/* * Copyright 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_INTERPOLATOR_H #define ANDROID_INTERPOLATOR_H #include <map> #include <sstream> #include <unordered_map> #include <binder/Parcel.h> #include <utils/RefBase.h> #pragma push_macro("LOG_TAG") #undef LOG_TAG #define LOG_TAG "Interpolator" namespace android { /* * A general purpose spline interpolator class which takes a set of points * and performs interpolation. This is used for the VolumeShaper class. */ template <typename S, typename T> class Interpolator : public std::map<S, T> { public: // Polynomial spline interpolators // Extend only at the end of enum, as this must match order in VolumeShapers.java. enum InterpolatorType : int32_t { INTERPOLATOR_TYPE_STEP, // Not continuous INTERPOLATOR_TYPE_LINEAR, // C0 INTERPOLATOR_TYPE_CUBIC, // C1 INTERPOLATOR_TYPE_CUBIC_MONOTONIC, // C1 (to provide locally monotonic curves) // INTERPOLATOR_TYPE_CUBIC_C2, // TODO - requires global computation / cache }; explicit Interpolator( InterpolatorType interpolatorType = INTERPOLATOR_TYPE_LINEAR, bool cache = true) : mCache(cache) , mFirstSlope(0) , mLastSlope(0) { setInterpolatorType(interpolatorType); } std::pair<S, T> first() const { return *this->begin(); } std::pair<S, T> last() const { return *this->rbegin(); } // find the corresponding Y point from a X point. T findY(S x) { // logically const, but modifies cache auto high = this->lower_bound(x); // greater than last point if (high == this->end()) { return this->rbegin()->second; } // at or before first point if (high == this->begin()) { return high->second; } // go lower. auto low = high; --low; // now that we have two adjacent points: switch (mInterpolatorType) { case INTERPOLATOR_TYPE_STEP: return high->first == x ? high->second : low->second; case INTERPOLATOR_TYPE_LINEAR: return ((high->first - x) * low->second + (x - low->first) * high->second) / (high->first - low->first); case INTERPOLATOR_TYPE_CUBIC: case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: default: { // See https://en.wikipedia.org/wiki/Cubic_Hermite_spline const S interval = high->first - low->first; // check to see if we've cached the polynomial coefficients if (mMemo.count(low->first) != 0) { const S t = (x - low->first) / interval; const S t2 = t * t; const auto &memo = mMemo[low->first]; return low->second + std::get<0>(memo) * t + (std::get<1>(memo) + std::get<2>(memo) * t) * t2; } // find the neighboring points (low2 < low < high < high2) auto low2 = this->end(); if (low != this->begin()) { low2 = low; --low2; // decrementing this->begin() is undefined } auto high2 = high; ++high2; // you could have catmullRom with monotonic or // non catmullRom (finite difference) with regular cubic; // the choices here minimize computation. bool monotonic, catmullRom; if (mInterpolatorType == INTERPOLATOR_TYPE_CUBIC_MONOTONIC) { monotonic = true; catmullRom = false; } else { monotonic = false; catmullRom = true; } // secants are only needed for finite difference splines or // monotonic computation. // we use lazy computation here - if we precompute in // a single pass, duplicate secant computations may be avoided. S sec, sec0, sec1; if (!catmullRom || monotonic) { sec = (high->second - low->second) / interval; sec0 = low2 != this->end() ? (low->second - low2->second) / (low->first - low2->first) : mFirstSlope; sec1 = high2 != this->end() ? (high2->second - high->second) / (high2->first - high->first) : mLastSlope; } // compute the tangent slopes at the control points S m0, m1; if (catmullRom) { // Catmull-Rom spline m0 = low2 != this->end() ? (high->second - low2->second) / (high->first - low2->first) : mFirstSlope; m1 = high2 != this->end() ? (high2->second - low->second) / (high2->first - low->first) : mLastSlope; } else { // finite difference spline m0 = (sec0 + sec) * 0.5f; m1 = (sec1 + sec) * 0.5f; } if (monotonic) { // https://en.wikipedia.org/wiki/Monotone_cubic_interpolation // A sufficient condition for Fritsch–Carlson monotonicity is constraining // (1) the normalized slopes to be within the circle of radius 3, or // (2) the normalized slopes to be within the square of radius 3. // Condition (2) is more generous and easier to