/* ** ** Copyright 2007, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "AudioTrack" #include <inttypes.h> #include <math.h> #include <sys/resource.h> #include <audio_utils/clock.h> #include <audio_utils/primitives.h> #include <binder/IPCThreadState.h> #include <media/AudioTrack.h> #include <utils/Log.h> #include <private/media/AudioTrackShared.h> #include <media/IAudioFlinger.h> #include <media/AudioParameter.h> #include <media/AudioPolicyHelper.h> #include <media/AudioResamplerPublic.h> #include <media/MediaAnalyticsItem.h> #include <media/TypeConverter.h> #define WAIT_PERIOD_MS 10 #define WAIT_STREAM_END_TIMEOUT_SEC 120 static const int kMaxLoopCountNotifications = 32; namespace android { // --------------------------------------------------------------------------- using media::VolumeShaper; // TODO: Move to a separate .h template <typename T> static inline const T &min(const T &x, const T &y) { return x < y ? x : y; } template <typename T> static inline const T &max(const T &x, const T &y) { return x > y ? x : y; } static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed) { return ((double)frames * 1000000000) / ((double)sampleRate * speed); } static int64_t convertTimespecToUs(const struct timespec &tv) { return tv.tv_sec * 1000000ll + tv.tv_nsec / 1000; } // TODO move to audio_utils. static inline struct timespec convertNsToTimespec(int64_t ns) { struct timespec tv; tv.tv_sec = static_cast<time_t>(ns / NANOS_PER_SECOND); tv.tv_nsec = static_cast<long>(ns % NANOS_PER_SECOND); return tv; } // current monotonic time in microseconds. static int64_t getNowUs() { struct timespec tv; (void) clock_gettime(CLOCK_MONOTONIC, &tv); return convertTimespecToUs(tv); } // FIXME: we don't use the pitch setting in the time stretcher (not working); // instead we emulate it using our sample rate converter. static const bool kFixPitch = true; // enable pitch fix static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch) { return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate; } static inline float adjustSpeed(float speed, float pitch) { return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed; } static inline float adjustPitch(float pitch) { return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch; } // static status_t AudioTrack::getMinFrameCount( size_t* frameCount, audio_stream_type_t streamType, uint32_t sampleRate) { if (frameCount == NULL) { return BAD_VALUE; } // FIXME handle in server, like createTrack_l(), possible missing info: // audio_io_handle_t output // audio_format_t format // audio_channel_mask_t channelMask // audio_output_flags_t flags (FAST) uint32_t afSampleRate; status_t status; status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType); if (status != NO_ERROR) { ALOGE("Unable to query output sample rate for stream type %d; status %d", streamType, status); return status; } size_t afFrameCount; status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType); if (status != NO_ERROR) { ALOGE("Unable to query output frame count for stream type %d; status %d", streamType, status); return status; } uint32_t afLatency; status = AudioSystem::getOutputLatency(&afLatency, streamType); if (status != NO_ERROR) { ALOGE("Unable to query output latency for stream type %d; status %d", streamType, status); return status; } // When called from createTrack, speed is 1.0f (normal speed). // This is rechecked again on setting playback rate (TODO: on setting sample rate, too). *frameCount = AudioSystem::calculateMinFrameCount(afLatency, afFrameCount, afSampleRate, sampleRate, 1.0f /*, 0 notificationsPerBufferReq*/); // The formula above should always produce a non-zero value under normal circumstances: // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX. // Return error in the unlikely event that it does not, as that's part of the API contract. if (*frameCount == 0) { ALOGE("AudioTrack::getMinFrameCount failed for streamType %d, sampleRate %u", streamType, sampleRate); return BAD_VALUE; } ALOGV("getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u", *frameCount, afFrameCount, afSampleRate, afLatency); return NO_ERROR; } // --------------------------------------------------------------------------- static std::string audioContentTypeString(audio_content_type_t value) { std::string contentType; if (AudioContentTypeConverter::toString(value, contentType)) { return contentType; } char rawbuffer[16]; // room for "%d" snprintf(rawbuffer, sizeof(rawbuffer), "%d", value); return rawbuffer; } static std::string audioUsageString(audio_usage_t value) { std::string usage; if (UsageTypeConverter::toString(value, usage)) { return usage; } char rawbuffer[16]; // room for "%d" snprintf(rawbuffer, sizeof(rawbuffer), "%d", value); return rawbuffer; } void AudioTrack::MediaMetrics::gather(const AudioTrack *track) { // key for media statistics is defined in the header // attrs for media statistics // NB: these are matched with public Java API constants defined // in frameworks/base/media/java/android/media/AudioTrack.java // These must be kept synchronized with the constants there. static constexpr char kAudioTrackStreamType[] = "android.media.audiotrack.streamtype"; static constexpr char kAudioTrackContentType[] = "android.media.audiotrack.type"; static constexpr char kAudioTrackUsage[] = "android.media.audiotrack.usage"; static constexpr char kAudioTrackSampleRate[] = "android.media.audiotrack.samplerate"; static constexpr char kAudioTrackChannelMask[] = "android.media.audiotrack.channelmask"; // NB: These are not yet exposed as public Java API constants. static constexpr char kAudioTrackUnderrunFrames[] = "android.media.audiotrack.underrunframes"; static constexpr char kAudioTrackStartupGlitch[] = "android.media.audiotrack.glitch.startup"; // only if we're in a good state... // XXX: shall we gather alternative info if failing? const status_t lstatus = track->initCheck(); if (lstatus != NO_ERROR) { ALOGD("no metrics gathered, track status=%d", (int) lstatus); return; } // constructor guarantees mAnalyticsItem is valid const int32_t underrunFrames = track->getUnderrunFrames(); if (underrunFrames != 0) { mAnalyticsItem->setInt32(kAudioTrackUnderrunFrames, underrunFrames); } if (track->mTimestampStartupGlitchReported) { mAnalyticsItem->setInt32(kAudioTrackStartupGlitch, 1); } if (track->mStreamType != -1) { // deprecated, but this will tell us who still uses it. mAnalyticsItem->setInt32(kAudioTrackStreamType, track->mStreamType); } // XXX: consider including from mAttributes: source type mAnalyticsItem->setCString(kAudioTrackContentType, audioContentTypeString(track->mAttributes.content_type).c_str()); mAnalyticsItem->setCString(kAudioTrackUsage, audioUsageString(track->mAttributes.usage).c_str()); mAnalyticsItem->setInt32(kAudioTrackSampleRate, track->mSampleRate); mAnalyticsItem->setInt64(kAudioTrackChannelMask, track->mChannelMask); } // hand the user a snapshot of the metrics. status_t AudioTrack::getMetrics(MediaAnalyticsItem * &item) { mMediaMetrics.gather(this); MediaAnalyticsItem *tmp = mMediaMetrics.dup(); if (tmp == nullptr) { return BAD_VALUE; } item = tmp; return NO_ERROR; } AudioTrack::AudioTrack() : mStatus(NO_INIT), mState(STATE_STOPPED), mPreviousPriority(ANDROID_PRIORITY_NORMAL), mPreviousSchedulingGroup(SP_DEFAULT), mPausedPosition(0), mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE), mRoutedDeviceId(AUDIO_PORT_HANDLE_NONE) { mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN; mAttributes.usage = AUDIO_USAGE_UNKNOWN; mAttributes.flags = 0x0; strcpy(mAttributes.tags, ""); } AudioTrack::AudioTrack( audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, audio_output_flags_t flags, callback_t cbf, void* user, int32_t notificationFrames, audio_session_t sessionId, transfer_type transferType, const audio_offload_info_t *offloadInfo, uid_t uid, pid_t pid, const audio_attributes_t* pAttributes, bool doNotReconnect, float maxRequiredSpeed, audio_port_handle_t selectedDeviceId) : mStatus(NO_INIT), mState(STATE_STOPPED), mPreviousPriority(ANDROID_PRIORITY_NORMAL), mPreviousSchedulingGroup(SP_DEFAULT), mPausedPosition(0) { (void)set(streamType, sampleRate, format, channelMask, frameCount, flags, cbf, user, notificationFrames, 0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed, selectedDeviceId); } AudioTrack::AudioTrack( audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, const sp<IMemory>& sharedBuffer, audio_output_flags_t flags, callback_t cbf, void* user, int32_t notificationFrames, audio_session_t sessionId, transfer_type transferType, const audio_offload_info_t *offloadInfo, uid_t uid, pid_t pid, const audio_attributes_t* pAttributes, bool doNotReconnect, float maxRequiredSpeed) : mStatus(NO_INIT), mState(STATE_STOPPED), mPreviousPriority(ANDROID_PRIORITY_NORMAL), mPreviousSchedulingGroup(SP_DEFAULT), mPausedPosition(0), mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE) { (void)set(streamType, sampleRate, format, channelMask, 0 /*frameCount*/, flags, cbf, user, notificationFrames, sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed); } AudioTrack::~AudioTrack() { // pull together the numbers, before we clean up our structures mMediaMetrics.gather(this); if (mStatus == NO_ERROR) { // Make sure that callback function exits in the case where // it is looping on buffer full condition in obtainBuffer(). // Otherwise the callback thread will never exit. stop(); if (mAudioTrackThread != 0) { mProxy->interrupt(); mAudioTrackThread->requestExit(); // see comment in AudioTrack.h mAudioTrackThread->requestExitAndWait(); mAudioTrackThread.clear(); } // No lock here: worst case we remove a NULL callback which will be a nop if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) { AudioSystem::removeAudioDeviceCallback(this, mOutput); } IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this); mAudioTrack.clear(); mCblkMemory.clear(); mSharedBuffer.clear(); IPCThreadState::self()->flushCommands(); ALOGV("~AudioTrack, releasing session id %d from %d on behalf of %d", mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid); AudioSystem::releaseAudioSessionId(mSessionId, mClientPid); } } status_t AudioTrack::set( audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, audio_output_flags_t flags, callback_t cbf, void* user, int32_t notificationFrames, const sp<IMemory>& sharedBuffer, bool threadCanCallJava, audio_session_t sessionId, transfer_type transferType, const audio_offload_info_t *offloadInfo, uid_t uid, pid_t pid, const audio_attributes_t* pAttributes, bool doNotReconnect, float maxRequiredSpeed, audio_port_handle_t selectedDeviceId) { status_t status; uint32_t channelCount; pid_t callingPid; pid_t myPid; ALOGV("set(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, " "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d", streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames, sessionId, transferType, uid, pid); mThreadCanCallJava = threadCanCallJava; mSelectedDeviceId = selectedDeviceId; mSessionId = sessionId; switch (transferType) { case TRANSFER_DEFAULT: if (sharedBuffer != 0) { transferType = TRANSFER_SHARED; } else if (cbf == NULL || threadCanCallJava) { transferType = TRANSFER_SYNC; } else { transferType = TRANSFER_CALLBACK; } break; case TRANSFER_CALLBACK: if (cbf == NULL || sharedBuffer != 0) { ALOGE("Transfer type TRANSFER_CALLBACK but cbf == NULL || sharedBuffer != 0"); status = BAD_VALUE; goto exit; } break; case TRANSFER_OBTAIN: case TRANSFER_SYNC: if (sharedBuffer != 0) { ALOGE("Transfer type TRANSFER_OBTAIN but sharedBuffer != 0"); status = BAD_VALUE; goto exit; } break; case TRANSFER_SHARED: