// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/jump-threading.h" #include "src/compiler/code-generator-impl.h" #include "src/objects-inl.h" namespace v8 { namespace internal { namespace compiler { #define TRACE(...) \ do { \ if (FLAG_trace_turbo_jt) PrintF(__VA_ARGS__); \ } while (false) struct JumpThreadingState { bool forwarded; ZoneVector<RpoNumber>& result; ZoneStack<RpoNumber>& stack; void Clear(size_t count) { result.assign(count, unvisited()); } void PushIfUnvisited(RpoNumber num) { if (result[num.ToInt()] == unvisited()) { stack.push(num); result[num.ToInt()] = onstack(); } } void Forward(RpoNumber to) { RpoNumber from = stack.top(); RpoNumber to_to = result[to.ToInt()]; bool pop = true; if (to == from) { TRACE(" xx %d\n", from.ToInt()); result[from.ToInt()] = from; } else if (to_to == unvisited()) { TRACE(" fw %d -> %d (recurse)\n", from.ToInt(), to.ToInt()); stack.push(to); result[to.ToInt()] = onstack(); pop = false; // recurse. } else if (to_to == onstack()) { TRACE(" fw %d -> %d (cycle)\n", from.ToInt(), to.ToInt()); result[from.ToInt()] = to; // break the cycle. forwarded = true; } else { TRACE(" fw %d -> %d (forward)\n", from.ToInt(), to.ToInt()); result[from.ToInt()] = to_to; // forward the block. forwarded = true; } if (pop) stack.pop(); } RpoNumber unvisited() { return RpoNumber::FromInt(-1); } RpoNumber onstack() { return RpoNumber::FromInt(-2); } }; bool JumpThreading::ComputeForwarding(Zone* local_zone, ZoneVector<RpoNumber>& result, InstructionSequence* code, bool frame_at_start) { ZoneStack<RpoNumber> stack(local_zone); JumpThreadingState state = {false, result, stack}; state.Clear(code->InstructionBlockCount()); // Iterate over the blocks forward, pushing the blocks onto the stack. for (auto const block : code->instruction_blocks()) { RpoNumber current = block->rpo_number(); state.PushIfUnvisited(current); // Process the stack, which implements DFS through empty blocks. while (!state.stack.empty()) { InstructionBlock* block = code->InstructionBlockAt(state.stack.top()); // Process the instructions in a block up to a non-empty instruction. TRACE("jt [%d] B%d\n", static_cast<int>(stack.size()), block->rpo_number().ToInt()); bool fallthru = true; RpoNumber fw = block->rpo_number(); for (int i = block->code_start(); i < block->code_end(); ++i) { Instruction* instr = code->InstructionAt(i); if (!instr->AreMovesRedundant()) { // can't skip instructions with non redundant moves. TRACE(" parallel move\n"); fallthru = false; } else if (FlagsModeField::decode(instr->opcode()) != kFlags_none) { // can't skip instructions with flags continuations. TRACE(" flags\n"); fallthru = false; } else if (instr->IsNop()) { // skip nops. TRACE(" nop\n"); continue; } else if (instr->arch_opcode() == kArchJmp) { // try to forward the jump instruction. TRACE(" jmp\n"); // if this block deconstructs the frame, we can't forward it. // TODO(mtrofin): we can still forward if we end up building // the frame at start. So we should move the decision of whether // to build a frame or not in the register allocator, and trickle it // here and to the code generator. if (frame_at_start || !(block->must_deconstruct_frame() || block->must_construct_frame())) { fw = code->InputRpo(instr, 0); } fallthru = false; } else { // can't skip other instructions. TRACE(" other\n"); fallthru = false; } break; } if (fallthru) { int next = 1 + block->rpo_number().ToInt(); if (next < code->InstructionBlockCount()) fw = RpoNumber::FromInt(next); } state.Forward(fw); } } #ifdef DEBUG for (RpoNumber num : result) { CHECK(num.IsValid()); } #endif if (FLAG_trace_turbo_jt) { for (int i = 0; i < static_cast<int>(result.size()); i++) { TRACE("B%d ", i); int to = result[i].ToInt(); if (i != to) { TRACE("-> B%d\n", to); } else { TRACE("\n"); } } } return state.forwarded; } void JumpThreading::ApplyForwarding(ZoneVector<RpoNumber>& result, InstructionSequence* code) { if (!FLAG_turbo_jt) return; Zone local_zone(code->isolate()->allocator(), ZONE_NAME); ZoneVector<bool> skip(static_cast<int>(result.size()), false, &local_zone); // Skip empty blocks when the previous block doesn't fall through. bool prev_fallthru = true; for (auto const block : code->instruction_blocks()) { int block_num = block->rpo_number().ToInt(); skip[block_num] = !prev_fallthru && result[block_num].ToInt() != block_num; bool fallthru = true; for (int i = block->code_start(); i < block->code_end(); ++i) { Instruction* instr = code->InstructionAt(i); if (FlagsModeField::decode(instr->opcode()) == kFlags_branch) { fallthru = false; // branches don't fall through to the next block. } else if (instr->arch_opcode() == kArchJmp) { if (skip[block_num]) { // Overwrite a redundant jump with a nop. TRACE("jt-fw nop @%d\n", i); instr->OverwriteWithNop(); } fallthru = false; // jumps don't fall through to the next block. } } prev_fallthru = fallthru; } // Patch RPO immediates. InstructionSequence::Immediates& immediates = code->immediates(); for (size_t i = 0; i < immediates.size(); i++) { Constant constant = immediates[i]; if (constant.type() == Constant::kRpoNumber) { RpoNumber rpo = constant.ToRpoNumber(); RpoNumber fw = result[rpo.ToInt()]; if (!(fw == rpo)) immediates[i] = Constant(fw); } } // Recompute assembly order numbers. int ao = 0; for (auto const block : code->instruction_blocks()) { if (!block->IsDeferred()) { block->set_ao_number(RpoNumber::FromInt(ao)); if (!skip[block->rpo_number().ToInt()]) ao++; } } for (auto const block : code->instruction_blocks()) { if (block->IsDeferred()) { block->set_ao_number(RpoNumber::FromInt(ao)); if (!skip[block->rpo_number().ToInt()]) ao++; } } } } // namespace compiler } // namespace internal } // namespace v8