compute. const S maxSlope = 3 * sec; m0 = constrainSlope(m0, maxSlope); m1 = constrainSlope(m1, maxSlope); m0 = constrainSlope(m0, 3 * sec0); m1 = constrainSlope(m1, 3 * sec1); } const S t = (x - low->first) / interval; const S t2 = t * t; if (mCache) { // convert to cubic polynomial coefficients and compute m0 *= interval; m1 *= interval; const T dy = high->second - low->second; const S c0 = low->second; const S c1 = m0; const S c2 = 3 * dy - 2 * m0 - m1; const S c3 = m0 + m1 - 2 * dy; mMemo[low->first] = std::make_tuple(c1, c2, c3); return c0 + c1 * t + (c2 + c3 * t) * t2; } else { // classic Hermite interpolation const S t3 = t2 * t; const S h00 = 2 * t3 - 3 * t2 + 1; const S h10 = t3 - 2 * t2 + t ; const S h01 = -2 * t3 + 3 * t2 ; const S h11 = t3 - t2 ; return h00 * low->second + (h10 * m0 + h11 * m1) * interval + h01 * high->second; } } // default } } InterpolatorType getInterpolatorType() const { return mInterpolatorType; } status_t setInterpolatorType(InterpolatorType interpolatorType) { switch (interpolatorType) { case INTERPOLATOR_TYPE_STEP: // Not continuous case INTERPOLATOR_TYPE_LINEAR: // C0 case INTERPOLATOR_TYPE_CUBIC: // C1 case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: // C1 + other constraints // case INTERPOLATOR_TYPE_CUBIC_C2: mInterpolatorType = interpolatorType; return NO_ERROR; default: ALOGE("invalid interpolatorType: %d", interpolatorType); return BAD_VALUE; } } T getFirstSlope() const { return mFirstSlope; } void setFirstSlope(T slope) { mFirstSlope = slope; } T getLastSlope() const { return mLastSlope; } void setLastSlope(T slope) { mLastSlope = slope; } void clearCache() { mMemo.clear(); } status_t writeToParcel(Parcel *parcel) const { if (parcel == nullptr) { return BAD_VALUE; } status_t res = parcel->writeInt32(mInterpolatorType) ?: parcel->writeFloat(mFirstSlope) ?: parcel->writeFloat(mLastSlope) ?: parcel->writeUint32((uint32_t)this->size()); // silent truncation if (res != NO_ERROR) { return res; } for (const auto &pt : *this) { res = parcel->writeFloat(pt.first) ?: parcel->writeFloat(pt.second); if (res != NO_ERROR) { return res; } } return NO_ERROR; } status_t readFromParcel(const Parcel &parcel) { this->clear(); int32_t type; uint32_t size; status_t res = parcel.readInt32(&type) ?: parcel.readFloat(&mFirstSlope) ?: parcel.readFloat(&mLastSlope) ?: parcel.readUint32(&size) ?: setInterpolatorType((InterpolatorType)type); if (res != NO_ERROR) { return res; } // Note: We don't need to check size is within some bounds as // the Parcel read will fail if size is incorrectly specified too large. float lastx; for (uint32_t i = 0; i < size; ++i) { float x, y; res = parcel.readFloat(&x) ?: parcel.readFloat(&y); if (res != NO_ERROR) { return res; } if ((i > 0 && !(x > lastx)) /* handle nan */ || y != y /* handle nan */) { // This is a std::map object which imposes sorted order // automatically on emplace. // Nevertheless for reading from a Parcel, // we require that the points be specified monotonic in x. return BAD_VALUE; } this->emplace(x, y); lastx = x; } return NO_ERROR; } std::string toString() const { std::stringstream ss; ss << "Interpolator{mInterpolatorType=" << static_cast<int32_t>(mInterpolatorType); ss << ", mFirstSlope=" << mFirstSlope; ss << ", mLastSlope=" << mLastSlope; ss << ", {"; bool first = true; for (const auto &pt : *this) { if (first) { first = false; ss << "{"; } else { ss << ", {"; } ss << pt.first << ", " << pt.second << "}"; } ss << "}}"; return ss.str(); } private: static S constrainSlope(S slope, S maxSlope) { if (maxSlope > 0) { slope = std::min(slope, maxSlope); slope = std::max(slope, S(0)); // not globally monotonic } else { slope = std::max(slope, maxSlope); slope = std::min(slope, S(0)); // not globally monotonic } return slope; } InterpolatorType mInterpolatorType; bool mCache; // whether we cache spline coefficient computation // for cubic interpolation, the boundary conditions in slope. S mFirstSlope; S mLastSlope; // spline cubic polynomial coefficient cache std::unordered_map<S, std::tuple<S /* c1 */, S /* c2 */, S /* c3 */>> mMemo; }; // Interpolator } // namespace android #pragma pop_macro("LOG_TAG") #endif // ANDROID_INTERPOLATOR_H