if (sharedBuffer == 0) { ALOGE("Transfer type TRANSFER_SHARED but sharedBuffer == 0"); status = BAD_VALUE; goto exit; } break; default: ALOGE("Invalid transfer type %d", transferType); status = BAD_VALUE; goto exit; } mSharedBuffer = sharedBuffer; mTransfer = transferType; mDoNotReconnect = doNotReconnect; ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %zu", sharedBuffer->pointer(), sharedBuffer->size()); ALOGV("set() streamType %d frameCount %zu flags %04x", streamType, frameCount, flags); // invariant that mAudioTrack != 0 is true only after set() returns successfully if (mAudioTrack != 0) { ALOGE("Track already in use"); status = INVALID_OPERATION; goto exit; } // handle default values first. if (streamType == AUDIO_STREAM_DEFAULT) { streamType = AUDIO_STREAM_MUSIC; } if (pAttributes == NULL) { if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) { ALOGE("Invalid stream type %d", streamType); status = BAD_VALUE; goto exit; } mStreamType = streamType; } else { // stream type shouldn't be looked at, this track has audio attributes memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t)); ALOGV("Building AudioTrack with attributes: usage=%d content=%d flags=0x%x tags=[%s]", mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags); mStreamType = AUDIO_STREAM_DEFAULT; if ((mAttributes.flags & AUDIO_FLAG_HW_AV_SYNC) != 0) { flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_HW_AV_SYNC); } if ((mAttributes.flags & AUDIO_FLAG_LOW_LATENCY) != 0) { flags = (audio_output_flags_t) (flags | AUDIO_OUTPUT_FLAG_FAST); } // check deep buffer after flags have been modified above if (flags == AUDIO_OUTPUT_FLAG_NONE && (mAttributes.flags & AUDIO_FLAG_DEEP_BUFFER) != 0) { flags = AUDIO_OUTPUT_FLAG_DEEP_BUFFER; } } // these below should probably come from the audioFlinger too... if (format == AUDIO_FORMAT_DEFAULT) { format = AUDIO_FORMAT_PCM_16_BIT; } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through? mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO; } // validate parameters if (!audio_is_valid_format(format)) { ALOGE("Invalid format %#x", format); status = BAD_VALUE; goto exit; } mFormat = format; if (!audio_is_output_channel(channelMask)) { ALOGE("Invalid channel mask %#x", channelMask); status = BAD_VALUE; goto exit; } mChannelMask = channelMask; channelCount = audio_channel_count_from_out_mask(channelMask); mChannelCount = channelCount; // force direct flag if format is not linear PCM // or offload was requested if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) || !audio_is_linear_pcm(format)) { ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) ? "Offload request, forcing to Direct Output" : "Not linear PCM, forcing to Direct Output"); flags = (audio_output_flags_t) // FIXME why can't we allow direct AND fast? ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST); } // force direct flag if HW A/V sync requested if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) { flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT); } if (flags & AUDIO_OUTPUT_FLAG_DIRECT) { if (audio_has_proportional_frames(format)) { mFrameSize = channelCount * audio_bytes_per_sample(format); } else { mFrameSize = sizeof(uint8_t); } } else { ALOG_ASSERT(audio_has_proportional_frames(format)); mFrameSize = channelCount * audio_bytes_per_sample(format); // createTrack will return an error if PCM format is not supported by server, // so no need to check for specific PCM formats here } // sampling rate must be specified for direct outputs if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) { status = BAD_VALUE; goto exit; } mSampleRate = sampleRate; mOriginalSampleRate = sampleRate; mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT; // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX); // Make copy of input parameter offloadInfo so that in the future: // (a) createTrack_l doesn't need it as an input parameter // (b) we can support re-creation of offloaded tracks if (offloadInfo != NULL) { mOffloadInfoCopy = *offloadInfo; mOffloadInfo = &mOffloadInfoCopy; } else { mOffloadInfo = NULL; memset(&mOffloadInfoCopy, 0, sizeof(audio_offload_info_t)); } mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f; mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f; mSendLevel = 0.0f; // mFrameCount is initialized in createTrack_l mReqFrameCount = frameCount; if (notificationFrames >= 0) { mNotificationFramesReq = notificationFrames; mNotificationsPerBufferReq = 0; } else { if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) { ALOGE("notificationFrames=%d not permitted for non-fast track", notificationFrames); status = BAD_VALUE; goto exit; } if (frameCount > 0) { ALOGE("notificationFrames=%d not permitted with non-zero frameCount=%zu", notificationFrames, frameCount); status = BAD_VALUE; goto exit; } mNotificationFramesReq = 0; const uint32_t minNotificationsPerBuffer = 1; const uint32_t maxNotificationsPerBuffer = 8; mNotificationsPerBufferReq = min(maxNotificationsPerBuffer, max((uint32_t) -notificationFrames, minNotificationsPerBuffer)); ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames, "notificationFrames=%d clamped to the range -%u to -%u", notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer); } mNotificationFramesAct = 0; callingPid = IPCThreadState::self()->getCallingPid(); myPid = getpid(); if (uid == AUDIO_UID_INVALID || (callingPid != myPid)) { mClientUid = IPCThreadState::self()->getCallingUid(); } else { mClientUid = uid; } if (pid == -1 || (callingPid != myPid)) { mClientPid = callingPid; } else { mClientPid = pid; } mAuxEffectId = 0; mOrigFlags = mFlags = flags; mCbf = cbf; if (cbf != NULL) { mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava); mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/); // thread begins in paused state, and will not reference us until start() } // create the IAudioTrack status = createTrack_l(); if (status != NO_ERROR) { if (mAudioTrackThread != 0) { mAudioTrackThread->requestExit(); // see comment in AudioTrack.h mAudioTrackThread->requestExitAndWait(); mAudioTrackThread.clear(); } goto exit; } mUserData = user; mLoopCount = 0; mLoopStart = 0; mLoopEnd = 0; mLoopCountNotified = 0; mMarkerPosition = 0; mMarkerReached = false; mNewPosition = 0; mUpdatePeriod = 0; mPosition = 0; mReleased = 0; mStartNs = 0; mStartFromZeroUs = 0; AudioSystem::acquireAudioSessionId(mSessionId, mClientPid); mSequence = 1; mObservedSequence = mSequence; mInUnderrun = false; mPreviousTimestampValid = false; mTimestampStartupGlitchReported = false; mRetrogradeMotionReported = false; mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID; mStartTs.mPosition = 0; mUnderrunCountOffset = 0; mFramesWritten = 0; mFramesWrittenServerOffset = 0; mFramesWrittenAtRestore = -1; // -1 is a unique initializer. mVolumeHandler = new media::VolumeHandler(); exit: mStatus = status; return status; } // ------------------------------------------------------------------------- status_t AudioTrack::start() { AutoMutex lock(mLock); if (mState == STATE_ACTIVE) { return INVALID_OPERATION; } mInUnderrun = true; State previousState = mState; if (previousState == STATE_PAUSED_STOPPING) { mState = STATE_STOPPING; } else { mState = STATE_ACTIVE; } (void) updateAndGetPosition_l(); // save start timestamp if (isOffloadedOrDirect_l()) { if (getTimestamp_l(mStartTs) != OK) { mStartTs.mPosition = 0; } } else { if (getTimestamp_l(&mStartEts) != OK) { mStartEts.clear(); } } mStartNs = systemTime(); // save this for timestamp adjustment after starting. if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) { // reset current position as seen by client to 0 mPosition = 0; mPreviousTimestampValid = false; mTimestampStartupGlitchReported = false; mRetrogradeMotionReported = false; mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID; if (!isOffloadedOrDirect_l() && mStartEts.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) { // Server side has consumed something, but is it finished consuming? // It is possible since flush and stop are asynchronous that the server // is still active at this point. ALOGV("start: server read:%lld cumulative flushed:%lld client written:%lld", (long long)(mFramesWrittenServerOffset + mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]), (long long)mStartEts.mFlushed, (long long)mFramesWritten); // mStartEts is already adjusted by mFramesWrittenServerOffset, so we delta adjust. mFramesWrittenServerOffset -= mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]; } mFramesWritten = 0; mProxy->clearTimestamp(); // need new server push for valid timestamp mMarkerReached = false; // For offloaded tracks, we don't know if the hardware counters are really zero here, // since the flush is asynchronous and stop may not fully drain. // We save the time when the track is started to later verify whether // the counters are realistic (i.e. start from zero after this time). mStartFromZeroUs = mStartNs / 1000; // force refresh of remaining frames by processAudioBuffer() as last // write before stop could be partial. mRefreshRemaining = true; } mNewPosition = mPosition + mUpdatePeriod; int32_t flags = android_atomic_and(~(CBLK_STREAM_END_DONE | CBLK_DISABLED), &mCblk->mFlags); status_t status = NO_ERROR; if (!(flags & CBLK_INVALID)) { status = mAudioTrack->start(); if (status == DEAD_OBJECT) { flags |= CBLK_INVALID; } } if (flags & CBLK_INVALID) { status = restoreTrack_l("start"); } // resume or pause the callback thread as needed. sp<AudioTrackThread> t = mAudioTrackThread; if (status == NO_ERROR) { if (t != 0) { if (previousState == STATE_STOPPING) { mProxy->interrupt(); } else { t->resume(); } } else { mPreviousPriority = getpriority(PRIO_PROCESS, 0); get_sched_policy(0, &mPreviousSchedulingGroup); androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO); } // Start our local VolumeHandler for restoration purposes. mVolumeHandler->setStarted(); } else { ALOGE("start() status %d", status); mState = previousState; if (t != 0) { if (previousState != STATE_STOPPING) { t->pause(); } } else { setpriority(PRIO_PROCESS, 0, mPreviousPriority); set_sched_policy(0, mPreviousSchedulingGroup); } } return status; } void AudioTrack::stop() { AutoMutex lock(mLock); if (mState != STATE_ACTIVE && mState != STATE_PAUSED) { return; } if (isOffloaded_l()) { mState = STATE_STOPPING; } else { mState = STATE_STOPPED; ALOGD_IF(mSharedBuffer == nullptr, "stop() called with %u frames delivered", mReleased.value()); mReleased = 0; } mProxy->stop(); // notify server not to read beyond current client position until start(). mProxy->interrupt(); mAudioTrack->stop(); // Note: legacy handling - stop does not clear playback marker // and periodic update counter, but flush does for streaming tracks. if (mSharedBuffer != 0) { // clear buffer position and loop count. mStaticProxy->setBufferPositionAndLoop(0 /* position */, 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */); } sp<AudioTrackThread> t = mAudioTrackThread; if (t != 0) { if (!isOffloaded_l()) { t->pause(); } } else { setpriority(PRIO_PROCESS, 0, mPreviousPriority); set_sched_policy(0, mPreviousSchedulingGroup); } } bool AudioTrack::stopped() const { AutoMutex lock(mLock); return mState != STATE_ACTIVE; } void AudioTrack::flush() { if (mSharedBuffer != 0) { return; } AutoMutex lock(mLock); if (mState == STATE_ACTIVE) { return; } flush_l(); } void AudioTrack::flush_l() { ALOG_ASSERT(mState != STATE_ACTIVE); // clear playback marker and periodic update counter mMarkerPosition = 0; mMarkerReached = false; mUpdatePeriod = 0; mRefreshRemaining = true; mState = STATE_FLUSHED; mReleased = 