/* * Copyright 2010-2014, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "slang_rs_reflection.h" #include <sys/stat.h> #include <cstdarg> #include <cctype> #include <algorithm> #include <sstream> #include <string> #include <utility> #include "llvm/ADT/APFloat.h" #include "llvm/ADT/StringExtras.h" #include "os_sep.h" #include "slang_rs_context.h" #include "slang_rs_export_var.h" #include "slang_rs_export_foreach.h" #include "slang_rs_export_func.h" #include "slang_rs_export_reduce.h" #include "slang_rs_reflect_utils.h" #include "slang_rs_reflection_state.h" #include "slang_version.h" #define RS_SCRIPT_CLASS_NAME_PREFIX "ScriptC_" #define RS_SCRIPT_CLASS_SUPER_CLASS_NAME "ScriptC" #define RS_TYPE_CLASS_SUPER_CLASS_NAME ".Script.FieldBase" #define RS_TYPE_ITEM_CLASS_NAME "Item" #define RS_TYPE_ITEM_SIZEOF_LEGACY "Item.sizeof" #define RS_TYPE_ITEM_SIZEOF_CURRENT "mElement.getBytesSize()" #define RS_TYPE_ITEM_BUFFER_NAME "mItemArray" #define RS_TYPE_ITEM_BUFFER_PACKER_NAME "mIOBuffer" #define RS_TYPE_ELEMENT_REF_NAME "mElementCache" #define RS_EXPORT_VAR_INDEX_PREFIX "mExportVarIdx_" #define RS_EXPORT_VAR_PREFIX "mExportVar_" #define RS_EXPORT_VAR_ELEM_PREFIX "mExportVarElem_" #define RS_EXPORT_VAR_DIM_PREFIX "mExportVarDim_" #define RS_EXPORT_VAR_CONST_PREFIX "const_" #define RS_ELEM_PREFIX "__" #define RS_FP_PREFIX "__rs_fp_" #define RS_RESOURCE_NAME "__rs_resource_name" #define RS_EXPORT_FUNC_INDEX_PREFIX "mExportFuncIdx_" #define RS_EXPORT_FOREACH_INDEX_PREFIX "mExportForEachIdx_" #define RS_EXPORT_REDUCE_INDEX_PREFIX "mExportReduceIdx_" #define RS_EXPORT_VAR_ALLOCATION_PREFIX "mAlloction_" #define RS_EXPORT_VAR_DATA_STORAGE_PREFIX "mData_" #define SAVED_RS_REFERENCE "mRSLocal" namespace slang { static void genCheck64BitInternal(const RSContext *Context, ReflectionState *State, GeneratedFile &Out, bool Parens); class RSReflectionJavaElementBuilder { public: RSReflectionJavaElementBuilder(const char *ElementBuilderName, const RSExportRecordType *ERT, const char *RenderScriptVar, GeneratedFile *Out, const RSContext *RSContext, RSReflectionJava *Reflection, ReflectionState *RState); void generate(); private: void genAddElement(const RSExportType *ET, const std::string &VarName, unsigned ArraySize); void genAddStatementStart(); void genAddStatementEnd(const std::string &VarName, unsigned ArraySize, unsigned Which = RSReflectionJava::FieldIndex | RSReflectionJava::Field32Index); void genAddPadding(int PaddingSize, unsigned Which); // Which: See RSReflectionJava::incFieldIndex() void genAddPadding(int PaddingSize, ReflectionState::Val32 Field32PaddingSize); // TODO Will remove later due to field name information is not necessary for // C-reflect-to-Java std::string createPaddingField() { return mPaddingPrefix + llvm::itostr(mPaddingFieldIndex++); } void genCheck64Bit(bool Parens) { genCheck64BitInternal(mRSContext, mState, *mOut, Parens); } const char *mElementBuilderName; const RSExportRecordType *mERT; const char *mRenderScriptVar; GeneratedFile *mOut; std::string mPaddingPrefix; int mPaddingFieldIndex; const RSContext *mRSContext; RSReflectionJava *mReflection; ReflectionState *mState; }; enum MatrixLanguage { ML_Java, ML_Script }; static const char *GetMatrixTypeName(const RSExportMatrixType *EMT, MatrixLanguage lang) { static const char *MatrixTypeJavaNameMap[3][2] = {/* 2x2 */ { "Matrix2f", "rs_matrix2x2" }, /* 3x3 */ { "Matrix3f", "rs_matrix3x3" }, /* 4x4 */ { "Matrix4f", "rs_matrix4x4" } }; unsigned Dim = EMT->getDim(); if ((Dim - 2) < (sizeof(MatrixTypeJavaNameMap) / sizeof(const char *))) return MatrixTypeJavaNameMap[EMT->getDim() - 2][lang]; slangAssert(false && "GetMatrixTypeName : Unsupported matrix dimension"); return nullptr; } static const char *GetVectorAccessor(unsigned Index) { static const char *VectorAccessorMap[] = {/* 0 */ "x", /* 1 */ "y", /* 2 */ "z", /* 3 */ "w", }; slangAssert((Index < (sizeof(VectorAccessorMap) / sizeof(const char *))) && "Out-of-bound index to access vector member"); return VectorAccessorMap[Index]; } static const char *GetPackerAPIName(const RSExportPrimitiveType *EPT) { static const char *PrimitiveTypePackerAPINameMap[] = { "addI16", // DataTypeFloat16 "addF32", // DataTypeFloat32 "addF64", // DataTypeFloat64 "addI8", // DataTypeSigned8 "addI16", // DataTypeSigned16 "addI32", // DataTypeSigned32 "addI64", // DataTypeSigned64 "addU8", // DataTypeUnsigned8 "addU16", // DataTypeUnsigned16 "addU32", // DataTypeUnsigned32 "addU64", // DataTypeUnsigned64 "addBoolean", // DataTypeBoolean "addU16", // DataTypeUnsigned565 "addU16", // DataTypeUnsigned5551 "addU16", // DataTypeUnsigned4444 "addMatrix", // DataTypeRSMatrix2x2 "addMatrix", // DataTypeRSMatrix3x3 "addMatrix", // DataTypeRSMatrix4x4 "addObj", // DataTypeRSElement "addObj", // DataTypeRSType "addObj", // DataTypeRSAllocation "addObj", // DataTypeRSSampler "addObj", // DataTypeRSScript "addObj", // DataTypeRSMesh "addObj", // DataTypeRSPath "addObj", // DataTypeRSProgramFragment "addObj", // DataTypeRSProgramVertex "addObj", // DataTypeRSProgramRaster "addObj", // DataTypeRSProgramStore "addObj", // DataTypeRSFont }; unsigned TypeId = EPT->getType(); if (TypeId < (sizeof(PrimitiveTypePackerAPINameMap) / sizeof(const char *))) return PrimitiveTypePackerAPINameMap[EPT->getType()]; slangAssert(false && "GetPackerAPIName : Unknown primitive data type"); return nullptr; } namespace { std::string GetReduceResultTypeName(const RSExportType *ET) { switch (ET->getClass()) { case RSExportType::ExportClassConstantArray: { const RSExportConstantArrayType *const CAT = static_cast<const RSExportConstantArrayType *>(ET); return "resultArray" + std::to_string(CAT->getNumElement()) + "_" + RSReflectionJava::GetTypeName( CAT->getElementType(), (RSReflectionJava::TypeNameDefault & ~RSReflectionJava::TypeNameWithRecordElementName) | RSReflectionJava::TypeNameC); } case RSExportType::ExportClassRecord: return "resultStruct_" + RSReflectionJava::GetTypeName( ET, (RSReflectionJava::TypeNameDefault & ~RSReflectionJava::TypeNameWithRecordElementName) | RSReflectionJava::TypeNameC); default: return "result_" + RSReflectionJava::GetTypeName(ET, RSReflectionJava::TypeNameDefault | RSReflectionJava::TypeNameC); } } std::string GetReduceResultTypeName(const RSExportReduce *ER) { return GetReduceResultTypeName(ER->getResultType()); } } // end anonymous namespace static const char *GetTypeNullValue(const RSExportType *ET) { switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: { const RSExportPrimitiveType *EPT = static_cast<const RSExportPrimitiveType *>(ET); if (EPT->isRSObjectType()) return "null"; else if (EPT->getType() == DataTypeBoolean) return "false"; else return "0"; break; } case RSExportType::ExportClassPointer: case RSExportType::ExportClassVector: case RSExportType::ExportClassMatrix: case RSExportType::ExportClassConstantArray: case RSExportType::ExportClassRecord: { return "null"; break; } default: { slangAssert(false && "Unknown class of type"); } } return ""; } static std::string GetBuiltinElementConstruct(const RSExportType *ET) { if (ET->getClass() == RSExportType::ExportClassPrimitive) { return std::string("Element.") + ET->getElementName(); } else if (ET->getClass() == RSExportType::ExportClassVector) { const RSExportVectorType *EVT = static_cast<const RSExportVectorType *>(ET); if (EVT->getType() == DataTypeFloat32) { if (EVT->getNumElement() == 2) { return "Element.F32_2"; } else if (EVT->getNumElement() == 3) { return "Element.F32_3"; } else if (EVT->getNumElement() == 4) { return "Element.F32_4"; } else { slangAssert(false && "Vectors should be size 2, 3, 4"); } } else if (EVT->getType() == DataTypeUnsigned8) { if (EVT->getNumElement() == 4) return "Element.U8_4"; } } else if (ET->getClass() == RSExportType::ExportClassMatrix) { const RSExportMatrixType *EMT = static_cast<const RSExportMatrixType *>(ET); switch (EMT->getDim()) { case 2: return "Element.MATRIX_2X2"; case 3: return "Element.MATRIX_3X3"; case 4: return "Element.MATRIX_4X4"; default: slangAssert(false && "Unsupported dimension of matrix"); } } // RSExportType::ExportClassPointer can't be generated in a struct. return ""; } // If FromIntegerType == DestIntegerType, then Value is returned. // Otherwise, return a Java expression that zero-extends the value // Value, assumed to be of type FromIntegerType, to the integer type // DestIntegerType. // // Intended operations: // byte -> {byte,int,short,long} // short -> {short,int,long} // int -> {int,long} // long -> long static std::string ZeroExtendValue(const std::string &Value, const std::string &FromIntegerType, const std::string &DestIntegerType) { #ifndef __DISABLE_ASSERTS // Integer types arranged in increasing order by width const std::vector<std::string> ValidTypes{"byte", "short", "int", "long"}; auto FromTypeLoc = std::find(ValidTypes.begin(), ValidTypes.end(), FromIntegerType); auto DestTypeLoc = std::find(ValidTypes.begin(), ValidTypes.end(), DestIntegerType); // Check that both types are valid. slangAssert(FromTypeLoc != ValidTypes.end()); slangAssert(DestTypeLoc != ValidTypes.end()); // Check that DestIntegerType is at least as wide as FromIntegerType. slangAssert(FromTypeLoc - ValidTypes.begin() <= DestTypeLoc - ValidTypes.begin()); #endif if (FromIntegerType == DestIntegerType) { return Value; } std::string Mask, MaskLiteralType; if (FromIntegerType == "byte") { Mask = "0xff"; MaskLiteralType = "int"; } else if (FromIntegerType == "short") { Mask = "0xffff"; MaskLiteralType = "int"; } else if (FromIntegerType == "int") { Mask = "0xffffffffL"; MaskLiteralType = "long"; } else { // long -> long casts should have already been handled. slangAssert(false && "Unknown integer type"); } // Cast the mask to the appropriate type. if (MaskLiteralType != DestIntegerType) { Mask = "(" + DestIntegerType + ") " + Mask; } return "((" + DestIntegerType + ") ((" + Value + ") & " + Mask + "))"; } std::string RSReflectionJava::GetTypeName(const RSExportType *ET, unsigned Style) { slangAssert((Style & (TypeNameC|TypeNamePseudoC)) != (TypeNameC|TypeNamePseudoC)); slangAssert(!(Style & TypeNamePseudoC) || (Style == TypeNamePseudoC)); const bool CLike = Style & (TypeNameC|TypeNamePseudoC); switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: { const auto ReflectionType = RSExportPrimitiveType::getRSReflectionType(static_cast<const RSExportPrimitiveType *>(ET)); return (CLike ? ReflectionType->s_name : ReflectionType->java_name); } case RSExportType::ExportClassPointer: { slangAssert(!(Style & TypeNameC) && "No need to support C type names for pointer types yet"); const RSExportType *PointeeType = static_cast<const RSExportPointerType *>(ET)->getPointeeType(); if (Style & TypeNamePseudoC) return GetTypeName(PointeeType, Style) + "*"; else if (PointeeType->getClass() != RSExportType::ExportClassRecord) return "Allocation"; else return PointeeType->getElementName(); } case RSExportType::ExportClassVector: { const RSExportVectorType *EVT = static_cast<const RSExportVectorType *>(ET); const auto ReflectionType = EVT->getRSReflectionType(EVT); std::stringstream VecName; VecName << (CLike ? ReflectionType->s_name : ReflectionType->rs_java_vector_prefix) << EVT->getNumElement(); return VecName.str(); } case RSExportType::ExportClassMatrix: { return GetMatrixTypeName(static_cast<const RSExportMatrixType *>(ET), CLike ? ML_Script : ML_Java); } case RSExportType::ExportClassConstantArray: { const RSExportConstantArrayType *CAT = static_cast<const RSExportConstantArrayType *>(ET); std::string ElementTypeName = GetTypeName(CAT->getElementType(), Style); if (Style & TypeNamePseudoC) { std::stringstream ArrayName; ArrayName << ElementTypeName << '[' << CAT->getNumElement() << ']'; return ArrayName.str(); } else if (Style & TypeNameWithConstantArrayBrackets) { slangAssert(!(Style & TypeNameC) && "No need to support C type names for array types with brackets yet"); ElementTypeName.append("[]"); } return ElementTypeName; } case RSExportType::ExportClassRecord: { slangAssert(!