) { __ mov(scratch1, num_args); __ add(scratch1, Immediate(1)); } else { // Slot meant for receiver contains return address. Reset it so that // we will not incorrectly interpret return address as an object. __ mov(Operand(esp, num_args, times_pointer_size, (num_slots_above_ret_addr + 1) * kPointerSize), Immediate(0)); __ mov(scratch1, num_args); } Label loop_header, loop_check; __ jmp(&loop_check); __ bind(&loop_header); __ mov(scratch2, Operand(start_addr, 0)); __ mov(Operand(esp, scratch1, times_pointer_size, num_slots_above_ret_addr * kPointerSize), scratch2); __ sub(start_addr, Immediate(kPointerSize)); __ sub(scratch1, Immediate(1)); __ bind(&loop_check); __ cmp(scratch1, Immediate(0)); __ j(greater, &loop_header, Label::kNear); } } // end anonymous namespace // static void Builtins::Generate_InterpreterPushArgsAndConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target // -- edi : the constructor // -- ebx : allocation site feedback (if available or undefined) // -- ecx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- Label stack_overflow; // We need two scratch registers. Push edi and edx onto stack. __ Push(edi); __ Push(edx); // Push arguments and move return address to the top of stack. // The eax register is readonly. The ecx register will be modified. The edx // and edi registers will be modified but restored to their original values. Generate_InterpreterPushArgsAndReturnAddress(masm, eax, ecx, edx, edi, false, 2, &stack_overflow); // Restore edi and edx __ Pop(edx); __ Pop(edi); __ AssertUndefinedOrAllocationSite(ebx); if (mode == InterpreterPushArgsMode::kJSFunction) { // Tail call to the function-specific construct stub (still in the caller // context at this point). __ AssertFunction(edi); __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset)); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ jmp(ecx); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with unmodified eax, edi, edx values. __ Jump(masm->isolate()->builtins()->ConstructWithSpread(), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with unmodified eax, edi, edx values. __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { // Pop the temporary registers, so that return address is on top of stack. __ Pop(edx); __ Pop(edi); __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } // static void Builtins::Generate_InterpreterPushArgsAndConstructArray( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the target to call checked to be Array function. // -- ebx : the allocation site feedback // -- ecx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- Label stack_overflow; // We need two scratch registers. Register edi is available, push edx onto // stack. __ Push(edx); // Push arguments and move return address to the top of stack. // The eax register is readonly. The ecx register will be modified. The edx // and edi registers will be modified but restored to their original values. Generate_InterpreterPushArgsAndReturnAddress(masm, eax, ecx, edx, edi, true, 1, &stack_overflow); // Restore edx. __ Pop(edx); // Array constructor expects constructor in edi. It is same as edx here. __ Move(edi, edx); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); __ bind(&stack_overflow); { // Pop the temporary registers, so that return address is on top of stack. __ Pop(edx); __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); __ LoadHeapObject(ebx, masm->isolate()->builtins()->InterpreterEntryTrampoline()); __ add(ebx, Immediate(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); __ push(ebx); // Initialize the dispatch table register. __ mov(kInterpreterDispatchTableRegister, Immediate(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Get the bytecode array pointer from the frame. __ mov(kInterpreterBytecodeArrayRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, ebx); __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ mov(kInterpreterBytecodeOffsetRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ mov(ebx, Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0)); __ jmp(ebx); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Advance the current bytecode offset stored within the given interpreter // stack frame. This simulates what all bytecode handlers do upon completion // of the underlying operation. __ mov(ebx, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(edx, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(kInterpreterAccumulatorRegister); __ Push(ebx); // First argument is the bytecode array. __ Push(edx); // Second argument is the bytecode offset. __ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset); __ Move(edx, eax); // Result is the new bytecode offset. __ Pop(kInterpreterAccumulatorRegister); } __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), edx); Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argument count (preserved for callee) // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- // First lookup code, maybe we don't need to compile! Label gotta_call_runtime, gotta_call_runtime_no_stack; Label try_shared; Label loop_top, loop_bottom; Register closure = edi; Register new_target = edx; Register argument_count = eax; // Do we have a valid feedback vector? __ mov(ebx, FieldOperand(closure, JSFunction::kFeedbackVectorOffset)); __ mov(ebx, FieldOperand(ebx, Cell::kValueOffset)); __ JumpIfRoot(ebx, Heap::kUndefinedValueRootIndex, &gotta_call_runtime_no_stack); __ push(argument_count); __ push(new_target); __ push(closure); Register map = argument_count; Register index = ebx; __ mov(map, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); __ mov(map, FieldOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset)); __ mov(index, FieldOperand(map, FixedArray::kLengthOffset)); __ cmp(index, Immediate(Smi::FromInt(2))); __ j(less, &try_shared); // edx : native context // ebx : length / index // eax : optimized code map // stack[0] : new target // stack[4] : closure Register native_context = edx; __ mov(native_context, NativeContextOperand()); __ bind(&loop_top); Register temp = edi; // Does the native context match? __ mov(temp, FieldOperand(map, index, times_half_pointer_size, SharedFunctionInfo::kOffsetToPreviousContext)); __ mov(temp, FieldOperand(temp, WeakCell::kValueOffset)); __ cmp(temp, native_context); __ j(not_equal, &loop_bottom); // Code available? Register entry = ecx; __ mov(entry, FieldOperand(map, index, times_half_pointer_size, SharedFunctionInfo::kOffsetToPreviousCachedCode)); __ mov(entry, FieldOperand(entry, WeakCell::kValueOffset)); __ JumpIfSmi(entry, &try_shared); // Found code. Get it into the closure and return. __ pop(closure); // Store code entry in the closure. __ lea(entry, FieldOperand(entry, Code::kHeaderSize)); __ mov(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry); __ RecordWriteCodeEntryField(closure, entry, eax); // Link the closure into the optimized function list. // ecx : code entry // edx : native context // edi : closure __ mov(ebx, ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST)); __ mov(FieldOperand(closure, JSFunction::kNextFunctionLinkOffset), ebx); __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, ebx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); const int function_list_offset = Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST); __ mov(ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST), closure); // Save