0; if (isOffloaded_l()) { mProxy->interrupt(); } mProxy->flush(); mAudioTrack->flush(); } void AudioTrack::pause() { AutoMutex lock(mLock); if (mState == STATE_ACTIVE) { mState = STATE_PAUSED; } else if (mState == STATE_STOPPING) { mState = STATE_PAUSED_STOPPING; } else { return; } mProxy->interrupt(); mAudioTrack->pause(); if (isOffloaded_l()) { if (mOutput != AUDIO_IO_HANDLE_NONE) { // An offload output can be re-used between two audio tracks having // the same configuration. A timestamp query for a paused track // while the other is running would return an incorrect time. // To fix this, cache the playback position on a pause() and return // this time when requested until the track is resumed. // OffloadThread sends HAL pause in its threadLoop. Time saved // here can be slightly off. // TODO: check return code for getRenderPosition. uint32_t halFrames; AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition); ALOGV("AudioTrack::pause for offload, cache current position %u", mPausedPosition); } } } status_t AudioTrack::setVolume(float left, float right) { // This duplicates a test by AudioTrack JNI, but that is not the only caller if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY || isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) { return BAD_VALUE; } AutoMutex lock(mLock); mVolume[AUDIO_INTERLEAVE_LEFT] = left; mVolume[AUDIO_INTERLEAVE_RIGHT] = right; mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right))); if (isOffloaded_l()) { mAudioTrack->signal(); } return NO_ERROR; } status_t AudioTrack::setVolume(float volume) { return setVolume(volume, volume); } status_t AudioTrack::setAuxEffectSendLevel(float level) { // This duplicates a test by AudioTrack JNI, but that is not the only caller if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) { return BAD_VALUE; } AutoMutex lock(mLock); mSendLevel = level; mProxy->setSendLevel(level); return NO_ERROR; } void AudioTrack::getAuxEffectSendLevel(float* level) const { if (level != NULL) { *level = mSendLevel; } } status_t AudioTrack::setSampleRate(uint32_t rate) { AutoMutex lock(mLock); if (rate == mSampleRate) { return NO_ERROR; } if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)) { return INVALID_OPERATION; } if (mOutput == AUDIO_IO_HANDLE_NONE) { return NO_INIT; } // NOTE: it is theoretically possible, but highly unlikely, that a device change // could mean a previously allowed sampling rate is no longer allowed. uint32_t afSamplingRate; if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) { return NO_INIT; } // pitch is emulated by adjusting speed and sampleRate const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch); if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) { return BAD_VALUE; } // TODO: Should we also check if the buffer size is compatible? mSampleRate = rate; mProxy->setSampleRate(effectiveSampleRate); return NO_ERROR; } uint32_t AudioTrack::getSampleRate() const { AutoMutex lock(mLock); // sample rate can be updated during playback by the offloaded decoder so we need to // query the HAL and update if needed. // FIXME use Proxy return channel to update the rate from server and avoid polling here if (isOffloadedOrDirect_l()) { if (mOutput != AUDIO_IO_HANDLE_NONE) { uint32_t sampleRate = 0; status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate); if (status == NO_ERROR) { mSampleRate = sampleRate; } } } return mSampleRate; } uint32_t AudioTrack::getOriginalSampleRate() const { return mOriginalSampleRate; } status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate) { AutoMutex lock(mLock); if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) { return NO_ERROR; } if (isOffloadedOrDirect_l()) { return INVALID_OPERATION; } if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { return INVALID_OPERATION; } ALOGV("setPlaybackRate (input): mSampleRate:%u mSpeed:%f mPitch:%f", mSampleRate, playbackRate.mSpeed, playbackRate.mPitch); // pitch is emulated by adjusting speed and sampleRate const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch); const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch); const float effectivePitch = adjustPitch(playbackRate.mPitch); AudioPlaybackRate playbackRateTemp = playbackRate; playbackRateTemp.mSpeed = effectiveSpeed; playbackRateTemp.mPitch = effectivePitch; ALOGV("setPlaybackRate (effective): mSampleRate:%u mSpeed:%f mPitch:%f", effectiveRate, effectiveSpeed, effectivePitch); if (!isAudioPlaybackRateValid(playbackRateTemp)) { ALOGW("setPlaybackRate(%f, %f) failed (effective rate out of bounds)", playbackRate.mSpeed, playbackRate.mPitch); return BAD_VALUE; } // Check if the buffer size is compatible. if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) { ALOGW("setPlaybackRate(%f, %f) failed (buffer size)", playbackRate.mSpeed, playbackRate.mPitch); return BAD_VALUE; } // Check resampler ratios are within bounds if ((uint64_t)effectiveRate > (uint64_t)mSampleRate * (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) { ALOGW("setPlaybackRate(%f, %f) failed. Resample rate exceeds max accepted value", playbackRate.mSpeed, playbackRate.mPitch); return BAD_VALUE; } if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) { ALOGW("setPlaybackRate(%f, %f) failed. Resample rate below min accepted value", playbackRate.mSpeed, playbackRate.mPitch); return BAD_VALUE; } mPlaybackRate = playbackRate; //set effective rates mProxy->setPlaybackRate(playbackRateTemp); mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate return NO_ERROR; } const AudioPlaybackRate& AudioTrack::getPlaybackRate() const { AutoMutex lock(mLock); return mPlaybackRate; } ssize_t AudioTrack::getBufferSizeInFrames() { AutoMutex lock(mLock); if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) { return NO_INIT; } return (ssize_t) mProxy->getBufferSizeInFrames(); } status_t AudioTrack::getBufferDurationInUs(int64_t *duration) { if (duration == nullptr) { return BAD_VALUE; } AutoMutex lock(mLock); if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) { return NO_INIT; } ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames(); if (bufferSizeInFrames < 0) { return (status_t)bufferSizeInFrames; } *duration = (int64_t)((double)bufferSizeInFrames * 1000000 / ((double)mSampleRate * mPlaybackRate.mSpeed)); return NO_ERROR; } ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames) { AutoMutex lock(mLock); if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) { return NO_INIT; } // Reject if timed track or compressed audio. if (!audio_is_linear_pcm(mFormat)) { return INVALID_OPERATION; } return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames); } status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount) { if (mSharedBuffer == 0 || isOffloadedOrDirect()) { return INVALID_OPERATION; } if (loopCount == 0) { ; } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount && loopEnd - loopStart >= MIN_LOOP) { ; } else { return BAD_VALUE; } AutoMutex lock(mLock); // See setPosition() regarding setting parameters such as loop points or position while active if (mState == STATE_ACTIVE) { return INVALID_OPERATION; } setLoop_l(loopStart, loopEnd, loopCount); return NO_ERROR; } void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount) { // We do not update the periodic notification point. // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod; mLoopCount = loopCount; mLoopEnd = loopEnd; mLoopStart = loopStart; mLoopCountNotified = loopCount; mStaticProxy->setLoop(loopStart, loopEnd, loopCount); // Waking the AudioTrackThread is not needed as this cannot be called when active. } status_t AudioTrack::setMarkerPosition(uint32_t marker) { // The only purpose of setting marker position is to get a callback if (mCbf == NULL || isOffloadedOrDirect()) { return INVALID_OPERATION; } AutoMutex lock(mLock); mMarkerPosition = marker; mMarkerReached = false; sp<AudioTrackThread> t = mAudioTrackThread; if (t != 0) { t->wake(); } return NO_ERROR; } status_t AudioTrack::getMarkerPosition(uint32_t *marker) const { if (isOffloadedOrDirect()) { return INVALID_OPERATION; } if (marker == NULL) { return BAD_VALUE; } AutoMutex lock(mLock); mMarkerPosition.getValue(marker); return NO_ERROR; } status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod) { // The only purpose of setting position update period is to get a callback if (mCbf == NULL || isOffloadedOrDirect()) { return INVALID_OPERATION; } AutoMutex lock(mLock); mNewPosition = updateAndGetPosition_l() + updatePeriod; mUpdatePeriod = updatePeriod; sp<AudioTrackThread> t = mAudioTrackThread; if (t != 0) { t->wake(); } return NO_ERROR; } status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const { if (isOffloadedOrDirect()) { return INVALID_OPERATION; } if (updatePeriod == NULL) { return BAD_VALUE; } AutoMutex lock(mLock); *updatePeriod = mUpdatePeriod; return NO_ERROR; } status_t AudioTrack::setPosition(uint32_t position) { if (mSharedBuffer == 0 || isOffloadedOrDirect()) { return INVALID_OPERATION; } if (position > mFrameCount) { return BAD_VALUE; } AutoMutex lock(mLock); // Currently we require that the player is inactive before setting parameters such as position // or loop points. Otherwise, there could be a race condition: the application could read the // current position, compute a new position or loop parameters, and then set that position or // loop parameters but it would do the "wrong" thing since the position has continued to advance // in the mean time. If we ever provide a sequencer in server, we could allow a way for the app // to specify how it wants to handle such scenarios. if (mState == STATE_ACTIVE) { return INVALID_OPERATION; } // After setting the position, use full update period before notification. mNewPosition = updateAndGetPosition_l() + mUpdatePeriod; mStaticProxy->setBufferPosition(position); // Waking the AudioTrackThread is not needed as this cannot be called when active. return NO_ERROR; } status_t AudioTrack::getPosition(uint32_t *position) { if (position == NULL) { return BAD_VALUE; } AutoMutex lock(mLock); // FIXME: offloaded and direct tracks call into the HAL for render positions // for compressed/synced data; however, we use proxy position for pure linear pcm data // as we do not know the capability of the HAL for pcm position support and standby. // There may be some latency differences between the HAL position and the proxy position. if (isOffloadedOrDirect_l() && !isPurePcmData_l()) { uint32_t dspFrames = 0; if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) { ALOGV("getPosition called in paused state, return cached position %u", mPausedPosition); *position = mPausedPosition; return NO_ERROR; } if (mOutput != AUDIO_IO_HANDLE_NONE) { uint32_t halFrames; // actually unused (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames); // FIXME: on getRenderPosition() error, we return OK with frame position 0. } // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED) // due to hardware latency. We leave this behavior for now. *position = dspFrames; } else { if (mCblk->mFlags & CBLK_INVALID) { (void) restoreTrack_l("getPosition"); // FIXME: for compatibility with the Java API we ignore the restoreTrack_l() // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position. } // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ? 