// Generated file (from: depthwise_conv.mod.py). Do not edit void CreateModel(Model *model) { OperandType type0(Type::INT32, {}); OperandType type2(Type::TENSOR_FLOAT32, {1, 1, 1, 3}); OperandType type1(Type::TENSOR_FLOAT32, {1, 8, 8, 3}); OperandType type3(Type::TENSOR_FLOAT32, {3}); // Phase 1, operands auto b4 = model->addOperand(&type0); auto b5 = model->addOperand(&type0); auto b6 = model->addOperand(&type0); auto b7 = model->addOperand(&type0); auto b8 = model->addOperand(&type0); auto op2 = model->addOperand(&type1); auto op3 = model->addOperand(&type1); auto op0 = model->addOperand(&type2); auto op1 = model->addOperand(&type3); // Phase 2, operations static int32_t b4_init[] = {1}; model->setOperandValue(b4, b4_init, sizeof(int32_t) * 1); static int32_t b5_init[] = {1}; model->setOperandValue(b5, b5_init, sizeof(int32_t) * 1); static int32_t b6_init[] = {1}; model->setOperandValue(b6, b6_init, sizeof(int32_t) * 1); static int32_t b7_init[] = {1}; model->setOperandValue(b7, b7_init, sizeof(int32_t) * 1); static int32_t b8_init[] = {0}; model->setOperandValue(b8, b8_init, sizeof(int32_t) * 1); static float op0_init[] = {-0.966213f, -0.467474f, -0.82203f}; model->setOperandValue(op0, op0_init, sizeof(float) * 3); static float op1_init[] = {0.0f, 0.0f, 0.0f}; model->setOperandValue(op1, op1_init, sizeof(float) * 3); model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op2, op0, op1, b4, b5, b6, b7, b8}, {op3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {op2}, {op3}); assert(model->isValid()); } bool is_ignored(int i) { static std::set<int> ignore = {}; return ignore.find(i) != ignore.end(); }