closure before the write barrier. __ mov(ebx, closure); __ RecordWriteContextSlot(native_context, function_list_offset, closure, eax, kDontSaveFPRegs); __ mov(closure, ebx); __ pop(new_target); __ pop(argument_count); __ jmp(entry); __ bind(&loop_bottom); __ sub(index, Immediate(Smi::FromInt(SharedFunctionInfo::kEntryLength))); __ cmp(index, Immediate(Smi::FromInt(1))); __ j(greater, &loop_top); // We found no code. __ bind(&try_shared); __ pop(closure); __ pop(new_target); __ pop(argument_count); __ mov(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); // Is the shared function marked for tier up? __ test_b(FieldOperand(entry, SharedFunctionInfo::kMarkedForTierUpByteOffset), Immediate(1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte)); __ j(not_zero, &gotta_call_runtime_no_stack); // If SFI points to anything other than CompileLazy, install that. __ mov(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset)); __ Move(ebx, masm->CodeObject()); __ cmp(entry, ebx); __ j(equal, &gotta_call_runtime_no_stack); // Install the SFI's code entry. __ lea(entry, FieldOperand(entry, Code::kHeaderSize)); __ mov(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry); __ RecordWriteCodeEntryField(closure, entry, ebx); __ jmp(entry); __ bind(&gotta_call_runtime); __ pop(closure); __ pop(new_target); __ pop(argument_count); __ bind(&gotta_call_runtime_no_stack); GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } void Builtins::Generate_CompileBaseline(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_NotConcurrent); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argument count (preserved for callee) // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ mov(ecx, eax); // Push the number of arguments to the callee. __ SmiTag(eax); __ push(eax); // Push a copy of the target function and the new target. __ push(edi); __ push(edx); // The function. __ push(edi); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ cmp(ecx, Immediate(j)); __ j(not_equal, &over, Label::kNear); } for (int i = j - 1; i >= 0; --i) { __ Push(Operand( ebp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done, Label::kNear); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(eax, &failed, Label::kNear); __ Drop(2); __ Pop(ecx); __ SmiUntag(ecx); scope.GenerateLeaveFrame(); __ PopReturnAddressTo(ebx); __ inc(ecx); __ lea(esp, Operand(esp, ecx, times_pointer_size, 0)); __ PushReturnAddressFrom(ebx); __ ret(0); __ bind(&failed); // Restore target function and new target. __ pop(edx); __ pop(edi); __ pop(eax); __ SmiUntag(eax); } // On failure, tail call back to regular js. GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Re-execute the code that was patched back to the young age when // the stub returns. __ sub(Operand(esp, 0), Immediate(5)); __ pushad(); __ mov(eax, Operand(esp, 8 * kPointerSize)); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2, ebx); __ mov(Operand(esp, 1 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 0), eax); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); } __ popad(); __ ret(0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. __ pushad(); __ mov(eax, Operand(esp, 8 * kPointerSize)); __ sub(eax, Immediate(Assembler::kCallInstructionLength)); { // NOLINT FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2, ebx); __ mov(Operand(esp, 1 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ mov(Operand(esp, 0), eax); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); } __ popad(); // Perform prologue operations usually performed by the young code stub. __ pop(eax); // Pop return address into scratch register. __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS Function. __ push(eax); // Push return address after frame prologue. // Jump to point after the code-age stub. __ ret(0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ pushad(); __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles); __ popad(); // Tear down internal frame. } __ pop(MemOperand(esp, 0)); // Ignore state offset __ ret(0); // Return to IC Miss stub, continuation still on stack. } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass deoptimization type to the runtime system. __ push(Immediate(Smi::FromInt(static_cast<int>(type)))); __ CallRuntime(Runtime::kNotifyDeoptimized); // Tear down internal frame. } // Get the full codegen state from the stack and untag it. __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ SmiUntag(ecx); // Switch on the state. Label not_no_registers, not_tos_eax; __ cmp(ecx, static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS)); __ j(not_equal, ¬_no_registers, Label::kNear); __ ret(1 * kPointerSize); // Remove state. __ bind(¬_no_registers); DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code()); __ mov(eax, Operand(esp, 2 * kPointerSize)); __ cmp(ecx, static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER)); __ j(not_equal, ¬_tos_eax, Label::kNear); __ ret(2 * kPointerSize); // Remove state, eax. __ bind(¬_tos_eax); __ Abort(kNoCasesLeft); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : argArray // -- esp[8] : thisArg // -- esp[12] : receiver // ----------------------------------- // 1. Load receiver into edi, argArray into eax (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg_array, no_this_arg; __ LoadRoot(edx, Heap::kUndefinedValueRootIndex); __ mov(ebx, edx); __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize)); __ test(eax, eax); __ j(zero, &no_this_arg, Label::kNear); { __ mov(edx, Operand(esp, eax, times_pointer_size, 0)); __ cmp(eax, Immediate(1)); __ j(equal, &no_arg_array, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, -kPointerSize)); __ bind(&no_arg_array); } __ bind(&no_this_arg); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ Push(edx); __ PushReturnAddressFrom(ecx); __ Move(eax, ebx); } // ----------- S t a t e ------------- // -- eax : argArray // -- edi : receiver // -- esp[0] : return address // -- esp[4] : thisArg // ----------------------------------- // 2. Make sure the receiver is actually callable. Label receiver_not_callable; __ JumpIfSmi(edi, &receiver_not_callable, Label::kNear); __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset)); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &receiver_not_callable, Label::kNear); // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(eax, Heap::kNullValueRootIndex, &no_arguments, Label::kNear); __ JumpIfRoot(eax, Heap::kUndefinedValueRootIndex, &no_arguments, Label::kNear); // 4a. Apply the receiver to the given argArray (passing undefined for // new.target). __ LoadRoot(edx, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ Set(eax, 0); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // 4c. The receiver is not callable, throw an appropriate TypeError. __ bind(&receiver_not_callable); { __ mov(Operand(esp, kPointerSize), edi); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // Stack Layout: // esp[0] : Return address // esp[8] : Argument n // esp[16] : Argument n-1 // ... // esp[8 * n] : Argument 1 // esp[8 * (n + 1)] : Receiver (callable to call) // // eax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ test(eax, eax); __ j(not_zero, &done, Label::kNear); __ PopReturnAddressTo(ebx); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(ebx); __ inc(eax); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; __ mov(ecx, eax); __ bind(&loop); __ mov(ebx, Operand(esp, ecx, times_pointer_size, 0)); __ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), ebx); __ dec(ecx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(ebx); // Discard copy of return address. __ dec(eax); // One fewer argument (first argument is new receiver). } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : argumentsList // -- esp[8] : thisArgument // -- esp[12] : target // -- esp[16] : receiver // ----------------------------------- // 1. Load target into edi (if present), argumentsList into eax (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label done; __ LoadRoot(edi, Heap::kUndefinedValueRootIndex); __ mov(edx, edi); __ mov(ebx, edi); __ cmp(eax, Immediate(1)); __ j(below, &done, Label::kNear); __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize)); __ j(equal, &done, Label::kNear); __ mov(edx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize)); __ cmp(eax, Immediate(3)); __ j(below, &done, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize)); __ bind(&done); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ Push(edx); __ PushReturnAddressFrom(ecx); __ Move(eax, ebx); } // ----------- S t a t e ------------- // -- eax : argumentsList // -- edi : target // -- esp[0] : return address // -- esp[4] : thisArgument // ----------------------------------- // 2. Make sure the target is actually callable. Label target_not_callable; __ JumpIfSmi(edi, &target_not_callable, Label::kNear); __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset)); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &target_not_callable, Label::kNear); // 3a. Apply the target to the given argumentsList (passing undefined for // new.target). __ LoadRoot(edx, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 3b. The target is not callable, throw an appropriate TypeError. __ bind(&target_not_callable); { __ mov(Operand(esp, kPointerSize), edi); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : new.target (optional) // -- esp[8] : argumentsList // -- esp[12] : target // -- esp[16] : receiver // ----------------------------------- // 1. Load target into edi (if present), argumentsList into eax (if present), // new.target into edx (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label done; __ LoadRoot(edi, Heap::kUndefinedValueRootIndex); __ mov(edx, edi); __ mov(ebx, edi); __ cmp(eax, Immediate(1)); __ j(below, &done, Label::kNear); __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize)); __ mov(edx, edi); __ j(equal, &done, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize)); __ cmp(eax, Immediate(3)); __ j(below, &done, Label::kNear); __ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize)); __ bind(&done); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(ecx); __ Move(eax, ebx); } // ----------- S t a t e ------------- // -- eax : argumentsList // -- edx : new.target // -- edi : target // -- esp[0] : return address // -- esp[4] : receiver (undefined) // ----------------------------------- // 2. Make sure the target is actually a constructor. Label target_not_constructor; __ JumpIfSmi(edi, &target_not_constructor, Label::kNear); __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset)); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &target_not_constructor, Label::kNear); // 3. Make sure the target is actually a constructor. Label new_target_not_constructor; __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &new_target_not_constructor, Label::kNear); // 4a. Construct the target with the given new.target and argumentsList. __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The target is not a constructor, throw an appropriate TypeError. __ bind(&target_not_constructor); { __ mov(Operand(esp, kPointerSize), edi); __ TailCallRuntime(Runtime::kThrowNotConstructor); } // 4c. The new.target is not a constructor, throw an appropriate TypeError. __ bind(&new_target_not_constructor); { __ mov(Operand(esp, kPointerSize), edx); __ TailCallRuntime(Runtime::kThrowNotConstructor); } } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; // Get the InternalArray function. __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi); if (FLAG_debug_code) { // Initial map for the builtin InternalArray function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi); __ mov(edx, edi); if (FLAG_debug_code) { // Initial map for the builtin Array function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. // tail call a stub __ mov(ebx, masm->isolate()->factory()->undefined_value()); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : function // -- esi : context // -- esp[0] : return address // -- esp[(argc - n) * 8] : arg[n] (zero-based) // -- esp[(argc + 1) * 8] : receiver // ----------------------------------- Condition const cc = (kind == MathMaxMinKind::kMin) ? below : above; Heap::RootListIndex const root_index = (kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex : Heap::kMinusInfinityValueRootIndex; XMMRegister const reg = (kind == MathMaxMinKind::kMin) ? xmm1 : xmm0; // Load the accumulator with the default return value (either -Infinity or // +Infinity), with the tagged value in edx and the double value in xmm0. __ LoadRoot(edx, root_index); __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ Move(ecx, eax); Label done_loop, loop; __ bind(&loop); { // Check if all parameters done. __ test(ecx, ecx); __ j(zero, &done_loop); // Load the next parameter tagged value into ebx. __ mov(ebx, Operand(esp, ecx, times_pointer_size, 0)); // Load the double value of the parameter into xmm1, maybe converting the // parameter to a number first using the ToNumber builtin if necessary. Label convert, convert_smi, convert_number, done_convert; __ bind(&convert); __ JumpIfSmi(ebx, &convert_smi); __ JumpIfRoot(FieldOperand(ebx, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex, &convert_number); { // Parameter is not a Number, use the ToNumber builtin to convert it. FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(eax); __ SmiTag(ecx); __ EnterBuiltinFrame(esi, edi, eax); __ Push(ecx); __ Push(edx); __ mov(eax, ebx); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ mov(ebx, eax); __ Pop(edx); __ Pop(ecx); __ LeaveBuiltinFrame(esi, edi, eax); __ SmiUntag(ecx); __ SmiUntag(eax); { // Restore the double accumulator value (xmm0). Label restore_smi, done_restore; __ JumpIfSmi(edx, &restore_smi, Label::kNear); __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ jmp(&done_restore, Label::kNear); __ bind(&restore_smi); __ SmiUntag(edx); __ Cvtsi2sd(xmm0, edx); __ SmiTag(edx); __ bind(&done_restore); } } __ jmp(&convert); __ bind(&convert_number); __ movsd(xmm1, FieldOperand(ebx, HeapNumber::kValueOffset)); __ jmp(&done_convert, Label::kNear); __ bind(&convert_smi); __ SmiUntag(ebx); __ Cvtsi2sd(xmm1, ebx); __ SmiTag(ebx); __ bind(&done_convert); // Perform the actual comparison with the accumulator value on the left hand // side (xmm0) and the next parameter value on the right hand side (xmm1). Label compare_equal, compare_nan, compare_swap, done_compare; __ ucomisd(xmm0, xmm1); __ j(parity_even, &compare_nan, Label::kNear); __ j(cc, &done_compare, Label::kNear); __ j(equal, &compare_equal, Label::kNear); // Result is on the right hand side. __ bind(&compare_swap); __ movaps(xmm0, xmm1); __ mov(edx, ebx); __ jmp(&done_compare, Label::kNear); // At least one side is NaN, which means that the result will be NaN too. __ bind(&compare_nan); __ LoadRoot(edx, Heap::kNanValueRootIndex); __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ jmp(&done_compare, Label::kNear); // Left and right hand side are equal, check for -0 vs. +0. __ bind(&compare_equal); __ Push(edi); // Preserve function in edi. __ movmskpd(edi, reg); __ test(edi, Immediate(1)); __ Pop(edi); __ j(not_zero, &compare_swap); __ bind(&done_compare); __ dec(ecx); __ jmp(&loop); } __ bind(&done_loop); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(ecx); __ mov(eax, edx); __ Ret(); } // static void Builtins::Generate_NumberConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- esi : context // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // 1. Load the first argument into ebx. Label no_arguments; { __ test(eax, eax); __ j(zero, &no_arguments, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, 0)); } // 2a. Convert the first argument to a number. { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(eax); __ EnterBuiltinFrame(esi, edi, eax); __ mov(eax, ebx); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ LeaveBuiltinFrame(esi, edi, ebx); // Argc popped to ebx. __ SmiUntag(ebx); } { // Drop all arguments including the receiver. __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(ecx); __ Ret(); } // 2b. No arguments, return +0 (already in eax). __ bind(&no_arguments); __ ret(1 * kPointerSize); } // static void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- edx : new target // -- esi : context // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Store argc in r8. __ mov(ecx, eax); __ SmiTag(ecx); // 2. Load the first argument into ebx. { Label no_arguments, done; __ test(eax, eax); __ j(zero, &no_arguments, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, 0)); __ jmp(&done, Label::kNear); __ bind(&no_arguments); __ Move(ebx, Smi::kZero); __ bind(&done); } // 3. Make sure ebx is a number. { Label done_convert; __ JumpIfSmi(ebx, &done_convert); __ CompareRoot(FieldOperand(ebx, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(equal, &done_convert); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterBuiltinFrame(esi, edi, ecx); __ Push(edx); __ Move(eax, ebx); __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); __ Move(ebx, eax); __ Pop(edx); __ LeaveBuiltinFrame(esi, edi, ecx); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label drop_frame_and_ret, done_alloc, new_object; __ cmp(edx, edi); __ j(not_equal, &new_object); // 5. Allocate a JSValue wrapper for the number. __ AllocateJSValue(eax, edi, ebx, esi, &done_alloc); __ jmp(&drop_frame_and_ret); __ bind(&done_alloc); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Restore esi. // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterBuiltinFrame(esi, edi, ecx); __ Push(ebx); // the first argument __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), RelocInfo::CODE_TARGET); __ Pop(FieldOperand(eax, JSValue::kValueOffset)); __ LeaveBuiltinFrame(esi, edi, ecx); } __ bind(&drop_frame_and_ret); { // Drop all arguments including the receiver. __ PopReturnAddressTo(esi); __ SmiUntag(ecx); __ lea(esp, Operand(esp, ecx, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(esi); __ Ret(); } } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- esi : context // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // 1. Load the first argument into eax. Label no_arguments; { __ mov(ebx, eax); // Store argc in ebx. __ test(eax, eax); __ j(zero, &no_arguments, Label::kNear); __ mov(eax, Operand(esp, eax, times_pointer_size, 0)); } // 2a. At least one argument, return eax if it's a string, otherwise // dispatch to appropriate conversion. Label drop_frame_and_ret, to_string, symbol_descriptive_string; { __ JumpIfSmi(eax, &to_string, Label::kNear); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx); __ j(above, &to_string, Label::kNear); __ j(equal, &symbol_descriptive_string, Label::kNear); __ jmp(&drop_frame_and_ret, Label::kNear); } // 2b. No arguments, return the empty string (and pop the receiver). __ bind(&no_arguments); { __ LoadRoot(eax, Heap::kempty_stringRootIndex); __ ret(1 * kPointerSize); } // 3a. Convert eax to a string. __ bind(&to_string); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(ebx); __ EnterBuiltinFrame(esi, edi, ebx); __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); __ LeaveBuiltinFrame(esi, edi, ebx); __ SmiUntag(ebx); } __ jmp(&drop_frame_and_ret, Label::kNear); // 3b. Convert symbol in eax to a string. __ bind(&symbol_descriptive_string); { __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize)); __ Push(eax); __ PushReturnAddressFrom(ecx); __ TailCallRuntime(Runtime::kSymbolDescriptiveString); } __ bind(&drop_frame_and_ret); { // Drop all arguments including the receiver. __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(ecx); __ Ret(); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments // -- edi : constructor function // -- edx : new target // -- esi : context // -- esp[0] : return address // -- esp[(argc - n) * 4] : arg[n] (zero-based) // -- esp[(argc + 1) * 4] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); __ mov(ebx, eax); // 2. Load the first argument into eax. { Label no_arguments, done; __ test(ebx, ebx); __ j(zero, &no_arguments, Label::kNear); __ mov(eax, Operand(esp, ebx, times_pointer_size, 0)); __ jmp(&done, Label::kNear); __ bind(&no_arguments); __ LoadRoot(eax, Heap::kempty_stringRootIndex); __ bind(&done); } // 3. Make sure eax is a string. { Label convert, done_convert; __ JumpIfSmi(eax, &convert, Label::kNear); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx); __ j(below, &done_convert); __ bind(&convert); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(ebx); __ EnterBuiltinFrame(esi, edi, ebx); __ Push(edx); __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); __ Pop(edx); __ LeaveBuiltinFrame(esi, edi, ebx); __ SmiUntag(ebx); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label drop_frame_and_ret, done_alloc, new_object; __ cmp(edx, edi); __ j(not_equal, &new_object); // 5. Allocate a JSValue wrapper for the string. // AllocateJSValue can't handle src == dst register. Reuse esi and restore it // as needed after the call. __ mov(esi, eax); __ AllocateJSValue(eax, edi, esi, ecx, &done_alloc); __ jmp(&drop_frame_and_ret); __ bind(&done_alloc); { // Restore eax to the first argument and esi to the context. __ mov(eax, esi); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); } // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::MANUAL); __ SmiTag(ebx); __ EnterBuiltinFrame(esi, edi, ebx); __ Push(eax); // the first argument __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), RelocInfo::CODE_TARGET); __ Pop(FieldOperand(eax, JSValue::kValueOffset)); __ LeaveBuiltinFrame(esi, edi, ebx); __ SmiUntag(ebx); } __ bind(&drop_frame_and_ret); { // Drop all arguments including the receiver. __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(ecx); __ Ret(); } } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(ebp); __ mov(ebp, esp); // Store the arguments adaptor context sentinel. __ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ push(edi); // Preserve the number of arguments on the stack. Must preserve eax, // ebx and ecx because these registers are used when copying the // arguments and the receiver. STATIC_ASSERT(kSmiTagSize == 1); __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); __ push(edi); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ leave(); // Remove caller arguments from the stack. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); } // static void Builtins::Generate_Apply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argumentsList // -- edi : target // -- edx : new.target (checked to be constructor or undefined) // -- esp[0] : return address. // -- esp[4] : thisArgument // ----------------------------------- // Create the list of arguments from the array-like argumentsList. { Label create_arguments, create_array, create_holey_array, create_runtime, done_create; __ JumpIfSmi(eax, &create_runtime); // Load the map of argumentsList into ecx. __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); // Load native context into ebx. __ mov(ebx, NativeContextOperand()); // Check if argumentsList is an (unmodified) arguments object. __ cmp(ecx, ContextOperand(ebx, Context::SLOPPY_ARGUMENTS_MAP_INDEX)); __ j(equal, &create_arguments); __ cmp(ecx, ContextOperand(ebx, Context::STRICT_ARGUMENTS_MAP_INDEX)); __ j(equal, &create_arguments); // Check if argumentsList is a fast JSArray. __ CmpInstanceType(ecx, JS_ARRAY_TYPE); __ j(equal, &create_array); // Ask the runtime to create the list (actually a FixedArray). __ bind(&create_runtime); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edi); __ Push(edx); __ Push(eax); __ CallRuntime(Runtime::kCreateListFromArrayLike); __ Pop(edx); __ Pop(edi); __ mov(ebx, FieldOperand(eax, FixedArray::kLengthOffset)); __ SmiUntag(ebx); } __ jmp(&done_create); // Try to create the list from an arguments object. __ bind(&create_arguments); __ mov(ebx, FieldOperand(eax, JSArgumentsObject::kLengthOffset)); __ mov(ecx, FieldOperand(eax, JSObject::kElementsOffset)); __ cmp(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); __ j(not_equal, &create_runtime); __ SmiUntag(ebx); __ mov(eax, ecx); __ jmp(&done_create); // For holey JSArrays we need to check that the array prototype chain // protector is intact and our prototype is the Array.prototype actually. __ bind(&create_holey_array); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset)); __ cmp(ecx, ContextOperand(ebx, Context::INITIAL_ARRAY_PROTOTYPE_INDEX)); __ j(not_equal, &create_runtime); __ LoadRoot(ecx, Heap::kArrayProtectorRootIndex); __ cmp(FieldOperand(ecx, PropertyCell::kValueOffset), Immediate(Smi::FromInt(Isolate::kProtectorValid))); __ j(not_equal, &create_runtime); __ mov(ebx, FieldOperand(eax, JSArray::kLengthOffset)); __ SmiUntag(ebx); __ mov(eax, FieldOperand(eax, JSArray::kElementsOffset)); __ jmp(&done_create); // Try to create the list from a JSArray object. __ bind(&create_array); __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset)); __ DecodeField<Map::ElementsKindBits>(ecx); STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); __ cmp(ecx, Immediate(FAST_HOLEY_SMI_ELEMENTS)); __ j(equal, &create_holey_array, Label::kNear); __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS)); __ j(equal, &create_holey_array, Label::kNear); __ j(above, &create_runtime); __ mov(ebx, FieldOperand(eax, JSArray::kLengthOffset)); __ SmiUntag(ebx); __ mov(eax, FieldOperand(eax, JSArray::kElementsOffset)); __ bind(&done_create); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(ecx, Operand::StaticVariable(real_stack_limit)); // Make ecx the space we have left. The stack might already be overflowed // here which will cause ecx to become negative. __ neg(ecx); __ add(ecx, esp); __ sar(ecx, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(ecx, ebx); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // ----------- S t a t e ------------- // -- edi : target // -- eax : args (a FixedArray built from argumentsList) // -- ebx : len (number of elements to push from args) // -- edx : new.target (checked to be constructor or undefined) // -- esp[0] : return address. // -- esp[4] : thisArgument // ----------------------------------- // Push arguments onto the stack (thisArgument is already on the stack). { __ movd(xmm0, edx); __ movd(xmm1, edi); __ PopReturnAddressTo(edx); __ Move(ecx, Immediate(0)); Label done, push, loop; __ bind(&loop); __ cmp(ecx, ebx); __ j(equal, &done, Label::kNear); // Turn the hole into undefined as we go. __ mov(edi, FieldOperand(eax, ecx, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(edi, Heap::kTheHoleValueRootIndex); __ j(not_equal, &push, Label::kNear); __ LoadRoot(edi, Heap::kUndefinedValueRootIndex); __ bind(&push); __ Push(edi); __ inc(ecx); __ jmp(&loop); __ bind(&done); __ PushReturnAddressFrom(edx); __ movd(edi, xmm1); __ movd(edx, xmm0); __ Move(eax, ebx); } // Dispatch to Call or Construct depending on whether new.target is undefined. { __ CompareRoot(edx, Heap::kUndefinedValueRootIndex); __ j(equal, masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- edi : the target to call (can be any Object) // -- ecx : start index (to support rest parameters) // -- esp[0] : return address. // -- esp[4] : thisArgument // ----------------------------------- // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &arguments_adaptor, Label::kNear); { __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset)); __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(ebx, ebp); } __ jmp(&arguments_done, Label::kNear); __ bind(&arguments_adaptor); { // Just load the length from the ArgumentsAdaptorFrame. __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); } __ bind(&arguments_done); Label stack_empty, stack_done; __ SmiUntag(eax); __ sub(eax, ecx); __ j(less_equal, &stack_empty); { // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". Label done; __ LoadRoot(ecx, Heap::kRealStackLimitRootIndex); // Make ecx the space we have left. The stack might already be // overflowed here which will cause ecx to become negative. __ neg(ecx); __ add(ecx, esp); __ sar(ecx, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(ecx, eax); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Forward the arguments from the caller frame. { Label loop; __ mov(ecx, eax); __ pop(edx); __ bind(&loop); { __ Push(Operand(ebx, ecx, times_pointer_size, 1 * kPointerSize)); __ dec(ecx); __ j(not_zero, &loop); } __ push(edx); } } __ jmp(&stack_done, Label::kNear); __ bind(&stack_empty); { // We just pass the receiver, which is already on the stack. __ Move(eax, Immediate(0)); } __ bind(&stack_done); __ Jump(code, RelocInfo::CODE_TARGET); } namespace { // Drops top JavaScript frame and an arguments adaptor frame below it (if // present) preserving all the arguments prepared for current call. // Does nothing if debugger is currently active. // ES6 14.6.3. PrepareForTailCall // // Stack structure for the function g() tail calling f(): // // ------- Caller frame: ------- // | ... // | g()'s arg M // | ... // | g()'s arg 1 // | g()'s receiver arg // | g()'s caller pc // ------- g()'s frame: ------- // | g()'s caller fp <- fp // | g()'s context // | function pointer: g // | ------------------------- // | ... // | ... // | f()'s arg N // | ... // | f()'s arg 1 // | f()'s receiver arg // | f()'s caller pc <- sp // ---------------------- // void PrepareForTailCall(MacroAssembler* masm, Register