0 : updateAndGetPosition_l().value(); } return NO_ERROR; } status_t AudioTrack::getBufferPosition(uint32_t *position) { if (mSharedBuffer == 0) { return INVALID_OPERATION; } if (position == NULL) { return BAD_VALUE; } AutoMutex lock(mLock); *position = mStaticProxy->getBufferPosition(); return NO_ERROR; } status_t AudioTrack::reload() { if (mSharedBuffer == 0 || isOffloadedOrDirect()) { return INVALID_OPERATION; } AutoMutex lock(mLock); // See setPosition() regarding setting parameters such as loop points or position while active if (mState == STATE_ACTIVE) { return INVALID_OPERATION; } mNewPosition = mUpdatePeriod; (void) updateAndGetPosition_l(); mPosition = 0; mPreviousTimestampValid = false; #if 0 // The documentation is not clear on the behavior of reload() and the restoration // of loop count. Historically we have not restored loop count, start, end, // but it makes sense if one desires to repeat playing a particular sound. if (mLoopCount != 0) { mLoopCountNotified = mLoopCount; mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount); } #endif mStaticProxy->setBufferPosition(0); return NO_ERROR; } audio_io_handle_t AudioTrack::getOutput() const { AutoMutex lock(mLock); return mOutput; } status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) { AutoMutex lock(mLock); if (mSelectedDeviceId != deviceId) { mSelectedDeviceId = deviceId; if (mStatus == NO_ERROR) { android_atomic_or(CBLK_INVALID, &mCblk->mFlags); mProxy->interrupt(); } } return NO_ERROR; } audio_port_handle_t AudioTrack::getOutputDevice() { AutoMutex lock(mLock); return mSelectedDeviceId; } // must be called with mLock held void AudioTrack::updateRoutedDeviceId_l() { // if the track is inactive, do not update actual device as the output stream maybe routed // to a device not relevant to this client because of other active use cases. if (mState != STATE_ACTIVE) { return; } if (mOutput != AUDIO_IO_HANDLE_NONE) { audio_port_handle_t deviceId = AudioSystem::getDeviceIdForIo(mOutput); if (deviceId != AUDIO_PORT_HANDLE_NONE) { mRoutedDeviceId = deviceId; } } } audio_port_handle_t AudioTrack::getRoutedDeviceId() { AutoMutex lock(mLock); updateRoutedDeviceId_l(); return mRoutedDeviceId; } status_t AudioTrack::attachAuxEffect(int effectId) { AutoMutex lock(mLock); status_t status = mAudioTrack->attachAuxEffect(effectId); if (status == NO_ERROR) { mAuxEffectId = effectId; } return status; } audio_stream_type_t AudioTrack::streamType() const { if (mStreamType == AUDIO_STREAM_DEFAULT) { return audio_attributes_to_stream_type(&mAttributes); } return mStreamType; } uint32_t AudioTrack::latency() { AutoMutex lock(mLock); updateLatency_l(); return mLatency; } // ------------------------------------------------------------------------- // must be called with mLock held void AudioTrack::updateLatency_l() { status_t status = AudioSystem::getLatency(mOutput, &mAfLatency); if (status != NO_ERROR) { ALOGW("getLatency(%d) failed status %d", mOutput, status); } else { // FIXME don't believe this lie mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate; } } // TODO Move this macro to a common header file for enum to string conversion in audio framework. #define MEDIA_CASE_ENUM(name) case name: return #name const char * AudioTrack::convertTransferToText(transfer_type transferType) { switch (transferType) { MEDIA_CASE_ENUM(TRANSFER_DEFAULT); MEDIA_CASE_ENUM(TRANSFER_CALLBACK); MEDIA_CASE_ENUM(TRANSFER_OBTAIN); MEDIA_CASE_ENUM(TRANSFER_SYNC); MEDIA_CASE_ENUM(TRANSFER_SHARED); default: return "UNRECOGNIZED"; } } status_t AudioTrack::createTrack_l() { status_t status; bool callbackAdded = false; const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger(); if (audioFlinger == 0) { ALOGE("Could not get audioflinger"); status = NO_INIT; goto exit; } { // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted. // After fast request is denied, we will request again if IAudioTrack is re-created. // Client can only express a preference for FAST. Server will perform additional tests. if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { // either of these use cases: // use case 1: shared buffer bool sharedBuffer = mSharedBuffer != 0; bool transferAllowed = // use case 2: callback transfer mode (mTransfer == TRANSFER_CALLBACK) || // use case 3: obtain/release mode (mTransfer == TRANSFER_OBTAIN) || // use case 4: synchronous write ((mTransfer == TRANSFER_SYNC) && mThreadCanCallJava); bool fastAllowed = sharedBuffer || transferAllowed; if (!fastAllowed) { ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by client, not shared buffer and transfer = %s", convertTransferToText(mTransfer)); mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST); } } IAudioFlinger::CreateTrackInput input; if (mStreamType != AUDIO_STREAM_DEFAULT) { stream_type_to_audio_attributes(mStreamType, &input.attr); } else { input.attr = mAttributes; } input.config = AUDIO_CONFIG_INITIALIZER; input.config.sample_rate = mSampleRate; input.config.channel_mask = mChannelMask; input.config.format = mFormat; input.config.offload_info = mOffloadInfoCopy; input.clientInfo.clientUid = mClientUid; input.clientInfo.clientPid = mClientPid; input.clientInfo.clientTid = -1; if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { // It is currently meaningless to request SCHED_FIFO for a Java thread. Even if the // application-level code follows all non-blocking design rules, the language runtime // doesn't also follow those rules, so the thread will not benefit overall. if (mAudioTrackThread != 0 && !mThreadCanCallJava) { input.clientInfo.clientTid = mAudioTrackThread->getTid(); } } input.sharedBuffer = mSharedBuffer; input.notificationsPerBuffer = mNotificationsPerBufferReq; input.speed = 1.0; if (audio_has_proportional_frames(mFormat) && mSharedBuffer == 0 && (mFlags & AUDIO_OUTPUT_FLAG_FAST) == 0) { input.speed = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f : max(mMaxRequiredSpeed, mPlaybackRate.mSpeed); } input.flags = mFlags; input.frameCount = mReqFrameCount; input.notificationFrameCount = mNotificationFramesReq; input.selectedDeviceId = mSelectedDeviceId; input.sessionId = mSessionId; IAudioFlinger::CreateTrackOutput output; sp<IAudioTrack> track = audioFlinger->createTrack(input, output, &status); if (status != NO_ERROR || output.outputId == AUDIO_IO_HANDLE_NONE) { ALOGE("AudioFlinger could not create track, status: %d output %d", status, output.outputId); if (status == NO_ERROR) { status = NO_INIT; } goto exit; } ALOG_ASSERT(track != 0); mFrameCount = output.frameCount; mNotificationFramesAct = (uint32_t)output.notificationFrameCount; mRoutedDeviceId = output.selectedDeviceId; mSessionId = output.sessionId; mSampleRate = output.sampleRate; if (mOriginalSampleRate == 0) { mOriginalSampleRate = mSampleRate; } mAfFrameCount = output.afFrameCount; mAfSampleRate = output.afSampleRate; mAfLatency = output.afLatencyMs; mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate; // AudioFlinger now owns the reference to the I/O handle, // so we are no longer responsible for releasing it. // FIXME compare to AudioRecord sp<IMemory> iMem = track->getCblk(); if (iMem == 0) { ALOGE("Could not get control block"); status = NO_INIT; goto exit; } void *iMemPointer = iMem->pointer(); if (iMemPointer == NULL) { ALOGE("Could not get control block pointer"); status = NO_INIT; goto exit; } // invariant that mAudioTrack != 0 is true only after set() returns successfully if (mAudioTrack != 0) { IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this); mDeathNotifier.clear(); } mAudioTrack = track; mCblkMemory = iMem; IPCThreadState::self()->flushCommands(); audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer); mCblk = cblk; mAwaitBoost = false; if (mFlags & AUDIO_OUTPUT_FLAG_FAST) { if (output.flags & AUDIO_OUTPUT_FLAG_FAST) { ALOGI("AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu -> %zu", mReqFrameCount, mFrameCount); if (!mThreadCanCallJava) { mAwaitBoost = true; } } else { ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu -> %zu", mReqFrameCount, mFrameCount); } } mFlags = output.flags; //mOutput != output includes the case where mOutput == AUDIO_IO_HANDLE_NONE for first creation if (mDeviceCallback != 0 && mOutput != output.outputId) { if (mOutput != AUDIO_IO_HANDLE_NONE) { AudioSystem::removeAudioDeviceCallback(this, mOutput); } AudioSystem::addAudioDeviceCallback(this, output.outputId); callbackAdded = true; } // We retain a copy of the I/O handle, but don't own the reference mOutput = output.outputId; mRefreshRemaining = true; // Starting address of buffers in shared memory. If there is a shared buffer, buffers // is the value of pointer() for the shared buffer, otherwise buffers points // immediately after the control block. This address is for the mapping within client // address space. AudioFlinger::TrackBase::mBuffer is for the server address space. void* buffers; if (mSharedBuffer == 0) { buffers = cblk + 1; } else { buffers = mSharedBuffer->pointer(); if (buffers == NULL) { ALOGE("Could not get buffer pointer"); status = NO_INIT; goto exit; } } mAudioTrack->attachAuxEffect(mAuxEffectId); // If IAudioTrack is re-created, don't let the requested frameCount // decrease. This can confuse clients that cache frameCount(). if (mFrameCount > mReqFrameCount) { mReqFrameCount = mFrameCount; } // reset server position to 0 as we have new cblk. mServer = 0; // update proxy if (mSharedBuffer == 0) { mStaticProxy.clear(); mProxy = new AudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize); } else { mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize); mProxy = mStaticProxy; } mProxy->setVolumeLR(gain_minifloat_pack( gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]), gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT]))); mProxy->setSendLevel(mSendLevel); const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch); const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch); const float effectivePitch = adjustPitch(mPlaybackRate.mPitch); mProxy->setSampleRate(effectiveSampleRate); AudioPlaybackRate playbackRateTemp = mPlaybackRate; playbackRateTemp.mSpeed = effectiveSpeed; playbackRateTemp.mPitch = effectivePitch; mProxy->setPlaybackRate(playbackRateTemp); mProxy->setMinimum(mNotificationFramesAct); mDeathNotifier = new DeathNotifier(this); IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this); } exit: if (status != NO_ERROR && callbackAdded) { // note: mOutput is always valid is callbackAdded is true AudioSystem::removeAudioDeviceCallback(this, mOutput); } mStatus = status; // sp<IAudioTrack> track destructor will cause releaseOutput() to be called by AudioFlinger return status; } status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig) { if (audioBuffer == NULL) { if (nonContig != NULL) { *nonContig = 0; } return BAD_VALUE; } if (mTransfer != TRANSFER_OBTAIN) { audioBuffer->frameCount = 0; audioBuffer->size = 0; audioBuffer->raw = NULL; if (nonContig != NULL) { *nonContig = 0; } return INVALID_OPERATION; } const struct timespec *requested; struct timespec timeout; if (waitCount == -1) { requested = &ClientProxy::kForever; } else if (waitCount == 0) { requested = &ClientProxy::kNonBlocking; } else if (waitCount > 0) { long long ms = WAIT_PERIOD_MS * (long long) waitCount; timeout.tv_sec = ms / 1000; timeout.tv_nsec = (int) (ms % 1000) * 1000000; requested = &timeout; } else { ALOGE("%s invalid waitCount %d", __func__, waitCount); requested = NULL; } return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig); } status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested, struct timespec *elapsed, size_t *nonContig) { // previous and new IAudioTrack sequence numbers are used to detect track re-creation uint32_t oldSequence = 0; uint32_t newSequence; Proxy::Buffer buffer; status_t status = NO_ERROR; static const int32_t kMaxTries = 5; int32_t tryCounter = kMaxTries; do { // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to // keep