// Generated file (from: rnn.mod.py). Do not edit void CreateModel(Model *model) { OperandType type5(Type::INT32, {}); OperandType type2(Type::TENSOR_FLOAT32, {16, 16}); OperandType type1(Type::TENSOR_FLOAT32, {16, 8}); OperandType type3(Type::TENSOR_FLOAT32, {16}); OperandType type4(Type::TENSOR_FLOAT32, {2, 16}); OperandType type0(Type::TENSOR_FLOAT32, {2, 8}); // Phase 1, operands auto input = model->addOperand(&type0); auto weights = model->addOperand(&type1); auto recurrent_weights = model->addOperand(&type2); auto bias = model->addOperand(&type3); auto hidden_state_in = model->addOperand(&type4); auto activation_param = model->addOperand(&type5); auto hidden_state_out = model->addOperand(&type4); auto output = model->addOperand(&type4); // Phase 2, operations static int32_t activation_param_init[] = {1}; model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1); model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs( {input, weights, recurrent_weights, bias, hidden_state_in}, {hidden_state_out, output}); assert(model->isValid()); } bool is_ignored(int i) { static std::set<int> ignore = {0}; return ignore.find(i) != ignore.end(); }