args_reg, Register scratch1, Register scratch2, Register scratch3) { DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); Comment cmnt(masm, "[ PrepareForTailCall"); // Prepare for tail call only if ES2015 tail call elimination is enabled. Label done; ExternalReference is_tail_call_elimination_enabled = ExternalReference::is_tail_call_elimination_enabled_address( masm->isolate()); __ movzx_b(scratch1, Operand::StaticVariable(is_tail_call_elimination_enabled)); __ cmp(scratch1, Immediate(0)); __ j(equal, &done, Label::kNear); // Drop possible interpreter handler/stub frame. { Label no_interpreter_frame; __ cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::STUB))); __ j(not_equal, &no_interpreter_frame, Label::kNear); __ mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ bind(&no_interpreter_frame); } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ mov(scratch2, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ cmp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &no_arguments_adaptor, Label::kNear); // Drop current frame and load arguments count from arguments adaptor frame. __ mov(ebp, scratch2); __ mov(caller_args_count_reg, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); __ jmp(&formal_parameter_count_loaded, Label::kNear); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count __ mov(scratch1, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(scratch1, FieldOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); __ mov( caller_args_count_reg, FieldOperand(scratch1, SharedFunctionInfo::kFormalParameterCountOffset)); __ SmiUntag(caller_args_count_reg); __ bind(&formal_parameter_count_loaded); ParameterCount callee_args_count(args_reg); __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, scratch3, ReturnAddressState::kOnStack, 0); __ bind(&done); } } // namespace // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(edi); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(edx, SharedFunctionInfo::kFunctionKindByteOffset), Immediate(SharedFunctionInfo::kClassConstructorBitsWithinByte)); __ j(not_zero, &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset == SharedFunctionInfo::kStrictModeByteOffset); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ test_b(FieldOperand(edx, SharedFunctionInfo::kNativeByteOffset), Immediate((1 << SharedFunctionInfo::kNativeBitWithinByte) | (1 << SharedFunctionInfo::kStrictModeBitWithinByte))); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } else { Label convert_to_object, convert_receiver; __ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize)); __ JumpIfSmi(ecx, &convert_to_object, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ebx); __ j(above_equal, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(ecx, Heap::kUndefinedValueRootIndex, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(ecx, Heap::kNullValueRootIndex, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(eax); __ Push(eax); __ Push(edi); __ mov(eax, ecx); __ Push(esi); __ Call(masm->isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET); __ Pop(esi); __ mov(ecx, eax); __ Pop(edi); __ Pop(eax); __ SmiUntag(eax); } __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, eax, ebx, ecx, edx); // Reload shared function info. __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); } __ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ SmiUntag(ebx); ParameterCount actual(eax); ParameterCount expected(ebx); __ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION, CheckDebugStepCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ push(edi); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : new.target (only in case of [[Construct]]) // -- edi : target (checked to be a JSBoundFunction) // ----------------------------------- // Load [[BoundArguments]] into ecx and length of that into ebx. Label no_bound_arguments; __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); __ SmiUntag(ebx); __ test(ebx, ebx); __ j(zero, &no_bound_arguments); { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : new.target (only in case of [[Construct]]) // -- edi : target (checked to be a JSBoundFunction) // -- ecx : the [[BoundArguments]] (implemented as FixedArray) // -- ebx : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ lea(ecx, Operand(ebx, times_pointer_size, 0)); __ sub(esp, ecx); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex); __ j(greater, &done, Label::kNear); // Signed comparison. // Restore the stack pointer. __ lea(esp, Operand(esp, ebx, times_pointer_size, 0)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Adjust effective number of arguments to include return address. __ inc(eax); // Relocate arguments and return address down the stack. { Label loop; __ Set(ecx, 0); __ lea(ebx, Operand(esp, ebx, times_pointer_size, 0)); __ bind(&loop); __ movd(xmm0, Operand(ebx, ecx, times_pointer_size, 0)); __ movd(Operand(esp, ecx, times_pointer_size, 0), xmm0); __ inc(ecx); __ cmp(ecx, eax); __ j(less, &loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); __ SmiUntag(ebx); __ bind(&loop); __ dec(ebx); __ movd(xmm0, FieldOperand(ecx, ebx, times_pointer_size, FixedArray::kHeaderSize)); __ movd(Operand(esp, eax, times_pointer_size, 0), xmm0); __ lea(eax, Operand(eax, 1)); __ j(greater, &loop); } // Adjust effective number of arguments (eax contains the number of // arguments from the call plus return address plus the number of // [[BoundArguments]]), so we need to subtract one for the return address. __ dec(eax); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(edi); if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, eax, ebx, ecx, edx); } // Patch the receiver to [[BoundThis]]. __ mov(ebx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset)); __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ebx); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ mov(ecx, Operand::StaticVariable(ExternalReference( Builtins::kCall_ReceiverIsAny, masm->isolate()))); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ jmp(ecx); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode, TailCallMode tail_call_mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(edi, &non_callable); __ bind(&non_smi); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(equal, masm->isolate()->builtins()->CallFunction(mode, tail_call_mode), RelocInfo::CODE_TARGET); __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); __ j(equal, masm->isolate()->builtins()->CallBoundFunction(tail_call_mode), RelocInfo::CODE_TARGET); // Check if target has a [[Call]] internal method. __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &non_callable); __ CmpInstanceType(ecx, JS_PROXY_TYPE); __ j(not_equal, &non_function); // 0. Prepare for tail call if necessary. if (tail_call_mode == TailCallMode::kAllow) { PrepareForTailCall(masm, eax, ebx, ecx, edx); } // 1. Runtime fallback for Proxy [[Call]]. __ PopReturnAddressTo(ecx); __ Push(edi); __ PushReturnAddressFrom(ecx); // Increase the arguments size to include the pushed function and the // existing receiver on the stack. __ add(eax, Immediate(2)); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyCall, masm->isolate())); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); // Let the "call_as_function_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edi); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } static void CheckSpreadAndPushToStack(MacroAssembler* masm) { // Free up some registers. __ movd(xmm0, edx); __ movd(xmm1, edi); Register argc = eax; Register scratch = ecx; Register scratch2 = edi; Register spread = ebx; Register spread_map = edx; Register spread_len = edx; Label runtime_call, push_args; __ mov(spread, Operand(esp, kPointerSize)); __ JumpIfSmi(spread, &runtime_call); __ mov(spread_map, FieldOperand(spread, HeapObject::kMapOffset)); // Check that the spread is an array. __ CmpInstanceType(spread_map, JS_ARRAY_TYPE); __ j(not_equal, &runtime_call); // Check that we have the original ArrayPrototype. __ mov(scratch, FieldOperand(spread_map, Map::kPrototypeOffset)); __ mov(scratch2, NativeContextOperand()); __ cmp(scratch, ContextOperand(scratch2, Context::INITIAL_ARRAY_PROTOTYPE_INDEX)); __ j(not_equal, &runtime_call); // Check that the ArrayPrototype hasn't been modified in a way that would // affect iteration. __ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex); __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset), Immediate(Smi::FromInt(Isolate::kProtectorValid))); __ j(not_equal, &runtime_call); // Check that the map of the initial array iterator hasn't changed. __ mov(scratch2, NativeContextOperand()); __ mov(scratch, ContextOperand(scratch2, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX)); __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ cmp(scratch, ContextOperand(scratch2, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX)); __ j(not_equal, &runtime_call); // For FastPacked kinds, iteration will have the same effect as simply // accessing each property in order. Label no_protector_check; __ mov(scratch, FieldOperand(spread_map, Map::kBitField2Offset)); __ DecodeField<Map::ElementsKindBits>(scratch); __ cmp(scratch, Immediate(FAST_HOLEY_ELEMENTS)); __ j(above, &runtime_call); // For non-FastHoley kinds, we can skip the protector check. __ cmp(scratch, Immediate(FAST_SMI_ELEMENTS)); __ j(equal, &no_protector_check); __ cmp(scratch, Immediate(FAST_ELEMENTS)); __ j(equal, &no_protector_check); // Check the ArrayProtector cell. __ LoadRoot(scratch, Heap::kArrayProtectorRootIndex); __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset), Immediate(Smi::FromInt(Isolate::kProtectorValid))); __ j(not_equal, &runtime_call); __ bind(&no_protector_check); // Load the FixedArray backing store, but use the length from the array. __ mov(spread_len, FieldOperand(spread, JSArray::kLengthOffset)); __ SmiUntag(spread_len); __ mov(spread, FieldOperand(spread, JSArray::kElementsOffset)); __ jmp(&push_args); __ bind(&runtime_call); { // Call the builtin for the result of the spread. FrameScope scope(masm, StackFrame::INTERNAL); // Need to save these on the stack. __ movd(edi, xmm1); __ movd(edx, xmm0); __ Push(edi); __ Push(edx); __ SmiTag(argc); __ Push(argc); __ Push(spread); __ CallRuntime(Runtime::kSpreadIterableFixed); __ mov(spread, eax); __ Pop(argc); __ SmiUntag(argc); __ Pop(edx); __ Pop(edi); // Free up some registers. __ movd(xmm0, edx); __ movd(xmm1, edi); } { // Calculate the new nargs including the result of the spread. __ mov(spread_len, FieldOperand(spread, FixedArray::kLengthOffset)); __ SmiUntag(spread_len); __ bind(&push_args); // argc += spread_len - 1. Subtract 1 for the spread itself. __ lea(argc, Operand(argc, spread_len, times_1, -1)); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); // Make scratch the space we have left. The stack might already be // overflowed here which will cause scratch to become negative. __ neg(scratch); __ add(scratch, esp); __ sar(scratch, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(scratch, spread_len); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Put the evaluated spread onto the stack as additional arguments. { Register return_address = edi; // Pop the return address and spread argument. __ PopReturnAddressTo(return_address); __ Pop(scratch); Register scratch2 = esi; __ movd(xmm2, esi); __ mov(scratch, Immediate(0)); Label done, push, loop; __ bind(&loop); __ cmp(scratch, spread_len); __ j(equal, &done, Label::kNear); __ mov(scratch2, FieldOperand(spread, scratch, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(scratch2, Heap::kTheHoleValueRootIndex); __ j(not_equal, &push, Label::kNear); __ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex); __ bind(&push); __ Push(scratch2); __ inc(scratch); __ jmp(&loop); __ bind(&done); __ PushReturnAddressFrom(return_address); __ movd(esi, xmm2); __ movd(edi, xmm1); __ movd(edx, xmm0); } } // static void Builtins::Generate_CallWithSpread(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the target to call (can be any Object) // ----------------------------------- // CheckSpreadAndPushToStack will push edx to save it. __ LoadRoot(edx, Heap::kUndefinedValueRootIndex); CheckSpreadAndPushToStack(masm); __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, TailCallMode::kDisallow), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (checked to be a constructor) // -- edi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(edi); // Calling convention for function specific ConstructStubs require // ebx to contain either an AllocationSite or undefined. __ LoadRoot(ebx, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset)); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ jmp(ecx); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (checked to be a constructor) // -- edi : the constructor to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(edi); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ cmp(edi, edx); __ j(not_equal, &done, Label::kNear); __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ mov(ecx, Operand::StaticVariable( ExternalReference(Builtins::kConstruct, masm->isolate()))); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ jmp(ecx); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the constructor to call (checked to be a JSProxy) // -- edx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Call into the Runtime for Proxy [[Construct]]. __ PopReturnAddressTo(ecx); __ Push(edi); __ Push(edx); __ PushReturnAddressFrom(ecx); // Include the pushed new_target, constructor and the receiver. __ add(eax, Immediate(3)); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyConstruct, masm->isolate())); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- edi : the constructor to call (can be any Object) // ----------------------------------- // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(edi, &non_constructor, Label::kNear); // Dispatch based on instance type. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(equal, masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET); // Check if target has a [[Construct]] internal method. __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &non_constructor, Label::kNear); // Only dispatch to bound functions after checking whether they are // constructors. __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(), RelocInfo::CODE_TARGET); // Only dispatch to proxies after checking whether they are constructors. __ CmpInstanceType(ecx, JS_PROXY_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructWithSpread(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- edi : the constructor to call (can be any Object) // ----------------------------------- CheckSpreadAndPushToStack(masm); __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- edx : requested object size (untagged) // -- esp[0] : return address // ----------------------------------- __ SmiTag(edx); __ PopReturnAddressTo(ecx); __ Push(edx); __ PushReturnAddressFrom(ecx); __ Move(esi, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInNewSpace); } // static void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- edx : requested object size (untagged) // -- esp[0] : return address // ----------------------------------- __ SmiTag(edx); __ PopReturnAddressTo(ecx); __ Push(edx); __ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); __ PushReturnAddressFrom(ecx); __ Move(esi, Smi::kZero); __ TailCallRuntime(Runtime::kAllocateInTargetSpace); } // static void Builtins::Generate_Abort(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- edx : message_id as Smi // -- esp[0] : return address // ----------------------------------- __ PopReturnAddressTo(ecx); __ Push(edx); __ PushReturnAddressFrom(ecx); __ Move(esi, Smi::kZero); __ TailCallRuntime(Runtime::kAbort); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ebx : expected number of arguments // -- edx : new target (passed through to callee) // -- edi : function (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1); Label enough, too_few; __ cmp(eax, ebx); __ j(less, &too_few); __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // edi is used as a scratch register. It should be restored from the frame // when needed. Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); __ mov(eax, -1); // account for receiver Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kPointerSize)); __ cmp(eax, ebx); __ j(less, ©); // eax now contains the expected number of arguments. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // edi is used as a scratch register. It should be restored from the frame // when needed. Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow); // Remember expected arguments in ecx. __ mov(ecx, ebx); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); // ebx = expected - actual. __ sub(ebx, eax); // eax = -actual - 1 __ neg(eax); __ sub(eax, Immediate(1)); Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kPointerSize)); __ test(eax, eax); __ j(not_zero, ©); // Fill remaining expected arguments with undefined values. Label fill; __ bind(&fill); __ inc(eax); __ push(Immediate(masm->isolate()->factory()->undefined_value())); __ cmp(eax, ebx); __ j(less, &fill); // Restore expected arguments. __ mov(eax, ecx); } // Call the entry point. __ bind(&invoke); // Restore function pointer. __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); // eax : expected number of arguments // edx : new target (passed through to callee) // edi : function (passed through to callee) __ mov(ecx, FieldOperand(edi, JSFunction::kCodeEntryOffset)); __ call(ecx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeEntryOffset)); __ jmp(ecx); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); } } static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver, Register function_template_info, Register scratch0, Register scratch1, Label* receiver_check_failed) { // If there is no signature, return the holder. __ CompareRoot(FieldOperand(function_template_info, FunctionTemplateInfo::kSignatureOffset), Heap::kUndefinedValueRootIndex); Label receiver_check_passed; __ j(equal, &receiver_check_passed, Label::kNear); // Walk the prototype chain. __ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset)); Label prototype_loop_start; __ bind(&prototype_loop_start); // Get the constructor, if any. __ GetMapConstructor(scratch0, scratch0, scratch1); __ CmpInstanceType(scratch1, JS_FUNCTION_TYPE); Label next_prototype; __ j(not_equal, &next_prototype, Label::kNear); // Get the constructor's signature. __ mov(scratch0, FieldOperand(scratch0, JSFunction::kSharedFunctionInfoOffset)); __ mov(scratch0, FieldOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset)); // Loop through the chain of inheriting function templates. Label function_template_loop; __ bind(&function_template_loop); // If the signatures match, we have a compatible receiver. __ cmp(scratch0, FieldOperand(function_template_info, FunctionTemplateInfo::kSignatureOffset)); __ j(equal, &receiver_check_passed, Label::kNear); // If the current type is not a FunctionTemplateInfo, load the next prototype // in the chain. __ JumpIfSmi(scratch0, &next_prototype, Label::kNear); __ CmpObjectType(scratch0, FUNCTION_TEMPLATE_INFO_TYPE, scratch1); __ j(not_equal, &next_prototype, Label::kNear); // Otherwise load the parent function template and iterate. __ mov(scratch0, FieldOperand(scratch0, FunctionTemplateInfo::kParentTemplateOffset)); __ jmp(&function_template_loop, Label::kNear); // Load the next prototype. __ bind(&next_prototype); __ mov(receiver, FieldOperand(receiver, HeapObject::kMapOffset)); __ test(FieldOperand(receiver, Map::kBitField3Offset), Immediate(Map::HasHiddenPrototype::kMask)); __ j(zero, receiver_check_failed); __ mov(receiver, FieldOperand(receiver, Map::kPrototypeOffset)); __ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset)); // Iterate. __ jmp(&prototype_loop_start, Label::kNear); __ bind(&receiver_check_passed); } void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : number of arguments (not including the receiver) // -- edi : callee // -- esi : context // -- esp[0] : return address // -- esp[4] : last argument // -- ... // -- esp[eax * 4] : first argument // -- esp[(eax + 1) * 4] : receiver // ----------------------------------- // Load the FunctionTemplateInfo. __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFunctionDataOffset)); // Do the compatible receiver check. Label receiver_check_failed; __ mov(ecx, Operand(esp, eax, times_pointer_size, kPCOnStackSize)); __ Push(eax); CompatibleReceiverCheck(masm, ecx, ebx, edx, eax, &receiver_check_failed); __ Pop(eax); // Get the callback offset from the FunctionTemplateInfo, and jump to the // beginning of the code. __ mov(edx, FieldOperand(ebx, FunctionTemplateInfo::kCallCodeOffset)); __ mov(edx, FieldOperand(edx, CallHandlerInfo::kFastHandlerOffset)); __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(edx); // Compatible receiver check failed: pop return address, arguments and // receiver and throw an Illegal Invocation exception. __ bind(&receiver_check_failed); __ Pop(eax); __ PopReturnAddressTo(ebx); __ lea(eax, Operand(eax, times_pointer_size, 1 * kPointerSize)); __ add(esp, eax); __ PushReturnAddressFrom(ebx); { FrameScope scope(masm, StackFrame::INTERNAL); __ TailCallRuntime(Runtime::kThrowIllegalInvocation); } } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset)); } else { __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(eax); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } Label skip; // If the code object is null, just return to the caller. __ cmp(eax, Immediate(0)); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ leave(); } // Load deoptimization data from the code object. __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(ebx); // Compute the target address = code_obj + header_size + osr_offset __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ mov(Operand(esp, 0), eax); // And "return" to the OSR entry point of the function. __ ret(0); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32