them from going away if another thread re-creates the track during obtainBuffer() sp<AudioTrackClientProxy> proxy; sp<IMemory> iMem; { // start of lock scope AutoMutex lock(mLock); newSequence = mSequence; // did previous obtainBuffer() fail due to media server death or voluntary invalidation? if (status == DEAD_OBJECT) { // re-create track, unless someone else has already done so if (newSequence == oldSequence) { status = restoreTrack_l("obtainBuffer"); if (status != NO_ERROR) { buffer.mFrameCount = 0; buffer.mRaw = NULL; buffer.mNonContig = 0; break; } } } oldSequence = newSequence; if (status == NOT_ENOUGH_DATA) { restartIfDisabled(); } // Keep the extra references proxy = mProxy; iMem = mCblkMemory; if (mState == STATE_STOPPING) { status = -EINTR; buffer.mFrameCount = 0; buffer.mRaw = NULL; buffer.mNonContig = 0; break; } // Non-blocking if track is stopped or paused if (mState != STATE_ACTIVE) { requested = &ClientProxy::kNonBlocking; } } // end of lock scope buffer.mFrameCount = audioBuffer->frameCount; // FIXME starts the requested timeout and elapsed over from scratch status = proxy->obtainBuffer(&buffer, requested, elapsed); } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0)); audioBuffer->frameCount = buffer.mFrameCount; audioBuffer->size = buffer.mFrameCount * mFrameSize; audioBuffer->raw = buffer.mRaw; if (nonContig != NULL) { *nonContig = buffer.mNonContig; } return status; } void AudioTrack::releaseBuffer(const Buffer* audioBuffer) { // FIXME add error checking on mode, by adding an internal version if (mTransfer == TRANSFER_SHARED) { return; } size_t stepCount = audioBuffer->size / mFrameSize; if (stepCount == 0) { return; } Proxy::Buffer buffer; buffer.mFrameCount = stepCount; buffer.mRaw = audioBuffer->raw; AutoMutex lock(mLock); mReleased += stepCount; mInUnderrun = false; mProxy->releaseBuffer(&buffer); // restart track if it was disabled by audioflinger due to previous underrun restartIfDisabled(); } void AudioTrack::restartIfDisabled() { int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags); if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) { ALOGW("releaseBuffer() track %p disabled due to previous underrun, restarting", this); // FIXME ignoring status mAudioTrack->start(); } } // ------------------------------------------------------------------------- ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking) { if (mTransfer != TRANSFER_SYNC) { return INVALID_OPERATION; } if (isDirect()) { AutoMutex lock(mLock); int32_t flags = android_atomic_and( ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags); if (flags & CBLK_INVALID) { return DEAD_OBJECT; } } if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) { // Sanity-check: user is most-likely passing an error code, and it would // make the return value ambiguous (actualSize vs error). ALOGE("AudioTrack::write(buffer=%p, size=%zu (%zd)", buffer, userSize, userSize); return BAD_VALUE; } size_t written = 0; Buffer audioBuffer; while (userSize >= mFrameSize) { audioBuffer.frameCount = userSize / mFrameSize; status_t err = obtainBuffer(&audioBuffer, blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking); if (err < 0) { if (written > 0) { break; } if (err == TIMED_OUT || err == -EINTR) { err = WOULD_BLOCK; } return ssize_t(err); } size_t toWrite = audioBuffer.size; memcpy(audioBuffer.i8, buffer, toWrite); buffer = ((const char *) buffer) + toWrite; userSize -= toWrite; written += toWrite; releaseBuffer(&audioBuffer); } if (written > 0) { mFramesWritten += written / mFrameSize; } return written; } // ------------------------------------------------------------------------- nsecs_t AudioTrack::processAudioBuffer() { // Currently the AudioTrack thread is not created if there are no callbacks. // Would it ever make sense to run the thread, even without callbacks? // If so, then replace this by checks at each use for mCbf != NULL. LOG_ALWAYS_FATAL_IF(mCblk == NULL); mLock.lock(); if (mAwaitBoost) { mAwaitBoost = false; mLock.unlock(); static const int32_t kMaxTries = 5; int32_t tryCounter = kMaxTries; uint32_t pollUs = 10000; do { int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK; if (policy == SCHED_FIFO || policy == SCHED_RR) { break; } usleep(pollUs); pollUs <<= 1; } while (tryCounter-- > 0); if (tryCounter < 0) { ALOGE("did not receive expected priority boost on time"); } // Run again immediately return 0; } // Can only reference mCblk while locked int32_t flags = android_atomic_and( ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags); // Check for track invalidation if (flags & CBLK_INVALID) { // for offloaded tracks restoreTrack_l() will just update the sequence and clear // AudioSystem cache. We should not exit here but after calling the callback so // that the upper layers can recreate the track if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) { status_t status __unused = restoreTrack_l("processAudioBuffer"); // FIXME unused status // after restoration, continue below to make sure that the loop and buffer events // are notified because they have been cleared from mCblk->mFlags above. } } bool waitStreamEnd = mState == STATE_STOPPING; bool active = mState == STATE_ACTIVE; // Manage underrun callback, must be done under lock to avoid race with releaseBuffer() bool newUnderrun = false; if (flags & CBLK_UNDERRUN) { #if 0 // Currently in shared buffer mode, when the server reaches the end of buffer, // the track stays active in continuous underrun state. It's up to the application // to pause or stop the track, or set the position to a new offset within buffer. // This was some experimental code to auto-pause on underrun. Keeping it here // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content. if (mTransfer == TRANSFER_SHARED) { mState = STATE_PAUSED; active = false; } #endif if (!mInUnderrun) { mInUnderrun = true; newUnderrun = true; } } // Get current position of server Modulo<uint32_t> position(updateAndGetPosition_l()); // Manage marker callback bool markerReached = false; Modulo<uint32_t> markerPosition(mMarkerPosition); // uses 32 bit wraparound for comparison with position. if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) { mMarkerReached = markerReached = true; } // Determine number of new position callback(s) that will be needed, while locked size_t newPosCount = 0; Modulo<uint32_t> newPosition(mNewPosition); uint32_t updatePeriod = mUpdatePeriod; // FIXME fails for wraparound, need 64 bits if (updatePeriod > 0 && position >= newPosition) { newPosCount = ((position - newPosition).value() / updatePeriod) + 1; mNewPosition += updatePeriod * newPosCount; } // Cache other fields that will be needed soon uint32_t sampleRate = mSampleRate; float speed = mPlaybackRate.mSpeed; const uint32_t notificationFrames = mNotificationFramesAct; if (mRefreshRemaining) { mRefreshRemaining = false; mRemainingFrames = notificationFrames; mRetryOnPartialBuffer = false; } size_t misalignment = mProxy->getMisalignment(); uint32_t sequence = mSequence; sp<AudioTrackClientProxy> proxy = mProxy; // Determine the number of new loop callback(s) that will be needed, while locked. int loopCountNotifications = 0; uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END if (mLoopCount > 0) { int loopCount; size_t bufferPosition; mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount); loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition; loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications); mLoopCountNotified = loopCount; // discard any excess notifications } else if (mLoopCount < 0) { // FIXME: We're not accurate with notification count and position with infinite looping // since loopCount from server side will always return -1 (we could decrement it). size_t bufferPosition = mStaticProxy->getBufferPosition(); loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0); loopPeriod = mLoopEnd - bufferPosition; } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) { size_t bufferPosition = mStaticProxy->getBufferPosition(); loopPeriod = mFrameCount - bufferPosition; } // These fields don't need to be cached, because they are assigned only by set(): // mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags // mFlags is also assigned by createTrack_l(), but not the bit we care about. mLock.unlock(); // get anchor time to account for callbacks. const nsecs_t timeBeforeCallbacks = systemTime(); if (waitStreamEnd) { // FIXME: Instead of blocking in proxy->waitStreamEndDone(), Callback thread // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function // (and make sure we don't callback for more data while we're stopping). // This helps with position, marker notifications, and track invalidation. struct timespec timeout; timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC; timeout.tv_nsec = 0; status_t status = proxy->waitStreamEndDone(&timeout); switch (status) { case NO_ERROR: case DEAD_OBJECT: case TIMED_OUT: if (status != DEAD_OBJECT) { // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop(); // instead, the application should handle the EVENT_NEW_IAUDIOTRACK. mCbf(EVENT_STREAM_END, mUserData, NULL); } { AutoMutex lock(mLock); // The previously assigned value of waitStreamEnd is no longer valid, // since the mutex has been unlocked and either the callback handler // or another thread could have re-started the AudioTrack during that time. waitStreamEnd = mState == STATE_STOPPING; if (waitStreamEnd) { mState = STATE_STOPPED; mReleased = 0; } } if (waitStreamEnd && status != DEAD_OBJECT) { return NS_INACTIVE; } break; } return 0; } // perform callbacks while unlocked if (newUnderrun) { mCbf(EVENT_UNDERRUN, mUserData, NULL); } while (loopCountNotifications > 0) { mCbf(EVENT_LOOP_END, mUserData, NULL); --loopCountNotifications; } if (flags & CBLK_BUFFER_END) { mCbf(EVENT_BUFFER_END, mUserData, NULL); } if (markerReached) { mCbf(EVENT_MARKER, mUserData, &markerPosition); } while (newPosCount > 0) { size_t temp = newPosition.value(); // FIXME size_t != uint32_t mCbf(EVENT_NEW_POS, mUserData, &temp); newPosition += updatePeriod; newPosCount--; } if (mObservedSequence != sequence) { mObservedSequence = sequence; mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL); // for offloaded tracks, just wait for the upper layers to recreate the track if (isOffloadedOrDirect()) { return NS_INACTIVE; } } // if inactive, then don't run me again until re-started if (!active) { return NS_INACTIVE; } // Compute the estimated time until the next timed event (position, markers, loops) // FIXME only for non-compressed audio uint32_t minFrames = ~0; if (!markerReached && position < markerPosition) { minFrames = (markerPosition - position).value(); } if (loopPeriod > 0 && loopPeriod < minFrames) { // loopPeriod is already adjusted for actual position. minFrames = loopPeriod; } if (updatePeriod > 0) { minFrames = min(minFrames, (newPosition - position).value()); } // If > 0, poll periodically to recover from a stuck server. A good value is 2. static const uint32_t kPoll = 0; if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) { minFrames = kPoll * notificationFrames; } // This "fudge factor" avoids soaking CPU, and compensates for late progress by server static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL; const nsecs_t timeAfterCallbacks = systemTime(); // Convert frame units to time units nsecs_t ns = NS_WHENEVER; if (minFrames != (uint32_t) ~0) { // AudioFlinger consumption of client data may be irregular when coming out of device // standby since the kernel buffers require filling. This is throttled to no more than 2x // the expected rate in the MixerThread. Hence, we reduce the estimated time to wait by one // half (but no more than half a second) to improve callback accuracy during these temporary // data surges. const nsecs_t estimatedNs = framesToNanoseconds(minFrames, sampleRate, speed); constexpr nsecs_t maxThrottleCompensationNs = 500000000LL; ns = estimatedNs - min(estimatedNs / 2, maxThrottleCompensationNs) + kWaitPeriodNs; ns -= (timeAfterCallbacks - timeBeforeCallbacks); // account for callback time // TODO: Should we warn if the callback time is too long? if (ns < 0) ns = 0; } // If not supplying data by EVENT_MORE_DATA, then we're done if (mTransfer != TRANSFER_CALLBACK) { return ns; } // EVENT_MORE_DATA callback handling. // Timing for linear pcm audio data formats can be derived directly from the // buffer fill level. // Timing for compressed data is not directly available from the buffer fill level, // rather indirectly from waiting for blocking mode callbacks or waiting for obtain() // to return a certain fill level. struct timespec timeout; const struct timespec *requested = &ClientProxy::kForever; if (ns != NS_WHENEVER) { timeout.tv_sec = ns / 1000000000LL; timeout.tv_nsec = ns % 1000000000LL; ALOGV("timeout %ld.