(Style & TypeNameC) && "No need to support C type names for record types yet"); if (Style & TypeNamePseudoC) return "struct " + ET->getName(); else if (Style & TypeNameWithRecordElementName) return ET->getElementName() + "." RS_TYPE_ITEM_CLASS_NAME; else return ET->getName(); } default: { slangAssert(false && "Unknown class of type"); } } return ""; } void RSReflectionJava::genConditionalVal(const std::string &Prefix, bool Parens, size_t Val, ReflectionState::Val32 Val32) { if (Prefix.empty() || (Val != 0) || (Val32.first && (Val32.second != 0 ))) { mOut << Prefix; if (!Val32.first || (Val == Val32.second)) { // Either we're ignoring the 32-bit case, or 32-bit and 64-bit // values are the same. mOut << Val; } else { // We cannot ignore the 32-bit case, and 32-bit and 64-bit // values differ. if (Parens) mOut << '('; genCheck64Bit(true); mOut << " ? " << Val << " : " << Val32.second; if (Parens) mOut << ')'; } } } static void genCheck64BitInternal(const RSContext *Context, ReflectionState *State, GeneratedFile &Out, bool Parens) { State->setOutputClassDivergent(); if (Context->isCompatLib()) { if (Parens) Out << '('; Out << "RenderScript.getPointerSize() == 8"; if (Parens) Out << ')'; } else Out << "sIs64Bit"; } void RSReflectionJava::genCheck64Bit(bool Parens) { genCheck64BitInternal(mRSContext, mState, mOut, Parens); } void RSReflectionJava::genCompute64Bit() { if (mRSContext->isCompatLib()) { // We can rely on RenderScript class in lockstep with llvm-rs-cc // and hence in lockstep with the generated code, so we don't need // any complicated logic to determine pointer size. return; } // Note that Android L is the first release to support 64-bit // targets. When RenderScript is compiled with "-target-api $v" // with "$v < 21" (L is API level 21), we only compile for 32-bit, // and we reflect during that compile, so there are no divergent // structs, and we will not get here. slangAssert(mRSContext->getTargetAPI() >= SLANG_L_TARGET_API); mOut.indent() << "private static boolean sIs64Bit;\n\n"; mOut.indent() << "static"; mOut.startBlock(); mOut.indent() << "if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M)"; mOut.startBlock(); mOut.indent() << "sIs64Bit = Process.is64Bit();\n"; mOut.endBlock(); mOut.indent() << "else"; mOut.startBlock(); mOut.indent() << "try"; mOut.startBlock(); mOut.indent() << "Field f = RenderScript.class.getDeclaredField(\"sPointerSize\");\n"; mOut.indent() << "f.setAccessible(true);\n"; mOut.indent() << "sIs64Bit = (f.getInt(null) == 8);\n"; mOut.endBlock(); // If reflection fails, assume we're on a 32-bit-only device // (64-bit-only is not allowed). This should only happen if the // device is L-or-later but has been customized in some way so that // the field "sPointerSize" -- introduced in L -- is not present. // // Alternatively, we could treat this as 64-bit (reverting to the // behavior prior to the fix for http://b/32780232) or we could // decide we have no idea what's going on and throw an exception. mOut.indent() << "catch (Throwable e)"; mOut.startBlock(); mOut.indent() << "sIs64Bit = false;\n"; mOut.endBlock(); mOut.endBlock(); mOut.endBlock(); } /********************** Methods to generate script class **********************/ RSReflectionJava::RSReflectionJava(const RSContext *Context, std::vector<std::string> *GeneratedFileNames, const std::string &OutputBaseDirectory, const std::string &RSSourceFileName, const std::string &BitCodeFileName, bool EmbedBitcodeInJava, ReflectionState *RState) : mRSContext(Context), mState(RState), mCollecting(RState->isCollecting()), mPackageName(Context->getReflectJavaPackageName()), mRSPackageName(Context->getRSPackageName()), mOutputBaseDirectory(OutputBaseDirectory), mRSSourceFileName(RSSourceFileName), mBitCodeFileName(BitCodeFileName), mResourceId(RSSlangReflectUtils::JavaClassNameFromRSFileName( mBitCodeFileName.c_str())), mScriptClassName(RS_SCRIPT_CLASS_NAME_PREFIX + RSSlangReflectUtils::JavaClassNameFromRSFileName( mRSSourceFileName.c_str())), mEmbedBitcodeInJava(EmbedBitcodeInJava), mNextExportVarSlot(0), mNextExportFuncSlot(0), mNextExportForEachSlot(0), mNextExportReduceSlot(0), mLastError(""), mGeneratedFileNames(GeneratedFileNames), mFieldIndex(0), mField32Index(0) { slangAssert(mGeneratedFileNames && "Must supply GeneratedFileNames"); slangAssert(!mPackageName.empty() && mPackageName != "-"); mOutputDirectory = RSSlangReflectUtils::ComputePackagedPath( OutputBaseDirectory.c_str(), mPackageName.c_str()) + OS_PATH_SEPARATOR_STR; // mElement.getBytesSize only exists on JB+ if (mRSContext->getTargetAPI() >= SLANG_JB_TARGET_API) { mItemSizeof = RS_TYPE_ITEM_SIZEOF_CURRENT; } else { mItemSizeof = RS_TYPE_ITEM_SIZEOF_LEGACY; } mState->nextFile(mRSContext, mPackageName, mRSSourceFileName); } bool RSReflectionJava::genScriptClass(const std::string &ClassName, std::string &ErrorMsg) { if (!mCollecting) { if (!startClass(AM_Public, false, ClassName, RS_SCRIPT_CLASS_SUPER_CLASS_NAME, ErrorMsg)) return false; mState->beginOutputClass(); genScriptClassConstructor(); } // Reflect exported variables mState->beginVariables(mRSContext->export_vars_size()); for (auto I = mRSContext->export_vars_begin(), E = mRSContext->export_vars_end(); I != E; I++) genExportVariable(*I); mState->endVariables(); // Reflect exported forEach functions (only available on ICS+) if (mRSContext->getTargetAPI() >= SLANG_ICS_TARGET_API) { mState->beginForEaches(mRSContext->getNumAssignedForEachOrdinals()); for (auto I = mRSContext->export_foreach_begin(), E = mRSContext->export_foreach_end(); I != E; I++) { genExportForEach(*I); } mState->endForEaches(); } // Reflect exported reduce functions if (!mCollecting) { for (const RSExportType *ResultType : mRSContext->getReduceResultTypes( // FilterIn exportableReduce, // Compare [](const RSExportType *A, const RSExportType *B) { return GetReduceResultTypeName(A) < GetReduceResultTypeName(B); })) genExportReduceResultType(ResultType); } mState->beginReduces(mRSContext->export_reduce_size()); for (auto I = mRSContext->export_reduce_begin(), E = mRSContext->export_reduce_end(); I != E; ++I) genExportReduce(*I); mState->endReduces(); // Reflect exported functions (invokable) mState->beginInvokables(mRSContext->export_funcs_size()); for (auto I = mRSContext->export_funcs_begin(), E = mRSContext->export_funcs_end(); I != E; ++I) genExportFunction(*I); mState->endInvokables(); if (!mCollecting) { if (mState->endOutputClass()) genCompute64Bit(); endClass(); mGeneratedFileNames->push_back(mScriptClassName); } return true; } void RSReflectionJava::genScriptClassConstructor() { std::string className(RSSlangReflectUtils::JavaBitcodeClassNameFromRSFileName( mRSSourceFileName.c_str())); // Provide a simple way to reference this object. mOut.indent() << "private static final String " RS_RESOURCE_NAME " = \"" << getResourceId() << "\";\n"; // Generate a simple constructor with only a single parameter (the rest // can be inferred from information we already have). mOut.indent() << "// Constructor\n"; startFunction(AM_Public, false, nullptr, getClassName(), 1, "RenderScript", "rs"); const bool haveReduceExportables = mRSContext->export_reduce_begin() != mRSContext->export_reduce_end(); if (getEmbedBitcodeInJava()) { // Call new single argument Java-only constructor mOut.indent() << "super(rs,\n"; mOut.indent() << " " << RS_RESOURCE_NAME ",\n"; mOut.indent() << " " << className << ".getBitCode32(),\n"; mOut.indent() << " " << className << ".getBitCode64());\n"; } else { // Call alternate constructor with required parameters. // Look up the proper raw bitcode resource id via the context. mOut.indent() << "this(rs,\n"; mOut.indent() << " rs.getApplicationContext().getResources(),\n"; mOut.indent() << " rs.getApplicationContext().getResources()." "getIdentifier(\n"; mOut.indent() << " " RS_RESOURCE_NAME ", \"raw\",\n"; mOut.indent() << " rs.getApplicationContext().getPackageName()));\n"; endFunction(); // Alternate constructor (legacy) with 3 original parameters. startFunction(AM_Public, false, nullptr, getClassName(), 3, "RenderScript", "rs", "Resources", "resources", "int", "id"); // Call constructor of super class mOut.indent() << "super(rs, resources, id);\n"; } // If an exported variable has initial value, reflect it. // Keep this in sync with initialization handling in ReflectionState::declareVariable(). for (auto I = mRSContext->export_vars_begin(), E = mRSContext->export_vars_end(); I != E; I++) { const RSExportVar *EV = *I; if (!EV->getInit().isUninit()) { genInitExportVariable(EV->getType(), EV->getName(), EV->getInit()); } else if (EV->getArraySize()) { // Always create an initial zero-init array object. mOut.indent() << RS_EXPORT_VAR_PREFIX << EV->getName() << " = new " << GetTypeName(EV->getType(), TypeNameDefault & ~TypeNameWithConstantArrayBrackets) << "[" << EV->getArraySize() << "];\n"; size_t NumInits = EV->getNumInits(); const RSExportConstantArrayType *ECAT = static_cast<const RSExportConstantArrayType *>(EV->getType()); const RSExportType *ET = ECAT->getElementType(); for (size_t i = 0; i < NumInits; i++) { std::stringstream Name; Name << EV->getName() << "[" << i << "]"; genInitExportVariable(ET, Name.str(), EV->getInitArray(i)); } } if (mRSContext->getTargetAPI() >= SLANG_JB_TARGET_API) { genTypeInstance(EV->getType()); } genFieldPackerInstance(EV->getType()); } if (haveReduceExportables) { mOut.indent() << SAVED_RS_REFERENCE << " = rs;\n"; } // Reflect argument / return types in kernels for (auto I = mRSContext->export_foreach_begin(), E = mRSContext->export_foreach_end(); I != E; I++) { const RSExportForEach *EF = *I; const RSExportForEach::InTypeVec &InTypes = EF->getInTypes(); for (RSExportForEach::InTypeIter BI = InTypes.begin(), EI = InTypes.end(); BI != EI; BI++) { if (*BI != nullptr) { genTypeInstanceFromPointer(*BI); } } const RSExportType *OET = EF->getOutType(); if (OET) { genTypeInstanceFromPointer(OET); } } for (auto I = mRSContext->export_reduce_begin(), E = mRSContext->export_reduce_end(); I != E; I++) { const RSExportReduce *ER = *I; const RSExportType *RT = ER->getResultType(); slangAssert(RT != nullptr); if (!exportableReduce(RT)) continue; genTypeInstance(RT); const RSExportReduce::InTypeVec &InTypes = ER->getAccumulatorInTypes(); for (RSExportReduce::InTypeIter BI = InTypes.begin(), EI = InTypes.end(); BI != EI; BI++) { slangAssert(*BI != nullptr); genTypeInstance(*BI); } } endFunction(); for (std::set<std::string>::iterator I = mTypesToCheck.begin(), E = mTypesToCheck.end(); I != E; I++) { mOut.indent() << "private Element " RS_ELEM_PREFIX << *I << ";\n"; } for (std::set<std::string>::iterator I = mFieldPackerTypes.begin(), E = mFieldPackerTypes.end(); I != E; I++) { mOut.indent() << "private FieldPacker " RS_FP_PREFIX << *I << ";\n"; } if (haveReduceExportables) { // We save a private copy of rs in order to create temporary // allocations in the reduce_* entry points. mOut.indent() << "private RenderScript " << SAVED_RS_REFERENCE << ";\n"; } } void RSReflectionJava::genInitBoolExportVariable(const std::string &VarName, const clang::APValue &Val) { slangAssert(!Val.isUninit() && "Not a valid initializer"); slangAssert((Val.getKind() == clang::APValue::Int) && "Bool type has wrong initial APValue"); mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = "; mOut << ((Val.getInt().getSExtValue() == 0) ? "false" : "true") << ";\n"; } void RSReflectionJava::genInitPrimitiveExportVariable(const std::string &VarName, const clang::APValue &Val) { slangAssert(!Val.isUninit() && "Not a valid initializer"); mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = "; genInitValue(Val, false); mOut << ";\n"; } void RSReflectionJava::genInitExportVariable(const RSExportType *ET, const std::string &VarName, const clang::APValue &Val) { slangAssert(!Val.isUninit() && "Not a valid initializer"); switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: { const RSExportPrimitiveType *EPT = static_cast<const RSExportPrimitiveType *>(ET); if (EPT->getType() == DataTypeBoolean) { genInitBoolExportVariable(VarName, Val); } else { genInitPrimitiveExportVariable(VarName, Val); } break; } case RSExportType::ExportClassPointer: { if (!Val.isInt() || Val.getInt().getSExtValue() != 0) std::cout << "Initializer which is non-NULL to pointer type variable " "will be ignored\n"; break; } case RSExportType::ExportClassVector: { const RSExportVectorType *EVT = static_cast<const RSExportVectorType *>(ET); switch (Val.getKind()) { case clang::APValue::Int: case clang::APValue::Float: { for (unsigned i = 0; i < EVT->getNumElement(); i++) { std::string Name = VarName + "." + GetVectorAccessor(i); genInitPrimitiveExportVariable(Name, Val); } break; } case