#!/usr/bin/python3 # Copyright 2017, The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Slicing the input Model file Invoked by ml/nn/runtime/test/specs/slicing.sh; this Python code is not intended to be invoked directly by the users. See that script for details on how to use the slicing tool is used. This script does the following work: Perform a topological sort similar to the test generator, except that: * It would stop at the N-th operation it encounters, and * Rename the output of the N-th operation to a model output, and * Name that as the output of the model. * Also only inputs and weights used by the submodel would be emitted. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from functools import reduce import math import os import struct import sys import contextlib import test_generator import pprint # Stuff from test generator from test_generator import Configuration from test_generator import Example from test_generator import Float32Scalar from test_generator import Input from test_generator import Int32Scalar from test_generator import Internal from test_generator import Model from test_generator import Output from test_generator import Parameter from test_generator import smart_open # Take a model from command line def import_source(): parser = argparse.ArgumentParser() parser.add_argument("spec", help="the spec file") parser.add_argument( "-n", "--number", help="number of operations in the sliced model. Default = 1", default=1) parser.add_argument( "-m", "--model", help="the output model file", default="-") parser.add_argument( "-e", "--example", help="the output example file", default="-") args = parser.parse_args() if os.path.exists(args.spec): test_generator.FileNames.SpecFile = os.path.basename(args.spec) exec (open(args.spec).read()) else: print("cannot find file %s" % args.spec) sys.exit(1) return (args.model, args.example, args.number) # Slice till the Nth op the topological sort finds # the output of that op becomes the output of the model class slicing: def __init__(self, threshold): self.__nr_op_seen = 0 self.__threshold = threshold self.__last_outs = [] self.__all_formatted_ops = [] self.__referenced_operands = set() def format_as_py_op(self, op): try: fmt = op.PyDefinition() except AttributeError: # not an op, but things like weights return True if fmt is not None: self.__nr_op_seen += 1 if self.__nr_op_seen > self.__threshold: return False self.__last_outs = op.outs for o in op.ins: self.__referenced_operands.add(o) for o in op.outs: self.__referenced_operands.add(o) self.__all_formatted_ops.append("model = model.%s" % fmt) return True def dump(self, model_file): for x in self.__all_formatted_ops: print(x, file=model_file) def dump_example(self, example_file): override = {} # Make alias for the output variable for lo in self.__last_outs: override[lo.get_name()] = lo.type.get_nr_elements() alias_def = """\ # Alias for the output variable {operand_name} aliased_output{number} = {operand_name} """ op = { 'operand_name': lo.get_name(), 'number': 0 # only support one output as of now } print (alias_def.format(**op), file=example_file) Example.py_dump(example_file, override, self.__referenced_operands) def format_operands(self): # Dump operand definitions op_definitions = [] for o in test_generator.Operand.operands.objects(): if o not in self.__referenced_operands: continue ty = o.type raw_shape = ty.get_raw_shape() op_def = """{op_name} = {operand}("{op_name}", "{element_type}", "{shape}" """ if isinstance(o, test_generator.Parameter): op_def += """, {initializer})""" init = o.initializer py_operand_name = "Parameter" else: op_def += ")" init = [] py_operand_name = "IgnoredOutput" if o in set( self.__last_outs) else o.__class__.__name__ op = { "element_type": ty.get_element_type(), "shape": ty.get_raw_shape(), "op_name": o.get_name(), "operand": py_operand_name, "initializer": init } op_definitions.append(op_def.format(**op)) return "\n".join(op_definitions) if __name__ == "__main__": (model, example, number) = import_source() s = slicing(int(number)) with smart_open(model) as model_file: spec_file = " (from: %s)" % (test_generator.FileNames.SpecFile) print("# Generated file%s. Do not edit" % (spec_file), file=model_file) print("model = Model()", file=model_file) test_generator.TopologicalSort(lambda x: s.format_as_py_op(x)) print(s.format_operands(), file=model_file) s.dump(model_file) with smart_open(example) as example_file: s.dump_example(example_file)