%03d", timeout.tv_sec, (int) timeout.tv_nsec / 1000000); requested = &timeout; } size_t writtenFrames = 0; while (mRemainingFrames > 0) { Buffer audioBuffer; audioBuffer.frameCount = mRemainingFrames; size_t nonContig; status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig); LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0), "obtainBuffer() err=%d frameCount=%zu", err, audioBuffer.frameCount); requested = &ClientProxy::kNonBlocking; size_t avail = audioBuffer.frameCount + nonContig; ALOGV("obtainBuffer(%u) returned %zu = %zu + %zu err %d", mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err); if (err != NO_ERROR) { if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR || (isOffloaded() && (err == DEAD_OBJECT))) { // FIXME bug 25195759 return 1000000; } ALOGE("Error %d obtaining an audio buffer, giving up.", err); return NS_NEVER; } if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) { mRetryOnPartialBuffer = false; if (avail < mRemainingFrames) { if (ns > 0) { // account for obtain time const nsecs_t timeNow = systemTime(); ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks)); } nsecs_t myns = framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed); if (ns < 0 /* NS_WHENEVER */ || myns < ns) { ns = myns; } return ns; } } size_t reqSize = audioBuffer.size; mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer); size_t writtenSize = audioBuffer.size; // Sanity check on returned size if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) { ALOGE("EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes", reqSize, ssize_t(writtenSize)); return NS_NEVER; } if (writtenSize == 0) { // The callback is done filling buffers // Keep this thread going to handle timed events and // still try to get more data in intervals of WAIT_PERIOD_MS // but don't just loop and block the CPU, so wait // mCbf(EVENT_MORE_DATA, ...) might either // (1) Block until it can fill the buffer, returning 0 size on EOS. // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS. // (3) Return 0 size when no data is available, does not wait for more data. // // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer. // We try to compute the wait time to avoid a tight sleep-wait cycle, // especially for case (3). // // The decision to support (1) and (2) affect the sizing of mRemainingFrames // and this loop; whereas for case (3) we could simply check once with the full // buffer size and skip the loop entirely. nsecs_t myns; if (audio_has_proportional_frames(mFormat)) { // time to wait based on buffer occupancy const nsecs_t datans = mRemainingFrames <= avail ? 0 : framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed); // audio flinger thread buffer size (TODO: adjust for fast tracks) // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks. const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed); // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0. myns = datans + (afns / 2); } else { // FIXME: This could ping quite a bit if the buffer isn't full. // Note that when mState is stopping we waitStreamEnd, so it never gets here. myns = kWaitPeriodNs; } if (ns > 0) { // account for obtain and callback time const nsecs_t timeNow = systemTime(); ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks)); } if (ns < 0 /* NS_WHENEVER */ || myns < ns) { ns = myns; } return ns; } size_t releasedFrames = writtenSize / mFrameSize; audioBuffer.frameCount = releasedFrames; mRemainingFrames -= releasedFrames; if (misalignment >= releasedFrames) { misalignment -= releasedFrames; } else { misalignment = 0; } releaseBuffer(&audioBuffer); writtenFrames += releasedFrames; // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer // if callback doesn't like to accept the full chunk if (writtenSize < reqSize) { continue; } // There could be enough non-contiguous frames available to satisfy the remaining request if (mRemainingFrames <= nonContig) { continue; } #if 0 // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a // sum <= notificationFrames. It replaces that series by at most two EVENT_MORE_DATA // that total to a sum == notificationFrames. if (0 < misalignment && misalignment <= mRemainingFrames) { mRemainingFrames = misalignment; return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed); } #endif } if (writtenFrames > 0) { AutoMutex lock(mLock); mFramesWritten += writtenFrames; } mRemainingFrames = notificationFrames; mRetryOnPartialBuffer = true; // A lot has transpired since ns was calculated, so run again immediately and re-calculate return 0; } status_t AudioTrack::restoreTrack_l(const char *from) { ALOGW("dead IAudioTrack, %s, creating a new one from %s()", isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from); ++mSequence; // refresh the audio configuration cache in this process to make sure we get new // output parameters and new IAudioFlinger in createTrack_l() AudioSystem::clearAudioConfigCache(); if (isOffloadedOrDirect_l() || mDoNotReconnect) { // FIXME re-creation of offloaded and direct tracks is not yet implemented; // reconsider enabling for linear PCM encodings when position can be preserved. return DEAD_OBJECT; } // Save so we can return count since creation. mUnderrunCountOffset = getUnderrunCount_l(); // save the old static buffer position uint32_t staticPosition = 0; size_t bufferPosition = 0; int loopCount = 0; if (mStaticProxy != 0) { mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount); staticPosition = mStaticProxy->getPosition().unsignedValue(); } // See b/74409267. Connecting to a BT A2DP device supporting multiple codecs // causes a lot of churn on the service side, and it can reject starting // playback of a previously created track. May also apply to other cases. const int INITIAL_RETRIES = 3; int retries = INITIAL_RETRIES; retry: if (retries < INITIAL_RETRIES) { // See the comment for clearAudioConfigCache at the start of the function. AudioSystem::clearAudioConfigCache(); } mFlags = mOrigFlags; // If a new IAudioTrack is successfully created, createTrack_l() will modify the // following member variables: mAudioTrack, mCblkMemory and mCblk. // It will also delete the strong references on previous IAudioTrack and IMemory. // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact. status_t result = createTrack_l(); if (result != NO_ERROR) { ALOGW("%s(): createTrack_l failed, do not retry", __func__); retries = 0; } else { // take the frames that will be lost by track recreation into account in saved position // For streaming tracks, this is the amount we obtained from the user/client // (not the number actually consumed at the server - those are already lost). if (mStaticProxy == 0) { mPosition = mReleased; } // Continue playback from last known position and restore loop. if (mStaticProxy != 0) { if (loopCount != 0) { mStaticProxy->setBufferPositionAndLoop(bufferPosition, mLoopStart, mLoopEnd, loopCount); } else { mStaticProxy->setBufferPosition(bufferPosition); if (bufferPosition == mFrameCount) { ALOGD("restoring track at end of static buffer"); } } } // restore volume handler mVolumeHandler->forall([this](const VolumeShaper &shaper) -> VolumeShaper::Status { sp<VolumeShaper::Operation> operationToEnd = new VolumeShaper::Operation(shaper.mOperation); // TODO: Ideally we would restore to the exact xOffset position // as returned by getVolumeShaperState(), but we don't have that // information when restoring at the client unless we periodically poll // the server or create shared memory state. // // For now, we simply advance to the end of the VolumeShaper effect // if it has been started. if (shaper.isStarted()) { operationToEnd->setNormalizedTime(1.f); } return mAudioTrack->applyVolumeShaper(shaper.mConfiguration, operationToEnd); }); if (mState == STATE_ACTIVE) { result = mAudioTrack->start(); } // server resets to zero so we offset mFramesWrittenServerOffset = mStaticProxy.get() != nullptr ? staticPosition : mFramesWritten; mFramesWrittenAtRestore = mFramesWrittenServerOffset; } if (result != NO_ERROR) { ALOGW("%s() failed status %d, retries %d", __func__, result, retries); if (--retries > 0) { goto retry; } mState = STATE_STOPPED; mReleased = 0; } return result; } Modulo<uint32_t> AudioTrack::updateAndGetPosition_l() { // This is the sole place to read server consumed frames Modulo<uint32_t> newServer(mProxy->getPosition()); const int32_t delta = (newServer - mServer).signedValue(); // TODO There is controversy about whether there can be "negative jitter" in server position. // This should be investigated further, and if possible, it should be addressed. // A more definite failure mode is infrequent polling by client. // One could call (void)getPosition_l() in releaseBuffer(), // so mReleased and mPosition are always lock-step as best possible. // That should ensure delta never goes negative for infrequent polling // unless the server has more than 2^31 frames in its buffer, // in which case the use of uint32_t for these counters has bigger issues. ALOGE_IF(delta < 0, "detected illegal retrograde motion by the server: mServer advanced by %d", delta); mServer = newServer; if (delta > 0) { // avoid retrograde mPosition += delta; } return mPosition; } bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed) { updateLatency_l(); // applicable for mixing tracks only (not offloaded or direct) if (mStaticProxy != 0) { return true; // static tracks do not have issues with buffer sizing. } const size_t minFrameCount = AudioSystem::calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/); const bool allowed = mFrameCount >= minFrameCount; ALOGD_IF(!allowed, "isSampleRateSpeedAllowed_l denied " "mAfLatency:%u mAfFrameCount:%zu mAfSampleRate:%u sampleRate:%u speed:%f " "mFrameCount:%zu < minFrameCount:%zu", mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed, mFrameCount, minFrameCount); return allowed; } status_t AudioTrack::setParameters(const String8& keyValuePairs) { AutoMutex lock(mLock); return mAudioTrack->setParameters(keyValuePairs); } status_t AudioTrack::selectPresentation(int presentationId, int programId) { AutoMutex lock(mLock); AudioParameter param = AudioParameter(); param.addInt(String8(AudioParameter::keyPresentationId), presentationId); param.addInt(String8(AudioParameter::keyProgramId), programId); ALOGV("PresentationId/ProgramId[%s]",param.toString().string()); return mAudioTrack->setParameters(param.toString()); } VolumeShaper::Status AudioTrack::applyVolumeShaper( const sp<VolumeShaper::Configuration>& configuration, const sp<VolumeShaper::Operation>& operation) { AutoMutex lock(mLock); mVolumeHandler->setIdIfNecessary(configuration); VolumeShaper::Status status = mAudioTrack->applyVolumeShaper(configuration, operation); if (status == DEAD_OBJECT) { if (restoreTrack_l("applyVolumeShaper") == OK) { status = mAudioTrack->applyVolumeShaper(configuration, operation); } } if (status >= 0) { // save VolumeShaper for restore mVolumeHandler->applyVolumeShaper(configuration, operation); if (mState == STATE_ACTIVE || mState == STATE_STOPPING) { mVolumeHandler->setStarted(); } } else { // warn only if not an expected restore failure. ALOGW_IF(!