clang::APValue::Vector: { std::stringstream VecName; VecName << EVT->getRSReflectionType(EVT)->rs_java_vector_prefix << EVT->getNumElement(); mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = new " << VecName.str() << "();\n"; unsigned NumElements = std::min( static_cast<unsigned>(EVT->getNumElement()), Val.getVectorLength()); for (unsigned i = 0; i < NumElements; i++) { const clang::APValue &ElementVal = Val.getVectorElt(i); std::string Name = VarName + "." + GetVectorAccessor(i); genInitPrimitiveExportVariable(Name, ElementVal); } break; } case clang::APValue::MemberPointer: case clang::APValue::Uninitialized: case clang::APValue::ComplexInt: case clang::APValue::ComplexFloat: case clang::APValue::LValue: case clang::APValue::Array: case clang::APValue::Struct: case clang::APValue::Union: case clang::APValue::AddrLabelDiff: { slangAssert(false && "Unexpected type of value of initializer."); } } break; } // TODO(zonr): Resolving initializer of a record (and matrix) type variable // is complex. It cannot obtain by just simply evaluating the initializer // expression. case RSExportType::ExportClassMatrix: case RSExportType::ExportClassConstantArray: case RSExportType::ExportClassRecord: { #if 0 unsigned InitIndex = 0; const RSExportRecordType *ERT = static_cast<const RSExportRecordType*>(ET); slangAssert((Val.getKind() == clang::APValue::Vector) && "Unexpected type of initializer for record type variable"); mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = new " << ERT->getElementName() << "." RS_TYPE_ITEM_CLASS_NAME"();\n"; for (RSExportRecordType::const_field_iterator I = ERT->fields_begin(), E = ERT->fields_end(); I != E; I++) { const RSExportRecordType::Field *F = *I; std::string FieldName = VarName + "." + F->getName(); if (InitIndex > Val.getVectorLength()) break; genInitPrimitiveExportVariable(FieldName, Val.getVectorElt(InitIndex++)); } #endif slangAssert(false && "Unsupported initializer for record/matrix/constant " "array type variable currently"); break; } default: { slangAssert(false && "Unknown class of type"); } } } void RSReflectionJava::genExportVariable(const RSExportVar *EV) { const RSExportType *ET = EV->getType(); const ReflectionState::Val32 AllocSize32 = mState->declareVariable(EV); if (mCollecting) return; mOut.indent() << "private final static int " << RS_EXPORT_VAR_INDEX_PREFIX << EV->getName() << " = " << getNextExportVarSlot() << ";\n"; switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: { genPrimitiveTypeExportVariable(EV); break; } case RSExportType::ExportClassPointer: { genPointerTypeExportVariable(EV); break; } case RSExportType::ExportClassVector: { genVectorTypeExportVariable(EV); break; } case RSExportType::ExportClassMatrix: { genMatrixTypeExportVariable(EV); break; } case RSExportType::ExportClassConstantArray: { genConstantArrayTypeExportVariable(EV, AllocSize32); break; } case RSExportType::ExportClassRecord: { genRecordTypeExportVariable(EV, AllocSize32); break; } default: { slangAssert(false && "Unknown class of type"); } } } // Keep this in sync with Invokable analysis in ReflectionState::declareInvokable(). void RSReflectionJava::genExportFunction(const RSExportFunc *EF) { mState->declareInvokable(EF); if (!mCollecting) { mOut.indent() << "private final static int " << RS_EXPORT_FUNC_INDEX_PREFIX << EF->getName() << " = " << getNextExportFuncSlot() << ";\n"; } // invoke_*() ArgTy Args; if (!mCollecting) { if (EF->hasParam()) { for (RSExportFunc::const_param_iterator I = EF->params_begin(), E = EF->params_end(); I != E; I++) { Args.push_back( std::make_pair(GetTypeName((*I)->getType()), (*I)->getName())); } } if (mRSContext->getTargetAPI() >= SLANG_M_TARGET_API) { startFunction(AM_Public, false, "Script.InvokeID", "getInvokeID_" + EF->getName(), 0); mOut.indent() << "return createInvokeID(" << RS_EXPORT_FUNC_INDEX_PREFIX << EF->getName() << ");\n"; endFunction(); } startFunction(AM_Public, false, "void", "invoke_" + EF->getName(/*Mangle=*/false), // We are using un-mangled name since Java // supports method overloading. Args); } if (!EF->hasParam()) { if (!mCollecting) mOut.indent() << "invoke(" << RS_EXPORT_FUNC_INDEX_PREFIX << EF->getName() << ");\n"; } else { const RSExportRecordType *ERT = EF->getParamPacketType(); // NOTE: This type isn't on the RSContext::export_types* list. mState->declareRecord(ERT, false); std::string FieldPackerName = EF->getName() + "_fp"; if (genCreateFieldPacker(ERT, FieldPackerName.c_str(), mState->getRecord32(ERT).getRecordAllocSize())) genPackVarOfType(ERT, nullptr, FieldPackerName.c_str()); if (!mCollecting) mOut.indent() << "invoke(" << RS_EXPORT_FUNC_INDEX_PREFIX << EF->getName() << ", " << FieldPackerName << ");\n"; } if (!mCollecting) endFunction(); } void RSReflectionJava::genPairwiseDimCheck(const std::string &name0, const std::string &name1) { mOut.indent() << "// Verify dimensions\n"; mOut.indent() << "t0 = " << name0 << ".getType();\n"; mOut.indent() << "t1 = " << name1 << ".getType();\n"; mOut.indent() << "if ((t0.getCount() != t1.getCount()) ||\n"; mOut.indent() << " (t0.getX() != t1.getX()) ||\n"; mOut.indent() << " (t0.getY() != t1.getY()) ||\n"; mOut.indent() << " (t0.getZ() != t1.getZ()) ||\n"; mOut.indent() << " (t0.hasFaces() != t1.hasFaces()) ||\n"; mOut.indent() << " (t0.hasMipmaps() != t1.hasMipmaps())) {\n"; mOut.indent() << " throw new RSRuntimeException(\"Dimension mismatch " << "between parameters " << name0 << " and " << name1 << "!\");\n"; mOut.indent() << "}\n\n"; } void RSReflectionJava::genNullArrayCheck(const std::string &ArrayName) { mOut.indent() << "// Verify that \"" << ArrayName << "\" is non-null.\n"; mOut.indent() << "if (" << ArrayName << " == null) {\n"; mOut.indent() << " throw new RSIllegalArgumentException(\"Array \\\"" << ArrayName << "\\\" is null!\");\n"; mOut.indent() << "}\n"; } void RSReflectionJava::genVectorLengthCompatibilityCheck(const std::string &ArrayName, unsigned VecSize) { mOut.indent() << "// Verify that the array length is a multiple of the vector size.\n"; mOut.indent() << "if (" << ArrayName << ".length % " << std::to_string(VecSize) << " != 0) {\n"; mOut.indent() << " throw new RSIllegalArgumentException(\"Array \\\"" << ArrayName << "\\\" is not a multiple of " << std::to_string(VecSize) << " in length!\");\n"; mOut.indent() << "}\n"; } // Keep this in sync with ForEach analysis in ReflectionState::beginForEach() // and other ReflectionState::*ForEach*() methods. void RSReflectionJava::genExportForEach(const RSExportForEach *EF) { if (EF->isDummyRoot()) { mState->declareForEachDummyRoot(EF); if (!mCollecting) { // Skip reflection for dummy root() kernels. Note that we have to // advance the next slot number for ForEach, however. mOut.indent() << "//private final static int " << RS_EXPORT_FOREACH_INDEX_PREFIX << EF->getName() << " = " << getNextExportForEachSlot() << ";\n"; } return; } if (!mCollecting) { mOut.indent() << "private final static int " << RS_EXPORT_FOREACH_INDEX_PREFIX << EF->getName() << " = " << getNextExportForEachSlot() << ";\n"; } // forEach_*() ArgTy Args; bool HasAllocation = false; // at least one in/out allocation? const RSExportForEach::InVec &Ins = EF->getIns(); const RSExportForEach::InTypeVec &InTypes = EF->getInTypes(); const RSExportType *OET = EF->getOutType(); const RSExportRecordType *ERT = EF->getParamPacketType(); mState->beginForEach(EF); for (RSExportForEach::InTypeIter BI = InTypes.begin(), EI = InTypes.end(); BI != EI; BI++) { mState->addForEachIn(EF, *BI); } if (Ins.size() == 1) { HasAllocation = true; if (!mCollecting) Args.push_back(std::make_pair("Allocation", "ain")); } else if (Ins.size() > 1) { HasAllocation = true; if (!mCollecting) { for (RSExportForEach::InIter BI = Ins.begin(), EI = Ins.end(); BI != EI; BI++) { Args.push_back(std::make_pair("Allocation", "ain_" + (*BI)->getName().str())); } } } if (EF->hasOut() || EF->hasReturn()) { HasAllocation = true; if (!mCollecting) Args.push_back(std::make_pair("Allocation", "aout")); } if (ERT) { for (RSExportForEach::const_param_iterator I = EF->params_begin(), E = EF->params_end(); I != E; I++) { mState->addForEachParam(EF, (*I)->getType()); if (!mCollecting) Args.push_back( std::make_pair(GetTypeName((*I)->getType()), (*I)->getName())); } } if (mRSContext->getTargetAPI() >= SLANG_JB_MR1_TARGET_API) { mState->addForEachSignatureMetadata(EF, EF->getSignatureMetadata()); if (!mCollecting) { startFunction(AM_Public, false, "Script.KernelID", "getKernelID_" + EF->getName(), 0); // TODO: add element checking mOut.indent() << "return createKernelID(" << RS_EXPORT_FOREACH_INDEX_PREFIX << EF->getName() << ", " << EF->getSignatureMetadata() << ", null, null);\n"; endFunction(); } } if (!mCollecting) { if (mRSContext->getTargetAPI() >= SLANG_JB_MR2_TARGET_API) { if (HasAllocation) { startFunction(AM_Public, false, "void", "forEach_" + EF->getName(), Args); mOut.indent() << "forEach_" << EF->getName(); mOut << "("; if (Ins.size() == 1) { mOut << "ain, "; } else if (Ins.size() > 1) { for (RSExportForEach::InIter BI = Ins.begin(), EI = Ins.end(); BI != EI; BI++) { mOut << "ain_" << (*BI)->getName().str() << ", "; } } if (EF->hasOut() || EF->hasReturn()) { mOut << "aout, "; } if (EF->hasUsrData()) { mOut << Args.back().second << ", "; } // No clipped bounds to pass in. mOut << "null);\n"; endFunction(); } // Add the clipped kernel parameters to the Args list. Args.push_back(std::make_pair("Script.LaunchOptions", "sc")); } } if (!mCollecting) { startFunction(AM_Public, false, "void", "forEach_" + EF->getName(), Args); if (InTypes.size() == 1) { if (InTypes.front() != nullptr) { genTypeCheck(InTypes.front(), "ain"); } } else if (InTypes.size() > 1) { size_t Index = 0; for (RSExportForEach::InTypeIter BI = InTypes.begin(), EI = InTypes.end(); BI != EI; BI++, ++Index) { if (*BI != nullptr) { genTypeCheck(*BI, ("ain_" + Ins[Index]->getName()).str().c_str()); } } } if (OET) { genTypeCheck(OET, "aout"); } if (Ins.size() == 1 && (EF->hasOut() || EF->hasReturn())) { mOut.indent() << "Type t0, t1;"; genPairwiseDimCheck("ain", "aout"); } else if (Ins.size() > 1) { mOut.indent() << "Type t0, t1;"; std::string In0Name = "ain_" + Ins[0]->getName().str(); for (size_t index = 1; index < Ins.size(); ++index) { genPairwiseDimCheck(In0Name, "ain_" + Ins[index]->getName().str()); } if (EF->hasOut() || EF->hasReturn()) { genPairwiseDimCheck(In0Name, "aout"); } } } std::string FieldPackerName = EF->getName() + "_fp"; if (ERT) { // NOTE: This type isn't on the RSContext::export_types* list. mState->declareRecord(ERT, false); if (genCreateFieldPacker(ERT, FieldPackerName.c_str(), mState->getRecord32(ERT).getRecordAllocSize())) { genPackVarOfType(ERT, nullptr, FieldPackerName.c_str()); } } mState->endForEach(); if (mCollecting) return; mOut.indent() << "forEach(" << RS_EXPORT_FOREACH_INDEX_PREFIX << EF->getName(); if (Ins.size() == 1) { mOut << ", ain"; } else if (Ins.size() > 1) { mOut << ", new Allocation[]{ain_" << Ins[0]->getName().str(); for (size_t index = 1; index < Ins.size(); ++index) { mOut << ", ain_" << Ins[index]->getName().str(); } mOut << "}"; } else { mOut << ", (Allocation) null"; } if (EF->hasOut() || EF->hasReturn()) mOut << ", aout"; else mOut << ", null"; if (EF->hasUsrData()) mOut << ", " << FieldPackerName; else mOut << ", null"; if (mRSContext->getTargetAPI() >= SLANG_JB_MR2_TARGET_API) { mOut << ", sc);\n"; } else { mOut << ");\n"; } endFunction(); } ////////////////////////////////////////////////////////////////////////////////////////////////////// // Reductions with certain legal result types can only be reflected for NDK, not for Java. bool RSReflectionJava::exportableReduce(const RSExportType *ResultType) { const RSExportType *CheckType = ResultType; if (ResultType->getClass() == RSExportType::ExportClassConstantArray) CheckType = static_cast<const RSExportConstantArrayType *>(ResultType)->getElementType(); if (CheckType->getClass() == RSExportType::ExportClassRecord) { // No Java reflection for struct until http://b/22236498 is resolved. return false; } return true; } namespace { enum MappingComment { MappingCommentWithoutType, MappingCommentWithCType }; // OUTPUTS // InputParamName = name to use for input parameter // InputMappingComment = text showing the mapping from InputParamName to the corresponding // accumulator function parameter name (and possibly type) // INPUTS // NamePrefix = beginning of parameter name (e.g., "in") // MappingComment = whether or not InputMappingComment should contain type // ER = description of the reduction // InIdx = which input (numbered from zero) void getReduceInputStrings(std::string &InputParamName, std::string &InputMappingComment, const std::string &NamePrefix, MappingComment Mapping, const RSExportReduce *ER, size_t InIdx) { InputParamName = NamePrefix + std::to_string(InIdx+1); std::string TypeString; if (Mapping == MappingCommentWithCType) { const RSExportType *InType = ER->getAccumulatorInTypes()[InIdx]; if (InType->getClass() == RSExportType::ExportClassRecord) { // convertToRTD doesn't understand this type TypeString = "/* struct <> */ "; } else { RSReflectionTypeData InTypeData; ER->getAccumulatorInTypes()[InIdx]->convertToRTD(&InTypeData); slangAssert(InTypeData.type->s_name != nullptr); if (InTypeData.vecSize > 1) { TypeString = InTypeData.type->s_name + std::to_string(InTypeData.vecSize) + " "; } else { TypeString = InTypeData.type->s_name + std::string(" "); } } } InputMappingComment = InputParamName + " = \"" + TypeString + std::string(ER->getAccumulatorIns()[InIdx]->getName()) + "\""; } } // end anonymous namespace // Keep this in sync with Reduce analysis in ReflectionState::declareReduce(). void RSReflectionJava::genExportReduce(const RSExportReduce *ER) { const bool IsExportable = exportableReduce(ER->getResultType()); // Need to track even a non-exportable reduce, both so that we get // the count of reduction kernels correct, and so that we can // intelligently diagnose cases where 32-bit and 64-bit compiles // disagree as to whether a reduction kernel is exportable. mState->declareReduce(ER, IsExportable); if (!IsExportable || mCollecting) return; // Generate the reflected function index. mOut.indent() << "private final static int " << RS_EXPORT_REDUCE_INDEX_PREFIX << ER->getNameReduce() << " = " << getNextExportReduceSlot() << ";\n"; /****** remember resultSvType generation **********************************************************/ // Two variants of reduce_* entry points get generated. // Array variant: // result_<resultSvType> reduce_<name>(<devecSiIn1Type>[] in1, ..., <devecSiInNType>[] inN) // Allocation variant: // result_<resultSvType> reduce_<name>(Allocation in1, ..., Allocation inN) // result_<resultSvType> reduce_<name>(Allocation in1, ..., Allocation inN, Script.LaunchOptions sc) genExportReduceArrayVariant(ER); genExportReduceAllocationVariant(ER); } void RSReflectionJava::genExportReduceArrayVariant(const RSExportReduce *ER) { // Analysis of result type. Returns early if result type is not // suitable for array method reflection. const RSExportType *const ResultType = ER->getResultType(); auto ResultTypeClass = ResultType->getClass(); switch (ResultTypeClass) { case RSExportType::ExportClassConstantArray: case RSExportType::ExportClassMatrix: case RSExportType::ExportClassPrimitive: case RSExportType::ExportClassVector: // Ok break; case RSExportType::ExportClassPointer: slangAssert(!"Should not get here with pointer type"); return; case RSExportType::ExportClassRecord: // TODO: convertToRTD() cannot handle this. Why not? return; default: slangAssert(!"Unknown export class"); return; } RSReflectionTypeData ResultTypeData; ResultType->convertToRTD(&ResultTypeData); if (!ResultTypeData.type->java_name || !ResultTypeData.type->java_array_element_name || (ResultTypeData.vecSize > 1 && !ResultTypeData.type->rs_java_vector_prefix)) { slangAssert(false); return; } const std::string ResultTypeName = GetReduceResultTypeName(ER); // Analysis of inputs. Returns early if some input type is not // suitable for array method reflection. llvm::SmallVector<RSReflectionTypeData, 1> InsTypeData; ArgTy Args; const auto &Ins = ER->getAccumulatorIns(); const auto &InTypes = ER->getAccumulatorInTypes(); slangAssert(Ins.size() == InTypes.size()); InsTypeData.resize(Ins.size()); llvm::SmallVector<std::string, 1> InComments; for (size_t InIdx = 0, InEnd = Ins.size(); InIdx < InEnd; ++InIdx) { const RSExportType *const InType = InTypes[InIdx]; switch (InType->getClass()) { case RSExportType::ExportClassMatrix: case RSExportType::ExportClassPrimitive: case RSExportType::ExportClassVector: // Ok break; case RSExportType::ExportClassConstantArray: // No return; case RSExportType::ExportClassPointer: slangAssert(!"Should not get here with pointer type"); return; case RSExportType::ExportClassRecord: // TODO: convertToRTD() cannot handle this. Why not? return; default: slangAssert(!"Unknown export class"); return; } RSReflectionTypeData &InTypeData = InsTypeData[InIdx]; InType->convertToRTD(&InTypeData); if (!InTypeData.type->java_name || !InTypeData.type->java_array_element_name || (InTypeData.vecSize > 1 && !InTypeData.type->rs_java_vector_prefix)) { return; } std::string InputParamName, InputComment; getReduceInputStrings(InputParamName, InputComment, "in", MappingCommentWithoutType, ER, InIdx); if (InTypeData.vecSize > 1) InputComment += (", flattened " + std::to_string(InTypeData.vecSize) + "-vectors"); InComments.push_back(InputComment); const std::string InputTypeName = std::string(InTypeData.type->java_array_element_name) + "[]"; Args.push_back(std::make_pair(InputTypeName, InputParamName)); } const std::string MethodName = "reduce_" + ER->getNameReduce(); // result_<resultSvType> reduce_<name>(<devecSiIn1Type>[] in1, ..., <devecSiInNType>[] inN) for (const std::string &InComment : InComments) mOut.indent() << "// " << InComment << "\n"; startFunction(AM_Public, false, ResultTypeName.c_str(), MethodName, Args); slangAssert(Ins.size() == InTypes.size()); slangAssert(Ins.size() == InsTypeData.size()); slangAssert(Ins.size() == Args.size()); std::string In1Length; std::string InputAllocationOutgoingArgumentList; std::vector<std::string> InputAllocationNames; for (size_t InIdx = 0, InEnd = Ins.size(); InIdx < InEnd; ++InIdx) { const std::string &ArgName = Args[InIdx].second; genNullArrayCheck(ArgName); std::string InLength = ArgName + ".length"; const uint32_t VecSize = InsTypeData[InIdx].vecSize; if (VecSize > 1) { InLength += " / " + std::to_string(VecSize); genVectorLengthCompatibilityCheck(ArgName, VecSize); } if (InIdx == 0) { In1Length = InLength; } else { mOut.indent() << "// Verify that input array lengths are the same.\n"; mOut.indent() << "if (" << In1Length << " != " << InLength << ") {\n"; mOut.indent() << " throw new RSRuntimeException(\"Array length mismatch " << "between parameters \\\"" << Args[0].second << "\\\" and \\\"" << ArgName << "\\\"!\");\n"; mOut.indent() << "}\n"; } // Create a temporary input allocation const std::string TempName = "a" + ArgName; mOut.indent() << "Allocation " << TempName << " = Allocation.createSized(" << SAVED_RS_REFERENCE << ", " << RS_ELEM_PREFIX << InTypes[InIdx]->getElementName() << ", " << InLength << ");\n"; mOut.indent() << TempName << ".setAutoPadding(true);\n"; mOut.indent() << TempName << ".copyFrom(" << ArgName << ");\n"; // ... and put that input allocation on the outgoing argument list if (!InputAllocationOutgoingArgumentList.empty()) InputAllocationOutgoingArgumentList += ", "; InputAllocationOutgoingArgumentList += TempName; // ... and keep track of it for setting result.mTempIns InputAllocationNames.push_back(TempName); } mOut << "\n"; mOut.indent() << ResultTypeName << " result = " << MethodName << "(" << InputAllocationOutgoingArgumentList << ", null);\n"; if (!InputAllocationNames.empty()) { mOut.indent() << "result.mTempIns = new Allocation[]{"; bool EmittedFirst = false; for (const std::string &InputAllocationName : InputAllocationNames) { if (!EmittedFirst) { EmittedFirst = true; } else { mOut << ", "; } mOut << InputAllocationName; } mOut << "};\n"; } mOut.indent() << "return result;\n"; endFunction(); } void RSReflectionJava::genExportReduceAllocationVariant(const RSExportReduce *ER) { const auto &Ins = ER->getAccumulatorIns(); const auto &InTypes = ER->getAccumulatorInTypes(); const RSExportType *ResultType = ER->getResultType(); llvm::SmallVector<std::string, 1> InComments; ArgTy Args; for (size_t InIdx = 0, InEnd = Ins.size(); InIdx < InEnd; ++InIdx) { std::string InputParamName, InputComment; getReduceInputStrings(InputParamName, InputComment, "ain", MappingCommentWithCType, ER, InIdx); InComments.push_back(InputComment); Args.push_back(std::make_pair("Allocation", InputParamName)); } const std::string MethodName = "reduce_" + ER->getNameReduce(); const std::string ResultTypeName = GetReduceResultTypeName(ER); // result_<resultSvType> reduce_<name>(Allocation in1, ..., Allocation inN) for (const std::string &InComment : InComments) mOut.indent() << "// " << InComment << "\n"; startFunction(AM_Public, false, ResultTypeName.c_str(), MethodName, Args); mOut.indent() << "return " << MethodName << "("; bool EmittedFirstArg = false; for (const auto &Arg : Args) { if (!EmittedFirstArg) { EmittedFirstArg = true; } else { mOut << ", "; } mOut << Arg.second; } mOut << ", null);\n"; endFunction(); // result_<resultSvType> reduce_<name>(Allocation in1, ..., Allocation inN, Script.LaunchOptions sc) static const char FormalOptionsName[] = "sc"; Args.push_back(std::make_pair("Script.LaunchOptions", FormalOptionsName)); for (const std::string &InComment : InComments) mOut.indent() << "// " << InComment << "\n"; startFunction(AM_Public, false, ResultTypeName.c_str(), MethodName, Args); const std::string &In0Name = Args[0].second; // Sanity-check inputs if (Ins.size() > 1) mOut.indent() << "Type t0, t1;\n"; for (size_t InIdx = 0, InEnd = Ins.size(); InIdx < InEnd; ++InIdx) { const std::string &InName = Args[InIdx].second; genTypeCheck(InTypes[InIdx], InName.c_str()); if (InIdx > 0) genPairwiseDimCheck(In0Name.c_str(), InName.c_str()); } // Create a temporary output allocation const char OutputAllocName[] = "aout"; const size_t OutputAllocLength = ResultType->getClass() == RSExportType::ExportClassConstantArray ? static_cast<const RSExportConstantArrayType *>(ResultType)->getNumElement() : 1; mOut.indent() << "Allocation " << OutputAllocName << " = Allocation.createSized(" << SAVED_RS_REFERENCE << ", " << RS_ELEM_PREFIX << ResultType->getElementName() << ", " << OutputAllocLength << ");\n"; mOut.indent() << OutputAllocName << ".setAutoPadding(true);\n"; // Call the underlying reduce entry point mOut.indent() << "reduce(" << RS_EXPORT_REDUCE_INDEX_PREFIX << ER->getNameReduce() << ", new Allocation[]{" << In0Name; for (size_t InIdx = 1, InEnd = Ins.size(); InIdx < InEnd; ++InIdx) mOut << ", " << Args[InIdx].second; mOut << "}, " << OutputAllocName << ", " << FormalOptionsName << ");\n"; mOut.indent() << "return new " << ResultTypeName << "(" << OutputAllocName << ");\n"; endFunction(); } namespace { // When we've copied the Allocation to a Java array, how do we // further process the elements of that array? enum MapFromAllocation { MapFromAllocationTrivial, // no further processing MapFromAllocationPositive, // need to ensure elements are positive (range check) MapFromAllocationBoolean, // need to convert elements from byte to boolean MapFromAllocationPromote // need to zero extend elements }; // Return Java expression that maps from an Allocation element to a Java non-vector result. // // MFA = mapping kind // ArrayElementTypeName = type of InVal (having been copied out of Allocation to Java array) // ReflectedScalarTypeName = type of mapped value // InVal = input value that must be mapped // std::string genReduceResultMapping(MapFromAllocation MFA, const std::string &ArrayElementTypeName, const std::string &ReflectedScalarTypeName, const char *InVal) { switch (MFA) { default: slangAssert(!"Unknown MapFromAllocation"); // and fall through case MapFromAllocationPositive: // range checking must be done separately case MapFromAllocationTrivial: return InVal; case MapFromAllocationBoolean: return std::string(InVal) + std::string(" != 0"); case MapFromAllocationPromote: return ZeroExtendValue(InVal, ArrayElementTypeName, ReflectedScalarTypeName); } } // Return Java expression that maps from an Allocation element to a Java vector result. // // MFA = mapping kind // ArrayElementTypeName = type of InVal (having been copied out of Allocation to Java array) // ReflectedScalarTypeName = type of mapped value // VectorTypeName = type of vector // VectorElementCount = number of elements in the vector // InArray = input array containing vector elements // InIdx = index of first vector element within InArray (or nullptr, if 0) // std::string genReduceResultVectorMapping(MapFromAllocation MFA, const std::string &ArrayElementTypeName, const std::string &ReflectedScalarTypeName, const std::string &VectorTypeName, unsigned VectorElementCount, const char *InArray, const char *InIdx = nullptr) { std::string result = "new " + VectorTypeName + "("; for (unsigned VectorElementIdx = 0; VectorElementIdx < VectorElementCount; ++VectorElementIdx) { if (VectorElementIdx) result += ", "; std::string ArrayElementName = std::string(InArray) + "["; if (InIdx) ArrayElementName += std::string(InIdx) + "+"; ArrayElementName += std::to_string(VectorElementIdx) + "]"; result += genReduceResultMapping(MFA, ArrayElementTypeName, ReflectedScalarTypeName, ArrayElementName.c_str()); } result += ")"; return result; } void genReduceResultRangeCheck(GeneratedFile &Out, const char *InVal) { Out.indent() << "if (" << InVal << " < 0)\n"; Out.indent() << " throw new RSRuntimeException(\"Result is not representible in Java\");\n"; } } // end anonymous namespace void RSReflectionJava::genExportReduceResultType(const RSExportType *ResultType) { if (!exportableReduce(ResultType)) return; const std::string ClassName = GetReduceResultTypeName(ResultType); const std::string GetMethodReturnTypeName = GetTypeName(ResultType); mOut.indent() << "// To obtain the result, invoke get(), which blocks\n"; mOut.indent() << "// until the asynchronously-launched operation has completed.