/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Operations.h" #include "CpuOperationUtils.h" #include "tensorflow/contrib/lite/kernels/internal/optimized/depthwiseconv_float.h" #include "tensorflow/contrib/lite/kernels/internal/optimized/depthwiseconv_uint8.h" namespace android { namespace nn { #define ANDROID_NN_DEPTHWISE_CONV_PARAMETERS \ uint32_t height = getSizeOfDimension(inputShape, 1); \ uint32_t width = getSizeOfDimension(inputShape, 2); \ uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ uint32_t outHeight = getSizeOfDimension(outputShape, 1); \ uint32_t outWidth = getSizeOfDimension(outputShape, 2); \ \ uint32_t paddingHeight = (uint32_t)padding_top; \ uint32_t paddingWidth = (uint32_t)padding_left; bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, const Shape& filterShape, const float* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t depth_multiplier, int32_t activation, float* outputData, const Shape& outputShape) { ANDROID_NN_DEPTHWISE_CONV_PARAMETERS float output_activation_min, output_activation_max; CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); tflite::optimized_ops::DepthwiseConv( inputData, convertShapeToDims(inputShape), filterData, convertShapeToDims(filterShape), biasData, convertShapeToDims(biasShape), stride_width, stride_height, paddingWidth, paddingHeight, depth_multiplier, output_activation_min, output_activation_max, outputData, convertShapeToDims(outputShape)); return true; } bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, const Shape& filterShape, const int32_t* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t depth_multiplier, int32_t activation, uint8_t* outputData, const Shape& outputShape) { ANDROID_NN_DEPTHWISE_CONV_PARAMETERS float real_multiplier = 0.0; int32_t output_multiplier = 0; int32_t output_shift = 0; int32_t output_activation_min = 0; int32_t output_activation_max = 0; if (!GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape, &real_multiplier) || !QuantizeMultiplierSmallerThanOne(real_multiplier, &output_multiplier, &output_shift)) { return false; } CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, &output_activation_max); uint32_t inputOffset = -inputShape.offset; uint32_t filterOffset = -filterShape.offset; uint32_t outputOffset = outputShape.offset; tflite::optimized_ops::DepthwiseConv( inputData, convertShapeToDims(inputShape), inputOffset, filterData, convertShapeToDims(filterShape), filterOffset, biasData, convertShapeToDims(biasShape), stride_width, stride_height, paddingWidth, paddingHeight, depth_multiplier, outputOffset, output_multiplier, output_shift, output_activation_min, output_activation_max, outputData, convertShapeToDims(outputShape)); return true; } #undef ANDROID_NN_DEPTHWISE_CONV_PARAMETERS } // namespace nn } // namespace android