((isOffloadedOrDirect_l() || mDoNotReconnect) && status == DEAD_OBJECT), "applyVolumeShaper failed: %d", status); } return status; } sp<VolumeShaper::State> AudioTrack::getVolumeShaperState(int id) { AutoMutex lock(mLock); sp<VolumeShaper::State> state = mAudioTrack->getVolumeShaperState(id); if (state.get() == nullptr && (mCblk->mFlags & CBLK_INVALID) != 0) { if (restoreTrack_l("getVolumeShaperState") == OK) { state = mAudioTrack->getVolumeShaperState(id); } } return state; } status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp) { if (timestamp == nullptr) { return BAD_VALUE; } AutoMutex lock(mLock); return getTimestamp_l(timestamp); } status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp) { if (mCblk->mFlags & CBLK_INVALID) { const status_t status = restoreTrack_l("getTimestampExtended"); if (status != OK) { // per getTimestamp() API doc in header, we return DEAD_OBJECT here, // recommending that the track be recreated. return DEAD_OBJECT; } } // check for offloaded/direct here in case restoring somehow changed those flags. if (isOffloadedOrDirect_l()) { return INVALID_OPERATION; // not supported } status_t status = mProxy->getTimestamp(timestamp); LOG_ALWAYS_FATAL_IF(status != OK, "status %d not allowed from proxy getTimestamp", status); bool found = false; timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten; timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0; // server side frame offset in case AudioTrack has been restored. for (int i = ExtendedTimestamp::LOCATION_SERVER; i < ExtendedTimestamp::LOCATION_MAX; ++i) { if (timestamp->mTimeNs[i] >= 0) { // apply server offset (frames flushed is ignored // so we don't report the jump when the flush occurs). timestamp->mPosition[i] += mFramesWrittenServerOffset; found = true; } } return found ? OK : WOULD_BLOCK; } status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp) { AutoMutex lock(mLock); return getTimestamp_l(timestamp); } status_t AudioTrack::getTimestamp_l(AudioTimestamp& timestamp) { bool previousTimestampValid = mPreviousTimestampValid; // Set false here to cover all the error return cases. mPreviousTimestampValid = false; switch (mState) { case STATE_ACTIVE: case STATE_PAUSED: break; // handle below case STATE_FLUSHED: case STATE_STOPPED: return WOULD_BLOCK; case STATE_STOPPING: case STATE_PAUSED_STOPPING: if (!isOffloaded_l()) { return INVALID_OPERATION; } break; // offloaded tracks handled below default: LOG_ALWAYS_FATAL("Invalid mState in getTimestamp(): %d", mState); break; } if (mCblk->mFlags & CBLK_INVALID) { const status_t status = restoreTrack_l("getTimestamp"); if (status != OK) { // per getTimestamp() API doc in header, we return DEAD_OBJECT here, // recommending that the track be recreated. return DEAD_OBJECT; } } // The presented frame count must always lag behind the consumed frame count. // To avoid a race, read the presented frames first. This ensures that presented <= consumed. status_t status; if (isOffloadedOrDirect_l()) { // use Binder to get timestamp status = mAudioTrack->getTimestamp(timestamp); } else { // read timestamp from shared memory ExtendedTimestamp ets; status = mProxy->getTimestamp(&ets); if (status == OK) { ExtendedTimestamp::Location location; status = ets.getBestTimestamp(×tamp, &location); if (status == OK) { updateLatency_l(); // It is possible that the best location has moved from the kernel to the server. // In this case we adjust the position from the previous computed latency. if (location == ExtendedTimestamp::LOCATION_SERVER) { ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL, "getTimestamp() location moved from kernel to server"); // check that the last kernel OK time info exists and the positions // are valid (if they predate the current track, the positions may // be zero or negative). const int64_t frames = (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 || ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 || ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 || ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0) ? int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed / 1000) : (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]); ALOGV("frame adjustment:%lld timestamp:%s", (long long)frames, ets.toString().c_str()); if (frames >= ets.mPosition[location]) { timestamp.mPosition = 0; } else { timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames); } } else if (location == ExtendedTimestamp::LOCATION_KERNEL) { ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER, "getTimestamp() location moved from server to kernel"); } // We update the timestamp time even when paused. if (mState == STATE_PAUSED /* not needed: STATE_PAUSED_STOPPING */) { const int64_t now = systemTime(); const int64_t at = audio_utils_ns_from_timespec(×tamp.mTime); const int64_t lag = (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 || ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0) ? int64_t(mAfLatency * 1000000LL) : (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]) * NANOS_PER_SECOND / mSampleRate; const int64_t limit = now - lag; // no earlier than this limit if (at < limit) { ALOGV("timestamp pause lag:%lld adjusting from %lld to %lld", (long long)lag, (long long)at, (long long)limit); timestamp.mTime = convertNsToTimespec(limit); } } mPreviousLocation = location; } else { // right after AudioTrack is started, one may not find a timestamp ALOGV("getBestTimestamp did not find timestamp"); } } if (status == INVALID_OPERATION) { // INVALID_OPERATION occurs when no timestamp has been issued by the server; // other failures are signaled by a negative time. // If we come out of FLUSHED or STOPPED where the position is known // to be zero we convert this to WOULD_BLOCK (with the implicit meaning of // "zero" for NuPlayer). We don't convert for track restoration as position // does not reset. ALOGV("timestamp server offset:%lld restore frames:%lld", (long long)mFramesWrittenServerOffset, (long long)mFramesWrittenAtRestore); if (mFramesWrittenServerOffset != mFramesWrittenAtRestore) { status = WOULD_BLOCK; } } } if (status != NO_ERROR) { ALOGV_IF(status != WOULD_BLOCK, "getTimestamp error:%#x", status); return status; } if (isOffloadedOrDirect_l()) { if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) { // use cached paused position in case another offloaded track is running. timestamp.mPosition = mPausedPosition; clock_gettime(CLOCK_MONOTONIC, ×tamp.mTime); // TODO: adjust for delay return NO_ERROR; } // Check whether a pending flush or stop has completed, as those commands may // be asynchronous or return near finish or exhibit glitchy behavior. // // Originally this showed up as the first timestamp being a continuation of // the previous song under gapless playback. // However, we sometimes see zero timestamps, then a glitch of // the previous song's position, and then correct timestamps afterwards. if (mStartFromZeroUs != 0 && mSampleRate != 0) { static const int kTimeJitterUs = 100000; // 100 ms static const int k1SecUs = 1000000; const int64_t timeNow = getNowUs(); if (timeNow < mStartFromZeroUs + k1SecUs) { // within first second of starting const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime); if (timestampTimeUs < mStartFromZeroUs) { return WOULD_BLOCK; // stale timestamp time, occurs before start. } const int64_t deltaTimeUs = timestampTimeUs - mStartFromZeroUs; const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000 / ((double)mSampleRate * mPlaybackRate.mSpeed); if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) { // Verify that the counter can't count faster than the sample rate // since the start time. If greater, then that means we may have failed // to completely flush or stop the previous playing track. ALOGW_IF(!mTimestampStartupGlitchReported, "getTimestamp startup glitch detected" " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)", (long long)deltaTimeUs, (long long)deltaPositionByUs, timestamp.mPosition); mTimestampStartupGlitchReported = true; if (previousTimestampValid && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) { timestamp = mPreviousTimestamp; mPreviousTimestampValid = true; return NO_ERROR; } return WOULD_BLOCK; } if (deltaPositionByUs != 0) { mStartFromZeroUs = 0; // don't check again, we got valid nonzero position. } } else { mStartFromZeroUs = 0; // don't check again, start time expired. } mTimestampStartupGlitchReported = false; } } else { // Update the mapping between local consumed (mPosition) and server consumed (mServer) (void) updateAndGetPosition_l(); // Server consumed (mServer) and presented both use the same server time base, // and server consumed is always >= presented. // The delta between these represents the number of frames in the buffer pipeline. // If this delta between these is greater than the client position, it means that // actually presented is still stuck at the starting line (figuratively speaking), // waiting for the first frame to go by. So we can't report a valid timestamp yet. // Note: We explicitly use non-Modulo comparison here - potential wrap issue when // mPosition exceeds 32 bits. // TODO Remove when timestamp is updated to contain pipeline status info. const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue(); if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */ && (uint32_t)pipelineDepthInFrames > mPosition.value()) { return INVALID_OPERATION; } // Convert timestamp position from server time base to client time base. // TODO The following code should work OK now because timestamp.mPosition is 32-bit. // But if we change it to 64-bit then this could fail. // Use Modulo computation here. timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value(); // Immediately after a call to getPosition_l(), mPosition and // mServer both represent the same frame position. mPosition is // in client's point of view, and mServer is in server's point of // view. So the difference between them is the "fudge factor" // between client and server views due to stop() and/or new // IAudioTrack. And timestamp.mPosition is initially in server's // point of view, so we need to apply the same fudge factor to it. } // Prevent retrograde motion in timestamp. // This is sometimes caused by erratic reports of the available space in the ALSA drivers. if (status == NO_ERROR) { // previousTimestampValid is set to false when starting after a stop or flush. if (previousTimestampValid) { const int64_t previousTimeNanos = audio_utils_ns_from_timespec(&mPreviousTimestamp.mTime); int64_t currentTimeNanos = audio_utils_ns_from_timespec(×tamp.mTime); // Fix stale time when checking timestamp right after start(). // // For offload compatibility, use a default lag value here. // Any time discrepancy between this update and the pause timestamp is handled // by the retrograde check afterwards. const int64_t lagNs = int64_t(mAfLatency * 1000000LL); const int64_t limitNs = mStartNs - lagNs; if (currentTimeNanos < limitNs) { ALOGD("correcting timestamp time for pause, " "currentTimeNanos: %lld < limitNs: %lld < mStartNs: %lld", (long long)currentTimeNanos, (long long)limitNs, (long long)mStartNs); timestamp.mTime = convertNsToTimespec(limitNs); currentTimeNanos = limitNs; } // retrograde check if (currentTimeNanos < previousTimeNanos) { ALOGW("retrograde timestamp time corrected, %lld < %lld", (long long)currentTimeNanos, (long long)previousTimeNanos); timestamp.mTime = mPreviousTimestamp.mTime; // currentTimeNanos not used below. } // Looking at signed delta will work even when the timestamps // are wrapping around. int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition) - mPreviousTimestamp.mPosition).signedValue(); if (deltaPosition < 0) { // Only report once per position instead of spamming the log. if (!mRetrogradeMotionReported) { ALOGW("retrograde timestamp position corrected, %d = %u - %u", deltaPosition, timestamp.mPosition, mPreviousTimestamp.mPosition); mRetrogradeMotionReported = true; } } else { mRetrogradeMotionReported = false; } if (deltaPosition < 0) { timestamp.mPosition = mPreviousTimestamp.mPosition; deltaPosition = 0; } #if 0 // Uncomment this to verify audio timestamp rate. const int64_t deltaTime = audio_utils_ns_from_timespec(×tamp.mTime) - previousTimeNanos; if (deltaTime != 0) { const int64_t computedSampleRate = deltaPosition * (long long)NANOS_PER_SECOND / deltaTime; ALOGD("computedSampleRate:%u sampleRate:%u", (unsigned)computedSampleRate, mSampleRate); } #endif } mPreviousTimestamp = timestamp; mPreviousTimestampValid = true; } return status; } String8 AudioTrack::getParameters(const String8& keys) { audio_io_handle_t output = getOutput(); if (output != AUDIO_IO_HANDLE_NONE) { return AudioSystem::getParameters(output, keys); } else { return String8::empty(); } } bool AudioTrack::isOffloaded() const { AutoMutex lock(mLock); return isOffloaded_l(); } bool AudioTrack::isDirect() const { AutoMutex lock(mLock); return isDirect_l(); } bool AudioTrack::isOffloadedOrDirect() const { AutoMutex lock(mLock); return isOffloadedOrDirect_l(); } status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const { String8 result; result.append(" AudioTrack::dump\n"); result.appendFormat(" status(%d), state(%d), session Id(%d), flags(%#x)\n", mStatus, mState, mSessionId, mFlags); result.appendFormat(" stream type(%d), left - right volume(%f, %f)\n", (mStreamType == AUDIO_STREAM_DEFAULT) ? audio_attributes_to_stream_type(&mAttributes) : mStreamType, mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]); result.appendFormat(" format(%#x), channel mask(%#x), channel count(%u)\n", mFormat, mChannelMask, mChannelCount); result.appendFormat(" sample rate(%u), original sample rate(%u), speed(%f)\n", mSampleRate, mOriginalSampleRate, mPlaybackRate.mSpeed); result.appendFormat(" frame count(%zu), req. frame count(%zu)\n", mFrameCount, mReqFrameCount); result.appendFormat(" notif. frame count(%u), req. notif. frame count(%u)," " req. notif. per buff(%u)\n", mNotificationFramesAct, mNotificationFramesReq, mNotificationsPerBufferReq); result.appendFormat(" latency (%d), selected device Id(%d), routed device Id(%d)\n", mLatency, mSelectedDeviceId, mRoutedDeviceId); result.appendFormat(" output(%d) AF latency (%u) AF frame count(%zu) AF SampleRate(%u)\n", mOutput, mAfLatency, mAfFrameCount, mAfSampleRate); ::write(fd, result.string(), result.size()); return NO_ERROR; } uint32_t AudioTrack::getUnderrunCount() const { AutoMutex lock(mLock); return getUnderrunCount_l(); } uint32_t AudioTrack::getUnderrunCount_l() const { return mProxy->getUnderrunCount() + mUnderrunCountOffset; } uint32_t AudioTrack::getUnderrunFrames() const { AutoMutex lock(mLock); return mProxy->getUnderrunFrames(); } status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback) { if (callback == 0) { ALOGW("%s adding NULL callback!", __FUNCTION__); return BAD_VALUE; } AutoMutex lock(mLock); if (mDeviceCallback.unsafe_get() == callback.get()) { ALOGW("%s adding same callback!", __FUNCTION__); return INVALID_OPERATION; } status_t status = NO_ERROR; if (mOutput != AUDIO_IO_HANDLE_NONE) { if (mDeviceCallback != 0) { ALOGW("%s callback already present!", __FUNCTION__); AudioSystem::removeAudioDeviceCallback(this, mOutput); } status = AudioSystem::addAudioDeviceCallback(this, mOutput); } mDeviceCallback = callback; return status; } status_t AudioTrack::removeAudioDeviceCallback( const sp<AudioSystem::AudioDeviceCallback>& callback) { if (callback == 0) { ALOGW("%s removing NULL callback!", __FUNCTION__); return BAD_VALUE; } AutoMutex lock(mLock); if (mDeviceCallback.unsafe_get() != callback.get()) { ALOGW("%s removing different callback!", __FUNCTION__); return INVALID_OPERATION; } mDeviceCallback.clear(); if (mOutput != AUDIO_IO_HANDLE_NONE) { AudioSystem::removeAudioDeviceCallback(this, mOutput); } return NO_ERROR; } void AudioTrack::onAudioDeviceUpdate(audio_io_handle_t audioIo, audio_port_handle_t deviceId) { sp<AudioSystem::AudioDeviceCallback> callback; { AutoMutex lock(mLock); if (audioIo != mOutput) { return; } callback = mDeviceCallback.promote(); // only update device if the track is active as route changes due to other use cases are // irrelevant for this client if (mState == STATE_ACTIVE) { mRoutedDeviceId = deviceId; } } if (callback.get() != nullptr) { callback->onAudioDeviceUpdate(mOutput, mRoutedDeviceId); } } status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location) { if (msec == nullptr || (location != ExtendedTimestamp::LOCATION_SERVER && location != ExtendedTimestamp::LOCATION_KERNEL)) { return BAD_VALUE; } AutoMutex lock(mLock); // inclusive of offloaded and direct tracks. // // It is possible, but not enabled, to allow duration computation for non-pcm // audio_has_proportional_frames() formats because currently they have // the drain rate equivalent to the pcm sample rate * framesize. if (!isPurePcmData_l()) { return INVALID_OPERATION; } ExtendedTimestamp ets; if (getTimestamp_l(&ets) == OK && ets.mTimeNs[location] > 0) { int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT] - ets.mPosition[location]; if (diff < 0) { *msec = 0; } else { // ms is the playback time by frames int64_t ms = (int64_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed)); // clockdiff is the timestamp age (negative) int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 : ets.mTimeNs[location] + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC] - systemTime(SYSTEM_TIME_MONOTONIC); //ALOGV("ms: %lld clockdiff: %lld", (long long)ms, (long long)clockdiff); static const int NANOS_PER_MILLIS = 1000000; *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS); } return NO_ERROR; } if (location != ExtendedTimestamp::LOCATION_SERVER) { return INVALID_OPERATION; // LOCATION_KERNEL is not available } // use server position directly (offloaded and direct arrive here) updateAndGetPosition_l(); int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue(); *msec = (diff <= 0) ? 0 : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed)); return NO_ERROR; } bool AudioTrack::hasStarted() { AutoMutex lock(mLock); switch (mState) { case STATE_STOPPED: if (isOffloadedOrDirect_l()) { // check if we have started in the past to return true. return mStartFromZeroUs > 0; } // A normal audio track may still be draining, so // check if stream has ended. This covers fasttrack position // instability and start/stop without any data written. if (mProxy->getStreamEndDone()) { return true; } // fall through case STATE_ACTIVE: case STATE_STOPPING: break; case STATE_PAUSED: case STATE_PAUSED_STOPPING: case STATE_FLUSHED: return false; // we're not active default: LOG_ALWAYS_FATAL("Invalid mState in hasStarted(): %d", mState); break; } // wait indicates whether we need to wait for a timestamp. // This is conservatively figured - if we encounter an unexpected error // then we will not wait. bool wait = false; if (isOffloadedOrDirect_l()) { AudioTimestamp ts; status_t status = getTimestamp_l(ts); if (status == WOULD_BLOCK) { wait = true; } else if (status == OK) { wait = (ts.mPosition == 0 || ts.mPosition == mStartTs.mPosition); } ALOGV("hasStarted wait:%d ts:%u start position:%lld", (int)wait, ts.mPosition, (long long)mStartTs.mPosition); } else { int location = ExtendedTimestamp::LOCATION_SERVER; // for ALOG ExtendedTimestamp ets; status_t status = getTimestamp_l(&ets); if (status == WOULD_BLOCK) { // no SERVER or KERNEL frame info in ets wait = true; } else if (status == OK) { for (location = ExtendedTimestamp::LOCATION_KERNEL; location >= ExtendedTimestamp::LOCATION_SERVER; --location) { if (ets.mTimeNs[location] < 0 || mStartEts.mTimeNs[location] < 0) { continue; } wait = ets.mPosition[location] == 0 || ets.mPosition[location] == mStartEts.mPosition[location]; break; } } ALOGV("hasStarted wait:%d ets:%lld start position:%lld", (int)wait, (long long)ets.mPosition[location], (long long)mStartEts.mPosition[location]); } return !wait; } // ========================================================================= void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused) { sp<AudioTrack> audioTrack = mAudioTrack.promote(); if (audioTrack != 0) { AutoMutex lock(audioTrack->mLock); audioTrack->mProxy->binderDied(); } } // ========================================================================= AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava) : Thread(bCanCallJava), mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL), mIgnoreNextPausedInt(false) { } AudioTrack::AudioTrackThread::~AudioTrackThread() { } bool AudioTrack::AudioTrackThread::threadLoop() { { AutoMutex _l(mMyLock); if (mPaused) { // TODO check return value and handle or log mMyCond.wait(mMyLock); // caller will check for exitPending() return true; } if (mIgnoreNextPausedInt) { mIgnoreNextPausedInt = false; mPausedInt = false; } if (mPausedInt) { // TODO use futex instead of condition, for event flag "or" if (mPausedNs > 0) { // TODO check return value and handle or log (void) mMyCond.waitRelative(mMyLock, mPausedNs); } else { // TODO check return value and handle or log mMyCond.wait(mMyLock); } mPausedInt = false; return true; } } if (exitPending()) { return false; } nsecs_t ns = mReceiver.processAudioBuffer(); switch (ns) { case 0: return true; case NS_INACTIVE: pauseInternal(); return true; case NS_NEVER: return false; case NS_WHENEVER: // Event driven: call wake() when callback notifications conditions change. ns = INT64_MAX; // fall through default: LOG_ALWAYS_FATAL_IF(ns < 0, "processAudioBuffer() returned %" PRId64, ns); pauseInternal(ns); return true; } } void AudioTrack::AudioTrackThread::requestExit() { // must be in this order to avoid a race condition Thread::requestExit(); resume(); } void AudioTrack::AudioTrackThread::pause() { AutoMutex _l(mMyLock); mPaused = true; } void AudioTrack::AudioTrackThread::resume() { AutoMutex _l(mMyLock); mIgnoreNextPausedInt = true; if (mPaused || mPausedInt) { mPaused = false; mPausedInt = false; mMyCond.signal(); } } void AudioTrack::AudioTrackThread::wake() { AutoMutex _l(mMyLock); if (!mPaused) { // wake() might be called while servicing a callback - ignore the next // pause time and call processAudioBuffer. mIgnoreNextPausedInt = true; if (mPausedInt && mPausedNs > 0) { // audio track is active and internally paused with timeout. mPausedInt = false; mMyCond.signal(); } } } void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns) { AutoMutex _l(mMyLock); mPausedInt = true; mPausedNs = ns; } } // namespace android