\n"; mOut.indent() << "public static class " << ClassName; mOut.startBlock(); startFunction(AM_Public, false, GetMethodReturnTypeName.c_str(), "get", 0); RSReflectionTypeData TypeData; ResultType->convertToRTD(&TypeData); const std::string UnbracketedResultTypeName = GetTypeName(ResultType, TypeNameDefault & ~TypeNameWithConstantArrayBrackets); const std::string ReflectedScalarTypeName = TypeData.type->java_name; // Note: MATRIX* types do not have a java_array_element_name const std::string ArrayElementTypeName = TypeData.type->java_array_element_name ? std::string(TypeData.type->java_array_element_name) : ReflectedScalarTypeName; MapFromAllocation MFA = MapFromAllocationTrivial; if (std::string(TypeData.type->rs_type) == "UNSIGNED_64") MFA = MapFromAllocationPositive; else if (ReflectedScalarTypeName == "boolean") MFA = MapFromAllocationBoolean; else if (ReflectedScalarTypeName != ArrayElementTypeName) MFA = MapFromAllocationPromote; mOut.indent() << "if (!mGotResult)"; mOut.startBlock(); if (TypeData.vecSize == 1) { // result type is non-vector // <ArrayElementType>[] outArray = new <ArrayElementType>[1]; // mOut.copyTo(outArray); mOut.indent() << ArrayElementTypeName << "[] outArray = new " << ArrayElementTypeName << "[" << std::max(TypeData.arraySize, 1U) << "];\n"; mOut.indent() << "mOut.copyTo(outArray);\n"; if (TypeData.arraySize == 0) { // result type is non-array non-vector // mResult = outArray[0]; // but there are several special cases if (MFA == MapFromAllocationPositive) genReduceResultRangeCheck(mOut, "outArray[0]"); mOut.indent() << "mResult = " << genReduceResultMapping(MFA, ArrayElementTypeName, ReflectedScalarTypeName, "outArray[0]") << ";\n"; } else { // result type is array of non-vector if (MFA == MapFromAllocationTrivial) { // mResult = outArray; mOut.indent() << "mResult = outArray;\n"; } else { // <ResultType> result = new <UnbracketedResultType>[<ArrayElementCount>]; // for (unsigned Idx = 0; Idx < <ArrayElementCount>; ++Idx) // result[Idx] = <Transform>(outArray[Idx]); // mResult = result; // but there are several special cases if (MFA != MapFromAllocationPositive) { mOut.indent() << GetTypeName(ResultType) << " result = new " << UnbracketedResultTypeName << "[" << TypeData.arraySize << "];\n"; } mOut.indent() << "for (int Idx = 0; Idx < " << TypeData.arraySize << "; ++Idx)"; mOut.startBlock(); if (MFA == MapFromAllocationPositive) { genReduceResultRangeCheck(mOut, "outArray[Idx]"); } else { mOut.indent() << "result[Idx] = " << genReduceResultMapping(MFA, ArrayElementTypeName, ReflectedScalarTypeName, "outArray[Idx]") << ";\n"; } mOut.endBlock(); mOut.indent() << "mResult = " << (MFA == MapFromAllocationPositive ? "outArray" : "result") << ";\n"; } } } else { // result type is vector or array of vector // <ArrayElementType>[] outArray = new <ArrayElementType>[<VectorElementCount> * <ArrayElementCount>]; // mOut.copyTo(outArray); const unsigned VectorElementCount = TypeData.vecSize; const unsigned OutArrayElementCount = VectorElementCount * std::max(TypeData.arraySize, 1U); mOut.indent() << ArrayElementTypeName << "[] outArray = new " << ArrayElementTypeName << "[" << OutArrayElementCount << "];\n"; mOut.indent() << "mOut.copyTo(outArray);\n"; if (MFA == MapFromAllocationPositive) { mOut.indent() << "for (int Idx = 0; Idx < " << OutArrayElementCount << "; ++Idx)"; mOut.startBlock(); genReduceResultRangeCheck(mOut, "outArray[Idx]"); mOut.endBlock(); } if (TypeData.arraySize == 0) { // result type is vector // mResult = new <ResultType>(outArray[0], outArray[1] ...); // but there are several special cases mOut.indent() << "mResult = " << genReduceResultVectorMapping(MFA, ArrayElementTypeName, ReflectedScalarTypeName, GetTypeName(ResultType), VectorElementCount, "outArray") << ";\n"; } else { // result type is array of vector // <ResultType> result = new <UnbracketedResultType>[<ArrayElementCount>]; // for (unsigned Idx = 0; Idx < <ArrayElementCount>; ++Idx) // result[Idx] = new <UnbracketedResultType>(outArray[<ArrayElementCount>*Idx+0], // outArray[<ArrayElementCount>*Idx+1]...); // mResult = result; // but there are several special cases mOut.indent() << GetTypeName(ResultType) << " result = new " << UnbracketedResultTypeName << "[" << TypeData.arraySize << "];\n"; mOut.indent() << "for (int Idx = 0; Idx < " << TypeData.arraySize << "; ++Idx)"; mOut.startBlock(); mOut.indent() << "result[Idx] = " << genReduceResultVectorMapping(MFA, ArrayElementTypeName, ReflectedScalarTypeName, UnbracketedResultTypeName, VectorElementCount, "outArray", (std::to_string(VectorElementCount) + "*Idx").c_str()) << ";\n"; mOut.endBlock(); mOut.indent() << "mResult = result;\n"; } } mOut.indent() << "mOut.destroy();\n"; mOut.indent() << "mOut = null; // make Java object eligible for garbage collection\n"; mOut.indent() << "if (mTempIns != null)"; mOut.startBlock(); mOut.indent() << "for (Allocation tempIn : mTempIns)"; mOut.startBlock(); mOut.indent() << "tempIn.destroy();\n"; mOut.endBlock(); mOut.indent() << "mTempIns = null; // make Java objects eligible for garbage collection\n"; mOut.endBlock(); mOut.indent() << "mGotResult = true;\n"; mOut.endBlock(); mOut.indent() << "return mResult;\n"; endFunction(); startFunction(AM_Private, false, nullptr, ClassName, 1, "Allocation", "out"); // TODO: Generate allocation type check and size check? Or move // responsibility for instantiating the Allocation here, instead of // the reduce_* method? mOut.indent() << "mTempIns = null;\n"; mOut.indent() << "mOut = out;\n"; mOut.indent() << "mGotResult = false;\n"; endFunction(); mOut.indent() << "private Allocation[] mTempIns;\n"; mOut.indent() << "private Allocation mOut;\n"; // TODO: If result is reference type rather than primitive type, we // could omit mGotResult and use mResult==null to indicate that we // haven't obtained the result yet. mOut.indent() << "private boolean mGotResult;\n"; mOut.indent() << "private " << GetMethodReturnTypeName << " mResult;\n"; mOut.endBlock(); } ////////////////////////////////////////////////////////////////////////////////////////////////////// void RSReflectionJava::genTypeInstanceFromPointer(const RSExportType *ET) { if (ET->getClass() == RSExportType::ExportClassPointer) { // For pointer parameters to original forEach kernels. const RSExportPointerType *EPT = static_cast<const RSExportPointerType *>(ET); genTypeInstance(EPT->getPointeeType()); } else { // For handling pass-by-value kernel parameters. genTypeInstance(ET); } } void RSReflectionJava::genTypeInstance(const RSExportType *ET) { switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: case RSExportType::ExportClassVector: case RSExportType::ExportClassConstantArray: { std::string TypeName = ET->getElementName(); if (addTypeNameForElement(TypeName)) { mOut.indent() << RS_ELEM_PREFIX << TypeName << " = Element." << TypeName << "(rs);\n"; } break; } case RSExportType::ExportClassRecord: { std::string ClassName = ET->getElementName(); if (addTypeNameForElement(ClassName)) { mOut.indent() << RS_ELEM_PREFIX << ClassName << " = " << ClassName << ".createElement(rs);\n"; } break; } default: break; } } void RSReflectionJava::genFieldPackerInstance(const RSExportType *ET) { switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: case RSExportType::ExportClassVector: case RSExportType::ExportClassConstantArray: case RSExportType::ExportClassRecord: { std::string TypeName = ET->getElementName(); addTypeNameForFieldPacker(TypeName); break; } default: break; } } void RSReflectionJava::genTypeCheck(const RSExportType *ET, const char *VarName) { mOut.indent() << "// check " << VarName << "\n"; if (ET->getClass() == RSExportType::ExportClassPointer) { const RSExportPointerType *EPT = static_cast<const RSExportPointerType *>(ET); ET = EPT->getPointeeType(); } std::string TypeName; switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: case RSExportType::ExportClassVector: case RSExportType::ExportClassRecord: { TypeName = ET->getElementName(); break; } default: break; } if (!TypeName.empty()) { mOut.indent() << "if (!" << VarName << ".getType().getElement().isCompatible(" RS_ELEM_PREFIX << TypeName << ")) {\n"; mOut.indent() << " throw new RSRuntimeException(\"Type mismatch with " << TypeName << "!\");\n"; mOut.indent() << "}\n"; } } void RSReflectionJava::genPrimitiveTypeExportVariable(const RSExportVar *EV) { slangAssert( (EV->getType()->getClass() == RSExportType::ExportClassPrimitive) && "Variable should be type of primitive here"); const RSExportPrimitiveType *EPT = static_cast<const RSExportPrimitiveType *>(EV->getType()); std::string TypeName = GetTypeName(EPT); const std::string &VarName = EV->getName(); genPrivateExportVariable(TypeName, EV->getName()); if (EV->isConst()) { mOut.indent() << "public final static " << TypeName << " " RS_EXPORT_VAR_CONST_PREFIX << VarName << " = "; const clang::APValue &Val = EV->getInit(); genInitValue(Val, EPT->getType() == DataTypeBoolean); mOut << ";\n"; } else { // set_*() // This must remain synchronized, since multiple Dalvik threads may // be calling setters. startFunction(AM_PublicSynchronized, false, "void", "set_" + VarName, 1, TypeName.c_str(), "v"); if ((EPT->getElementSizeInBytes() < 4) || EV->isUnsigned()) { // We create/cache a per-type FieldPacker. This allows us to reuse the // validation logic (for catching negative inputs from Dalvik, as well // as inputs that are too large to be represented in the unsigned type). // Sub-integer types are also handled specially here, so that we don't // overwrite bytes accidentally. std::string ElemName = EPT->getElementName(); std::string FPName; FPName = RS_FP_PREFIX + ElemName; mOut.indent() << "if (" << FPName << "!= null) {\n"; mOut.increaseIndent(); mOut.indent() << FPName << ".reset();\n"; mOut.decreaseIndent(); mOut.indent() << "} else {\n"; mOut.increaseIndent(); mOut.indent() << FPName << " = new FieldPacker(" << EPT->getElementSizeInBytes() << ");\n"; mOut.decreaseIndent(); mOut.indent() << "}\n"; genPackVarOfType(EPT, "v", FPName.c_str()); mOut.indent() << "setVar(" << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ", " << FPName << ");\n"; } else { mOut.indent() << "setVar(" << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ", v);\n"; } // Dalvik update comes last, since the input may be invalid (and hence // throw an exception). mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = v;\n"; endFunction(); } genGetExportVariable(TypeName, VarName); genGetFieldID(VarName); } void RSReflectionJava::genInitValue(const clang::APValue &Val, bool asBool) { switch (Val.getKind()) { case clang::APValue::Int: { const llvm::APInt &api = Val.getInt(); if (asBool) { mOut << ((api.getSExtValue() == 0) ? "false" : "true"); } else { // TODO: Handle unsigned correctly mOut << api.getSExtValue(); if (api.getBitWidth() > 32) { mOut << "L"; } } break; } case clang::APValue::Float: { const llvm::APFloat &apf = Val.getFloat(); llvm::SmallString<30> s; apf.toString(s); mOut << s.c_str(); if (&apf.getSemantics() == &llvm::APFloat::IEEEsingle) { if (s.count('.') == 0) { mOut << ".f"; } else { mOut << "f"; } } break; } case clang::APValue::ComplexInt: case clang::APValue::ComplexFloat: case clang::APValue::LValue: case clang::APValue::Vector: { slangAssert(false && "Primitive type cannot have such kind of initializer"); break; } default: { slangAssert(false && "Unknown kind of initializer"); } } } void RSReflectionJava::genPointerTypeExportVariable(const RSExportVar *EV) { const RSExportType *ET = EV->getType(); const RSExportType *PointeeType; slangAssert((ET->getClass() == RSExportType::ExportClassPointer) && "Variable should be type of pointer here"); PointeeType = static_cast<const RSExportPointerType *>(ET)->getPointeeType(); std::string TypeName = GetTypeName(ET); const std::string &VarName = EV->getName(); genPrivateExportVariable(TypeName, VarName); // bind_*() startFunction(AM_Public, false, "void", "bind_" + VarName, 1, TypeName.c_str(), "v"); mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = v;\n"; mOut.indent() << "if (v == null) bindAllocation(null, " << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ");\n"; if (PointeeType->getClass() == RSExportType::ExportClassRecord) { mOut.indent() << "else bindAllocation(v.getAllocation(), " << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ");\n"; } else { mOut.indent() << "else bindAllocation(v, " << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ");\n"; } endFunction(); genGetExportVariable(TypeName, VarName); } void RSReflectionJava::genVectorTypeExportVariable(const RSExportVar *EV) { slangAssert((EV->getType()->getClass() == RSExportType::ExportClassVector) && "Variable should be type of vector here"); std::string TypeName = GetTypeName(EV->getType()); std::string VarName = EV->getName(); genPrivateExportVariable(TypeName, VarName); genSetExportVariable(TypeName, EV, 1); genGetExportVariable(TypeName, VarName); genGetFieldID(VarName); } void RSReflectionJava::genMatrixTypeExportVariable(const RSExportVar *EV) { slangAssert((EV->getType()->getClass() == RSExportType::ExportClassMatrix) && "Variable should be type of matrix here"); const RSExportType *ET = EV->getType(); std::string TypeName = GetTypeName(ET); const std::string &VarName = EV->getName(); genPrivateExportVariable(TypeName, VarName); // set_*() if (!EV->isConst()) { const char *FieldPackerName = "fp"; startFunction(AM_PublicSynchronized, false, "void", "set_" + VarName, 1, TypeName.c_str(), "v"); mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = v;\n"; if (genCreateFieldPacker(ET, FieldPackerName, ReflectionState::NoVal32())) genPackVarOfType(ET, "v", FieldPackerName); mOut.indent() << "setVar(" RS_EXPORT_VAR_INDEX_PREFIX << VarName << ", " << FieldPackerName << ");\n"; endFunction(); } genGetExportVariable(TypeName, VarName); genGetFieldID(VarName); } void RSReflectionJava::genConstantArrayTypeExportVariable(const RSExportVar *EV, ReflectionState::Val32 AllocSize32) { const RSExportType *const ET = EV->getType(); slangAssert( (ET->getClass() == RSExportType::ExportClassConstantArray) && "Variable should be type of constant array here"); std::string TypeName = GetTypeName(EV->getType()); std::string VarName = EV->getName(); genPrivateExportVariable(TypeName, VarName); genSetExportVariable(TypeName, EV, static_cast<const RSExportConstantArrayType *>(ET)->getNumElement(), AllocSize32); genGetExportVariable(TypeName, VarName); genGetFieldID(VarName); } void RSReflectionJava::genRecordTypeExportVariable(const RSExportVar *EV, ReflectionState::Val32 AllocSize32) { slangAssert((EV->getType()->getClass() == RSExportType::ExportClassRecord) && "Variable should be type of struct here"); std::string TypeName = GetTypeName(EV->getType()); std::string VarName = EV->getName(); genPrivateExportVariable(TypeName, VarName); genSetExportVariable(TypeName, EV, 1, AllocSize32); genGetExportVariable(TypeName, VarName); genGetFieldID(VarName); } void RSReflectionJava::genPrivateExportVariable(const std::string &TypeName, const std::string &VarName) { mOut.indent() << "private " << TypeName << " " << RS_EXPORT_VAR_PREFIX << VarName << ";\n"; } // Dimension = array element count; otherwise, 1. void RSReflectionJava::genSetExportVariable(const std::string &TypeName, const RSExportVar *EV, unsigned Dimension, ReflectionState::Val32 AllocSize32) { if (!EV->isConst()) { const char *FieldPackerName = "fp"; const std::string &VarName = EV->getName(); const RSExportType *ET = EV->getType(); startFunction(AM_PublicSynchronized, false, "void", "set_" + VarName, 1, TypeName.c_str(), "v"); mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = v;\n"; if (genCreateFieldPacker(ET, FieldPackerName, AllocSize32)) genPackVarOfType(ET, "v", FieldPackerName); if (mRSContext->getTargetAPI() < SLANG_JB_TARGET_API) { // Legacy apps must use the old setVar() without Element/dim components. mOut.indent() << "setVar(" << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ", " << FieldPackerName << ");\n"; } else { // We only have support for one-dimensional array reflection today, // but the entry point (i.e. setVar()) takes an array of dimensions. mOut.indent() << "int []__dimArr = new int[1];\n"; mOut.indent() << "__dimArr[0] = " << Dimension << ";\n"; mOut.indent() << "setVar(" << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ", " << FieldPackerName << ", " << RS_ELEM_PREFIX << ET->getElementName() << ", __dimArr);\n"; } endFunction(); } } void RSReflectionJava::genGetExportVariable(const std::string &TypeName, const std::string &VarName) { startFunction(AM_Public, false, TypeName.c_str(), "get_" + VarName, 0); mOut.indent() << "return " << RS_EXPORT_VAR_PREFIX << VarName << ";\n"; endFunction(); } void RSReflectionJava::genGetFieldID(const std::string &VarName) { // We only generate getFieldID_*() for non-Pointer (bind) types. if (mRSContext->getTargetAPI() >= SLANG_JB_MR1_TARGET_API) { startFunction(AM_Public, false, "Script.FieldID", "getFieldID_" + VarName, 0); mOut.indent() << "return createFieldID(" << RS_EXPORT_VAR_INDEX_PREFIX << VarName << ", null);\n"; endFunction(); } } /******************* Methods to generate script class /end *******************/ bool RSReflectionJava::genCreateFieldPacker(const RSExportType *ET, const char *FieldPackerName, ReflectionState::Val32 AllocSize32) { size_t AllocSize = ET->getAllocSize(); slangAssert(!AllocSize32.first || ((AllocSize == 0) == (AllocSize32.second == 0))); if (AllocSize > 0) { if (!mCollecting) { mOut.indent() << "FieldPacker " << FieldPackerName << " = new FieldPacker("; genConditionalVal("", false, AllocSize, AllocSize32); mOut << ");\n"; } } else return false; return true; } void RSReflectionJava::genPackVarOfType(const RSExportType *ET, const char *VarName, const char *FieldPackerName) { if (mCollecting) return; switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: case RSExportType::ExportClassVector: { mOut.indent() << FieldPackerName << "." << GetPackerAPIName( static_cast<const RSExportPrimitiveType *>(ET)) << "(" << VarName << ");\n"; break; } case RSExportType::ExportClassPointer: { // Must reflect as type Allocation in Java const RSExportType *PointeeType = static_cast<const RSExportPointerType *>(ET)->getPointeeType(); if (PointeeType->getClass() != RSExportType::ExportClassRecord) { mOut.indent() << FieldPackerName << ".addI32(" << VarName << ".getPtr());\n"; } else { mOut.indent() << FieldPackerName << ".addI32(" << VarName << ".getAllocation().getPtr());\n"; } break; } case RSExportType::ExportClassMatrix: { mOut.indent() << FieldPackerName << ".addMatrix(" << VarName << ");\n"; break; } case RSExportType::ExportClassConstantArray: { const RSExportConstantArrayType *ECAT = static_cast<const RSExportConstantArrayType *>(ET); // TODO(zonr): more elegant way. Currently, we obtain the unique index // variable (this method involves recursive call which means // we may have more than one level loop, therefore we can't // always use the same index variable name here) name given // in the for-loop from counting the '.' in @VarName. unsigned Level = 0; size_t LastDotPos = 0; std::string ElementVarName(VarName); while (LastDotPos != std::string::npos) { LastDotPos = ElementVarName.find_first_of('.', LastDotPos + 1); Level++; } std::string IndexVarName("ct"); IndexVarName.append(llvm::utostr(Level)); mOut.indent() << "for (int " << IndexVarName << " = 0; " << IndexVarName << " < " << ECAT->getNumElement() << "; " << IndexVarName << "++)"; mOut.startBlock(); ElementVarName.append("[" + IndexVarName + "]"); genPackVarOfType(ECAT->getElementType(), ElementVarName.c_str(), FieldPackerName); mOut.endBlock(); break; } case RSExportType::ExportClassRecord: { // Keep struct/field layout in sync with ReflectionState::declareRecord() const RSExportRecordType *ERT = static_cast<const RSExportRecordType *>(ET); const ReflectionState::Record32 Record32 = mState->getRecord32(ERT); auto emitSkip = [this, &FieldPackerName](size_t At, size_t Need, ReflectionState::Val32 Padding32) { if ((Need > At) || (Padding32.first && (Padding32.second != 0))) { size_t Padding = Need - At; mOut.indent() << FieldPackerName << ".skip("; if (!Padding32.first || (Padding == Padding32.second)) mOut << Padding; else { genCheck64Bit(true); mOut << " ? " << Padding << " : " << Padding32.second; } mOut << ");\n"; } }; // Relative pos from now on in field packer unsigned Pos = 0; unsigned FieldNum = 0; for (RSExportRecordType::const_field_iterator I = ERT->fields_begin(), E = ERT->fields_end(); I != E; I++, FieldNum++) { const RSExportRecordType::Field *F = *I; std::string FieldName; size_t FieldOffset = F->getOffsetInParent(); const RSExportType *T = F->getType(); size_t FieldStoreSize = T->getStoreSize(); size_t FieldAllocSize = T->getAllocSize(); const auto Field32PreAndPostPadding = Record32.getFieldPreAndPostPadding(FieldNum); if (VarName != nullptr) FieldName = VarName + ("." + F->getName()); else FieldName = F->getName(); emitSkip(Pos, FieldOffset, Field32PreAndPostPadding.first /* pre */); genPackVarOfType(F->getType(), FieldName.c_str(), FieldPackerName); // There is padding in the field type? emitSkip(FieldStoreSize, FieldAllocSize, Field32PreAndPostPadding.second /* post */); Pos = FieldOffset + FieldAllocSize; } // There maybe some padding after the struct emitSkip(Pos, ERT->getAllocSize(), Record32.getRecordPostPadding()); break; } default: { slangAssert(false && "Unknown class of type"); } } } void RSReflectionJava::genAllocateVarOfType(const RSExportType *T, const std::string &VarName) { switch (T->getClass()) { case RSExportType::ExportClassPrimitive: { // Primitive type like int in Java has its own storage once it's declared. // // FIXME: Should we allocate storage for RS object? // if (static_cast<const RSExportPrimitiveType *>(T)->isRSObjectType()) // mOut.indent() << VarName << " = new " << GetTypeName(T) << "();\n"; break; } case RSExportType::ExportClassPointer: { // Pointer type is an instance of Allocation or a TypeClass whose value is // expected to be assigned by programmer later in Java program. Therefore // we don't reflect things like [VarName] = new Allocation(); mOut.indent() << VarName << " = null;\n"; break; } case RSExportType::ExportClassConstantArray: { const RSExportConstantArrayType *ECAT = static_cast<const RSExportConstantArrayType *>(T); const RSExportType *ElementType = ECAT->getElementType(); mOut.indent() << VarName << " = new " << GetTypeName(ElementType) << "[" << ECAT->getNumElement() << "];\n"; // Primitive type element doesn't need allocation code. if (ElementType->getClass() != RSExportType::ExportClassPrimitive) { mOut.indent() << "for (int $ct = 0; $ct < " << ECAT->getNumElement() << "; $ct++)"; mOut.startBlock(); std::string ElementVarName(VarName); ElementVarName.append("[$ct]"); genAllocateVarOfType(ElementType, ElementVarName); mOut.endBlock(); } break; } case RSExportType::ExportClassVector: case RSExportType::ExportClassMatrix: case RSExportType::ExportClassRecord: { mOut.indent() << VarName << " = new " << GetTypeName(T) << "();\n"; break; } } } void RSReflectionJava::genNewItemBufferIfNull(const char *Index) { mOut.indent() << "if (" << RS_TYPE_ITEM_BUFFER_NAME " == null) "; mOut << RS_TYPE_ITEM_BUFFER_NAME << " = new " << RS_TYPE_ITEM_CLASS_NAME << "[getType().getX() /* count */];\n"; if (Index != nullptr) { mOut.indent() << "if (" << RS_TYPE_ITEM_BUFFER_NAME << "[" << Index << "] == null) "; mOut << RS_TYPE_ITEM_BUFFER_NAME << "[" << Index << "] = new " << RS_TYPE_ITEM_CLASS_NAME << "();\n"; } } void RSReflectionJava::genNewItemBufferPackerIfNull() { mOut.indent() << "if (" << RS_TYPE_ITEM_BUFFER_PACKER_NAME << " == null) "; mOut << RS_TYPE_ITEM_BUFFER_PACKER_NAME " = new FieldPacker(" << mItemSizeof << " * getType().getX()/* count */);\n"; } /********************** Methods to generate type class **********************/ bool RSReflectionJava::genTypeClass(const RSExportRecordType *ERT, std::string &ErrorMsg) { mState->declareRecord(ERT); if (mCollecting) return true; std::string ClassName = ERT->getElementName(); std::string superClassName = getRSPackageName(); superClassName += RS_TYPE_CLASS_SUPER_CLASS_NAME; if (!startClass(AM_Public, false, ClassName, superClassName.c_str(), ErrorMsg)) return false; mGeneratedFileNames->push_back(ClassName); mState->beginOutputClass(); genTypeItemClass(ERT); // Declare item buffer and item buffer packer mOut.indent() << "private " << RS_TYPE_ITEM_CLASS_NAME << " " << RS_TYPE_ITEM_BUFFER_NAME << "[];\n"; mOut.indent() << "private FieldPacker " << RS_TYPE_ITEM_BUFFER_PACKER_NAME << ";\n"; mOut.indent() << "private static java.lang.ref.WeakReference<Element> " << RS_TYPE_ELEMENT_REF_NAME << " = new java.lang.ref.WeakReference<Element>(null);\n"; genTypeClassConstructor(ERT); genTypeClassCopyToArrayLocal(ERT); genTypeClassCopyToArray(ERT); genTypeClassItemSetter(ERT); genTypeClassItemGetter(ERT); genTypeClassComponentSetter(ERT); genTypeClassComponentGetter(ERT); genTypeClassCopyAll(ERT); if (!mRSContext->isCompatLib()) { // Skip the resize method if we are targeting a compatibility library. genTypeClassResize(); } if (mState->endOutputClass()) genCompute64Bit(); endClass(); resetFieldIndex(); clearFieldIndexMap(); return true; } void RSReflectionJava::genTypeItemClass(const RSExportRecordType *ERT) { mOut.indent() << "static public class " RS_TYPE_ITEM_CLASS_NAME; mOut.startBlock(); // Sizeof should not be exposed for 64-bit; it is not accurate if (mRSContext->getTargetAPI() < 21) { mOut.indent() << "public static final int sizeof = " << ERT->getAllocSize() << ";\n"; } // Member elements mOut << "\n"; for (RSExportRecordType::const_field_iterator FI = ERT->fields_begin(), FE = ERT->fields_end(); FI != FE; FI++) { mOut.indent() << GetTypeName((*FI)->getType()) << " " << (*FI)->getName() << ";\n"; } // Constructor mOut << "\n"; mOut.indent() << RS_TYPE_ITEM_CLASS_NAME << "()"; mOut.startBlock(); for (RSExportRecordType::const_field_iterator FI = ERT->fields_begin(), FE = ERT->fields_end(); FI != FE; FI++) { const RSExportRecordType::Field *F = *FI; genAllocateVarOfType(F->getType(), F->getName()); } // end Constructor mOut.endBlock(); // end Item class mOut.endBlock(); } void RSReflectionJava::genTypeClassConstructor(const RSExportRecordType *ERT) { const char *RenderScriptVar = "rs"; startFunction(AM_Public, true, "Element", "createElement", 1, "RenderScript", RenderScriptVar); // TODO(all): Fix weak-refs + multi-context issue. // mOut.indent() << "Element e = " << RS_TYPE_ELEMENT_REF_NAME // << ".get();\n"; // mOut.indent() << "if (e != null) return e;\n"; RSReflectionJavaElementBuilder builder("eb", ERT, RenderScriptVar, &mOut, mRSContext, this, mState); builder.generate(); mOut.indent() << "return eb.create();\n"; // mOut.indent() << "e = eb.create();\n"; // mOut.indent() << RS_TYPE_ELEMENT_REF_NAME // << " = new java.lang.ref.WeakReference<Element>(e);\n"; // mOut.indent() << "return e;\n"; endFunction(); // private with element startFunction(AM_Private, false, nullptr, getClassName(), 1, "RenderScript", RenderScriptVar); mOut.indent() << RS_TYPE_ITEM_BUFFER_NAME << " = null;\n"; mOut.indent() << RS_TYPE_ITEM_BUFFER_PACKER_NAME << " = null;\n"; mOut.indent() << "mElement = createElement(" << RenderScriptVar << ");\n"; endFunction(); // 1D without usage startFunction(AM_Public, false, nullptr, getClassName(), 2, "RenderScript", RenderScriptVar, "int", "count"); mOut.indent() << RS_TYPE_ITEM_BUFFER_NAME << " = null;\n"; mOut.indent() << RS_TYPE_ITEM_BUFFER_PACKER_NAME << " = null;\n"; mOut.indent() << "mElement = createElement(" << RenderScriptVar << ");\n"; // Call init() in super class mOut.indent() << "init(" << RenderScriptVar << ", count);\n"; endFunction(); // 1D with usage startFunction(AM_Public, false, nullptr, getClassName(), 3, "RenderScript", RenderScriptVar, "int", "count", "int", "usages"); mOut.indent() << RS_TYPE_ITEM_BUFFER_NAME << " = null;\n"; mOut.indent() << RS_TYPE_ITEM_BUFFER_PACKER_NAME << " = null;\n"; mOut.indent() << "mElement = createElement(" << RenderScriptVar << ");\n"; // Call init() in super class mOut.indent() << "init(" << RenderScriptVar << ", count, usages);\n"; endFunction(); // create1D with usage startFunction(AM_Public, true, getClassName().c_str(), "create1D", 3, "RenderScript", RenderScriptVar, "int", "dimX", "int", "usages"); mOut.indent() << getClassName() << " obj = new " << getClassName() << "(" << RenderScriptVar << ");\n"; mOut.indent() << "obj.mAllocation = Allocation.createSized(" "rs, obj.mElement, dimX, usages);\n"; mOut.indent() << "return obj;\n"; endFunction(); // create1D without usage startFunction(AM_Public, true, getClassName().c_str(), "create1D", 2, "RenderScript", RenderScriptVar, "int", "dimX"); mOut.indent() << "return create1D(" << RenderScriptVar << ", dimX, Allocation.USAGE_SCRIPT);\n"; endFunction(); // create2D without usage startFunction(AM_Public, true, getClassName().c_str(), "create2D", 3, "RenderScript", RenderScriptVar, "int", "dimX", "int", "dimY"); mOut.indent() << "return create2D(" << RenderScriptVar << ", dimX, dimY, Allocation.USAGE_SCRIPT);\n"; endFunction(); // create2D with usage startFunction(AM_Public, true, getClassName().c_str(), "create2D", 4, "RenderScript", RenderScriptVar, "int", "dimX", "int", "dimY", "int", "usages"); mOut.indent() << getClassName() << " obj = new " << getClassName() << "(" << RenderScriptVar << ");\n"; mOut.indent() << "Type.Builder b = new Type.Builder(rs, obj.mElement);\n"; mOut.indent() << "b.setX(dimX);\n"; mOut.indent() << "b.setY(dimY);\n"; mOut.indent() << "Type t = b.create();\n"; mOut.indent() << "obj.mAllocation = Allocation.createTyped(rs, t, usages);\n"; mOut.indent() << "return obj;\n"; endFunction(); // createTypeBuilder startFunction(AM_Public, true, "Type.Builder", "createTypeBuilder", 1, "RenderScript", RenderScriptVar); mOut.indent() << "Element e = createElement(" << RenderScriptVar << ");\n"; mOut.indent() << "return new Type.Builder(rs, e);\n"; endFunction(); // createCustom with usage startFunction(AM_Public, true, getClassName().c_str(), "createCustom", 3, "RenderScript", RenderScriptVar, "Type.Builder", "tb", "int", "usages"); mOut.indent() << getClassName() << " obj = new " << getClassName() << "(" << RenderScriptVar << ");\n"; mOut.indent() << "Type t = tb.create();\n"; mOut.indent() << "if (t.getElement() != obj.mElement) {\n"; mOut.indent() << " throw new RSIllegalArgumentException(" "\"Type.Builder did not match expected element type.\");\n"; mOut.indent() << "}\n"; mOut.indent() << "obj.mAllocation = Allocation.createTyped(rs, t, usages);\n"; mOut.indent() << "return obj;\n"; endFunction(); } void RSReflectionJava::genTypeClassCopyToArray(const RSExportRecordType *ERT) { startFunction(AM_Private, false, "void", "copyToArray", 2, RS_TYPE_ITEM_CLASS_NAME, "i", "int", "index"); genNewItemBufferPackerIfNull(); mOut.indent() << RS_TYPE_ITEM_BUFFER_PACKER_NAME << ".reset(index * " << mItemSizeof << ");\n"; mOut.indent() << "copyToArrayLocal(i, " RS_TYPE_ITEM_BUFFER_PACKER_NAME ");\n"; endFunction(); } void RSReflectionJava::genTypeClassCopyToArrayLocal(const RSExportRecordType *ERT) { startFunction(AM_Private, false, "void", "copyToArrayLocal", 2, RS_TYPE_ITEM_CLASS_NAME, "i", "FieldPacker", "fp"); genPackVarOfType(ERT, "i", "fp"); endFunction(); } void RSReflectionJava::genTypeClassItemSetter(const RSExportRecordType *ERT) { startFunction(AM_PublicSynchronized, false, "void", "set", 3, RS_TYPE_ITEM_CLASS_NAME, "i", "int", "index", "boolean", "copyNow"); genNewItemBufferIfNull(nullptr); mOut.indent() << RS_TYPE_ITEM_BUFFER_NAME << "[index] = i;\n"; mOut.indent() << "if (copyNow) "; mOut.startBlock(); mOut.indent() << "copyToArray(i, index);\n"; mOut.indent() << "FieldPacker fp = new FieldPacker(" << mItemSizeof << ");\n"; mOut.indent() << "copyToArrayLocal(i, fp);\n"; mOut.indent() << "mAllocation.setFromFieldPacker(index, fp);\n"; // End of if (copyNow) mOut.endBlock(); endFunction(); } void RSReflectionJava::genTypeClassItemGetter(const RSExportRecordType *ERT) { startFunction(AM_PublicSynchronized, false, RS_TYPE_ITEM_CLASS_NAME, "get", 1, "int", "index"); mOut.indent() << "if (" << RS_TYPE_ITEM_BUFFER_NAME << " == null) return null;\n"; mOut.indent() << "return " << RS_TYPE_ITEM_BUFFER_NAME << "[index];\n"; endFunction(); } void RSReflectionJava::genTypeClassComponentSetter(const RSExportRecordType *ERT) { const ReflectionState::Record32 Record32 = mState->getRecord32(ERT); unsigned FieldNum = 0; for (RSExportRecordType::const_field_iterator FI = ERT->fields_begin(), FE = ERT->fields_end(); FI != FE; FI++, FieldNum++) { const RSExportRecordType::Field *F = *FI; size_t FieldOffset = F->getOffsetInParent(); size_t FieldStoreSize = F->getType()->getStoreSize(); std::pair<unsigned, unsigned> FieldIndex = getFieldIndex(F); const auto Field32OffsetAndStoreSize = Record32.getFieldOffsetAndStoreSize(FieldNum); startFunction(AM_PublicSynchronized, false, "void", "set_" + F->getName(), 3, "int", "index", GetTypeName(F->getType()).c_str(), "v", "boolean", "copyNow"); genNewItemBufferPackerIfNull(); genNewItemBufferIfNull("index"); mOut.indent() << RS_TYPE_ITEM_BUFFER_NAME << "[index]." << F->getName() << " = v;\n"; mOut.indent() << "if (copyNow) "; mOut.startBlock(); mOut.indent() << RS_TYPE_ITEM_BUFFER_PACKER_NAME << ".reset(index * " << mItemSizeof; genConditionalVal(" + ", true, FieldOffset, Field32OffsetAndStoreSize.first /* offset */); mOut << ");\n"; genPackVarOfType(F->getType(), "v", RS_TYPE_ITEM_BUFFER_PACKER_NAME); mOut.indent() << "FieldPacker fp = new FieldPacker("; genConditionalVal("", false, FieldStoreSize, Field32OffsetAndStoreSize.second /* size */); mOut << ");\n"; genPackVarOfType(F->getType(), "v", "fp"); mOut.indent() << "mAllocation.setFromFieldPacker(index, "; genConditionalVal("", false, FieldIndex.first, ReflectionState::Val32(Field32OffsetAndStoreSize.first.first, FieldIndex.second)); mOut << ", fp);\n"; // End of if (copyNow) mOut.endBlock(); endFunction(); } } void RSReflectionJava::genTypeClassComponentGetter(const RSExportRecordType *ERT) { for (RSExportRecordType::const_field_iterator FI = ERT->fields_begin(), FE = ERT->fields_end(); FI != FE; FI++) { const RSExportRecordType::Field *F = *FI; startFunction(AM_PublicSynchronized, false, GetTypeName(F->getType()).c_str(), "get_" + F->getName(), 1, "int", "index"); mOut.indent() << "if (" RS_TYPE_ITEM_BUFFER_NAME << " == null) return " << GetTypeNullValue(F->getType()) << ";\n"; mOut.indent() << "return " RS_TYPE_ITEM_BUFFER_NAME << "[index]." << F->getName() << ";\n"; endFunction(); } } void RSReflectionJava::genTypeClassCopyAll(const RSExportRecordType *ERT) { startFunction(AM_PublicSynchronized, false, "void", "copyAll", 0); mOut.indent() << "for (int ct = 0; ct < " << RS_TYPE_ITEM_BUFFER_NAME << ".length; ct++)" << " copyToArray(" << RS_TYPE_ITEM_BUFFER_NAME << "[ct], ct);\n"; mOut.indent() << "mAllocation.setFromFieldPacker(0, " << RS_TYPE_ITEM_BUFFER_PACKER_NAME ");\n"; endFunction(); } void RSReflectionJava::genTypeClassResize() { startFunction(AM_PublicSynchronized, false, "void", "resize", 1, "int", "newSize"); mOut.indent() << "if (mItemArray != null) "; mOut.startBlock(); mOut.indent() << "int oldSize = mItemArray.length;\n"; mOut.indent() << "int copySize = Math.min(oldSize, newSize);\n"; mOut.indent() << "if (newSize == oldSize) return;\n"; mOut.indent() << "Item ni[] = new Item[newSize];\n"; mOut.indent() << "System.arraycopy(mItemArray, 0, ni, 0, copySize);\n"; mOut.indent() << "mItemArray = ni;\n"; mOut.endBlock(); mOut.indent() << "mAllocation.resize(newSize);\n"; mOut.indent() << "if (" RS_TYPE_ITEM_BUFFER_PACKER_NAME " != null) " RS_TYPE_ITEM_BUFFER_PACKER_NAME " = " "new FieldPacker(" << mItemSizeof << " * getType().getX()/* count */);\n"; endFunction(); } /******************** Methods to generate type class /end ********************/ /********** Methods to create Element in Java of given record type ***********/ RSReflectionJavaElementBuilder::RSReflectionJavaElementBuilder( const char *ElementBuilderName, const RSExportRecordType *ERT, const char *RenderScriptVar, GeneratedFile *Out, const RSContext *RSContext, RSReflectionJava *Reflection, ReflectionState *RState) : mElementBuilderName(ElementBuilderName), mERT(ERT), mRenderScriptVar(RenderScriptVar), mOut(Out), mPaddingFieldIndex(1), mRSContext(RSContext), mReflection(Reflection), mState(RState) { if (mRSContext->getTargetAPI() < SLANG_ICS_TARGET_API) { mPaddingPrefix = "#padding_"; } else { mPaddingPrefix = "#rs_padding_"; } } void RSReflectionJavaElementBuilder::generate() { mOut->indent() << "Element.Builder " << mElementBuilderName << " = new Element.Builder(" << mRenderScriptVar << ");\n"; genAddElement(mERT, "", /* ArraySize = */ 0); } void RSReflectionJavaElementBuilder::genAddElement(const RSExportType *ET, const std::string &VarName, unsigned ArraySize) { std::string ElementConstruct = GetBuiltinElementConstruct(ET); if (ElementConstruct != "") { genAddStatementStart(); *mOut << ElementConstruct << "(" << mRenderScriptVar << ")"; genAddStatementEnd(VarName, ArraySize); } else { switch (ET->getClass()) { case RSExportType::ExportClassPrimitive: { const RSExportPrimitiveType *EPT = static_cast<const RSExportPrimitiveType *>(ET); const char *DataTypeName = RSExportPrimitiveType::getRSReflectionType(EPT)->rs_type; genAddStatementStart(); *mOut << "Element.createUser(" << mRenderScriptVar << ", Element.DataType." << DataTypeName << ")"; genAddStatementEnd(VarName, ArraySize); break; } case RSExportType::ExportClassVector: { const RSExportVectorType *EVT = static_cast<const RSExportVectorType *>(ET); const char *DataTypeName = RSExportPrimitiveType::getRSReflectionType(EVT)->rs_type; genAddStatementStart(); *mOut << "Element.createVector(" << mRenderScriptVar << ", Element.DataType." << DataTypeName << ", " << EVT->getNumElement() << ")"; genAddStatementEnd(VarName, ArraySize); break; } case RSExportType::ExportClassPointer: // Pointer type variable should be resolved in // GetBuiltinElementConstruct() slangAssert(false && "??"); break; case RSExportType::ExportClassMatrix: // Matrix type variable should be resolved // in GetBuiltinElementConstruct() slangAssert(false && "??"); break; case RSExportType::ExportClassConstantArray: { const RSExportConstantArrayType *ECAT = static_cast<const RSExportConstantArrayType *>(ET); const RSExportType *ElementType = ECAT->getElementType(); if (ElementType->getClass() != RSExportType::ExportClassRecord) { genAddElement(ECAT->getElementType(), VarName, ECAT->getNumElement()); } else { slangAssert((ArraySize == 0) && "Cannot reflect multidimensional array types"); ArraySize = ECAT->getNumElement(); genAddStatementStart(); *mOut << ElementType->getElementName() << ".createElement(" << mRenderScriptVar << ")"; genAddStatementEnd(VarName, ArraySize); } break; } case RSExportType::ExportClassRecord: { // Simalar to case of RSExportType::ExportClassRecord in genPackVarOfType. // // TODO(zonr): Generalize these two function such that there's no // duplicated codes. // Keep struct/field layout in sync with ReflectionState::declareRecord() const RSExportRecordType *ERT = static_cast<const RSExportRecordType *>(ET); const ReflectionState::Record32 Record32 = mState->getRecord32(ERT); int Pos = 0; // relative pos from now on unsigned FieldNum = 0; for (RSExportRecordType::const_field_iterator I = ERT->fields_begin(), E = ERT->fields_end(); I != E; I++, FieldNum++) { const RSExportRecordType::Field *F = *I; size_t FieldOffset = F->getOffsetInParent(); const RSExportType *T = F->getType(); size_t FieldStoreSize = T->getStoreSize(); size_t FieldAllocSize = T->getAllocSize(); const auto Field32PreAndPostPadding = Record32.getFieldPreAndPostPadding(FieldNum); std::string FieldName; if (!VarName.empty()) FieldName = VarName + "." + F->getName(); else FieldName = F->getName(); // Alignment genAddPadding(FieldOffset - Pos, Field32PreAndPostPadding.first /* pre */); // eb.add(...) mReflection->addFieldIndexMapping(F); if (F->getType()->getClass() != RSExportType::ExportClassRecord) { genAddElement(F->getType(), FieldName, 0); } else { genAddStatementStart(); *mOut << F->getType()->getElementName() << ".createElement(" << mRenderScriptVar << ")"; genAddStatementEnd(FieldName, ArraySize); } if (mRSContext->getTargetAPI() < SLANG_ICS_TARGET_API) { // There is padding within the field type. This is only necessary // for HC-targeted APIs. genAddPadding(FieldAllocSize - FieldStoreSize, Field32PreAndPostPadding.second /* post */); } Pos = FieldOffset + FieldAllocSize; } // There maybe some padding after the struct size_t RecordAllocSize = ERT->getAllocSize(); genAddPadding(RecordAllocSize - Pos, Record32.getRecordPostPadding()); break; } default: slangAssert(false && "Unknown class of type"); break; } } } void RSReflectionJavaElementBuilder::genAddPadding(int PaddingSize, unsigned Which) { while (PaddingSize > 0) { const std::string &VarName = createPaddingField(); genAddStatementStart(); if (PaddingSize >= 4) { *mOut << "Element.U32(" << mRenderScriptVar << ")"; PaddingSize -= 4; } else if (PaddingSize >= 2) { *mOut << "Element.U16(" << mRenderScriptVar << ")"; PaddingSize -= 2; } else if (PaddingSize >= 1) { *mOut << "Element.U8(" << mRenderScriptVar << ")"; PaddingSize -= 1; } genAddStatementEnd(VarName, 0, Which); } } void RSReflectionJavaElementBuilder::genAddPadding(int PaddingSize, ReflectionState::Val32 Field32PaddingSize) { if (!Field32PaddingSize.first || (PaddingSize == Field32PaddingSize.second)) { // Either we're ignoring the 32-bit case, or 32-bit and 64-bit // padding are the same. genAddPadding(PaddingSize, RSReflectionJava::FieldIndex | RSReflectionJava::Field32Index); return; } // We cannot ignore the 32-bit case, and 32-bit and 64-bit padding differ. if ((PaddingSize == 0) != (Field32PaddingSize.second == 0)) { // Only pad one of the two cases. mOut->indent() << "if ("; if (PaddingSize == 0) *mOut << '!'; genCheck64Bit(PaddingSize == 0); *mOut << ')'; mOut->startBlock(); if (PaddingSize != 0) genAddPadding(PaddingSize, RSReflectionJava::FieldIndex); else genAddPadding(Field32PaddingSize.second, RSReflectionJava::Field32Index); mOut->endBlock(); return; } // Pad both of the two cases, differently. mOut->indent() << "if ("; genCheck64Bit(false); *mOut << ')'; mOut->startBlock(); genAddPadding(PaddingSize, RSReflectionJava::FieldIndex); mOut->endBlock(); mOut->indent() << "else"; mOut->startBlock(); genAddPadding(Field32PaddingSize.second, RSReflectionJava::Field32Index); mOut->endBlock(); } void RSReflectionJavaElementBuilder::genAddStatementStart() { mOut->indent() << mElementBuilderName << ".add("; } void RSReflectionJavaElementBuilder::genAddStatementEnd(const std::string &VarName, unsigned ArraySize, unsigned Which) { *mOut << ", \"" << VarName << "\""; if (ArraySize > 0) { *mOut << ", " << ArraySize; } *mOut << ");\n"; // TODO Review incFieldIndex. It's probably better to assign the numbers at // the start rather // than as we're generating the code. mReflection->incFieldIndex(Which); } /******** Methods to create Element in Java of given record type /end ********/ bool RSReflectionJava::reflect() { // Note that we may issue declareRecord() in many places during the // reflection process. mState->beginRecords(); std::string ErrorMsg; if (!genScriptClass(mScriptClassName, ErrorMsg)) { std::cerr << "Failed to generate class " << mScriptClassName << " (" << ErrorMsg << ")\n"; return false; } // class ScriptField_<TypeName> for (RSContext::const_export_type_iterator TI = mRSContext->export_types_begin(), TE = mRSContext->export_types_end(); TI != TE; TI++) { const RSExportType *ET = TI->getValue(); if (ET->getClass() == RSExportType::ExportClassRecord) { const RSExportRecordType *ERT = static_cast<const RSExportRecordType *>(ET); if (!ERT->isArtificial() && !genTypeClass(ERT, ErrorMsg)) { std::cerr << "Failed to generate type class for struct '" << ERT->getName() << "' (" << ErrorMsg << ")\n"; return false; } } } mState->endRecords(); return true; } const char *RSReflectionJava::AccessModifierStr(AccessModifier AM) { switch (AM) { case AM_Public: return "public"; break; case AM_Protected: return "protected"; break; case AM_Private: return "private"; break; case AM_PublicSynchronized: return "public synchronized"; break; default: return ""; break; } } bool RSReflectionJava::startClass(AccessModifier AM, bool IsStatic, const std::string &ClassName, const char *SuperClassName, std::string &ErrorMsg) { // Open file for class std::string FileName = ClassName + ".java"; if (!mOut.startFile(mOutputDirectory, FileName, mRSSourceFileName, mRSContext->getLicenseNote(), true, mRSContext->getVerbose())) { return false; } // Package if (!mPackageName.empty()) { mOut << "package " << mPackageName << ";\n"; } mOut << "\n"; // Imports // // The first few imports are only needed for divergent classes, but // at this point we don't know whether we are emitting a divergent // class. // if (!mRSContext->isCompatLib()) { mOut << "import android.os.Build;\n"; mOut << "import android.os.Process;\n"; mOut << "import java.lang.reflect.Field;\n"; } // (End of imports needed for divergent classes.) mOut << "import " << mRSPackageName << ".*;\n"; if (getEmbedBitcodeInJava()) { mOut << "import " << mPackageName << "." << RSSlangReflectUtils::JavaBitcodeClassNameFromRSFileName( mRSSourceFileName.c_str()) << ";\n"; } else { mOut << "import android.content.res.Resources;\n"; } mOut << "\n"; // All reflected classes should be annotated as hidden, so that they won't // be exposed in SDK. mOut << "/**\n"; mOut << " * @hide\n"; mOut << " */\n"; mOut << AccessModifierStr(AM) << ((IsStatic) ? " static" : "") << " class " << ClassName; if (SuperClassName != nullptr) mOut << " extends " << SuperClassName; mOut.startBlock(); mClassName = ClassName; return true; } void RSReflectionJava::endClass() { mOut.endBlock(); mOut.closeFile(); clear(); } void RSReflectionJava::startTypeClass(const std::string &ClassName) { mOut.indent() << "public static class " << ClassName; mOut.startBlock(); } void RSReflectionJava::endTypeClass() { mOut.endBlock(); } void RSReflectionJava::startFunction(AccessModifier AM, bool IsStatic, const char *ReturnType, const std::string &FunctionName, int Argc, ...) { ArgTy Args; va_list vl; va_start(vl, Argc); for (int i = 0; i < Argc; i++) { const char *ArgType = va_arg(vl, const char *); const char *ArgName = va_arg(vl, const char *); Args.push_back(std::make_pair(ArgType, ArgName)); } va_end(vl); startFunction(AM, IsStatic, ReturnType, FunctionName, Args); } void RSReflectionJava::startFunction(AccessModifier AM, bool IsStatic, const char *ReturnType, const std::string &FunctionName, const ArgTy &Args) { mOut.indent() << AccessModifierStr(AM) << ((IsStatic) ? " static " : " ") << ((ReturnType) ? ReturnType : "") << " " << FunctionName << "("; bool FirstArg = true; for (ArgTy::const_iterator I = Args.begin(), E = Args.end(); I != E; I++) { if (!FirstArg) mOut << ", "; else FirstArg = false; mOut << I->first << " " << I->second; } mOut << ")"; mOut.startBlock(); } void RSReflectionJava::endFunction() { mOut.endBlock(); } bool RSReflectionJava::addTypeNameForElement(const std::string &TypeName) { if (mTypesToCheck.find(TypeName) == mTypesToCheck.end()) { mTypesToCheck.insert(TypeName); return true; } else { return false; } } bool RSReflectionJava::addTypeNameForFieldPacker(const std::string &TypeName) { if (mFieldPackerTypes.find(TypeName) == mFieldPackerTypes.end()) { mFieldPackerTypes.insert(TypeName); return true; } else { return false; } } } // namespace slang