/* ** Copyright 2008, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include "InstalldNativeService.h" #define ATRACE_TAG ATRACE_TAG_PACKAGE_MANAGER #include <algorithm> #include <errno.h> #include <fstream> #include <fts.h> #include <functional> #include <inttypes.h> #include <regex> #include <stdlib.h> #include <string.h> #include <sys/capability.h> #include <sys/file.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/quota.h> #include <sys/resource.h> #include <sys/stat.h> #include <sys/statvfs.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/xattr.h> #include <unistd.h> #include <android-base/logging.h> #include <android-base/properties.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <android-base/unique_fd.h> #include <cutils/ashmem.h> #include <cutils/fs.h> #include <cutils/properties.h> #include <cutils/sched_policy.h> #include <log/log.h> // TODO: Move everything to base/logging. #include <logwrap/logwrap.h> #include <private/android_filesystem_config.h> #include <selinux/android.h> #include <system/thread_defs.h> #include <utils/Trace.h> #include "dexopt.h" #include "globals.h" #include "installd_deps.h" #include "otapreopt_utils.h" #include "utils.h" #include "CacheTracker.h" #include "MatchExtensionGen.h" #ifndef LOG_TAG #define LOG_TAG "installd" #endif using android::base::StringPrintf; using std::endl; namespace android { namespace installd { static constexpr const char* kCpPath = "/system/bin/cp"; static constexpr const char* kXattrDefault = "user.default"; static constexpr const char* kPropHasReserved = "vold.has_reserved"; static constexpr const int MIN_RESTRICTED_HOME_SDK_VERSION = 24; // > M static constexpr const char* PKG_LIB_POSTFIX = "/lib"; static constexpr const char* CACHE_DIR_POSTFIX = "/cache"; static constexpr const char* CODE_CACHE_DIR_POSTFIX = "/code_cache"; static constexpr const char *kIdMapPath = "/system/bin/idmap"; static constexpr const char* IDMAP_PREFIX = "/data/resource-cache/"; static constexpr const char* IDMAP_SUFFIX = "@idmap"; // fsverity assumes the page size is always 4096. If not, the feature can not be // enabled. static constexpr int kVerityPageSize = 4096; static constexpr size_t kSha256Size = 32; static constexpr const char* kPropApkVerityMode = "ro.apk_verity.mode"; // NOTE: keep in sync with Installer static constexpr int FLAG_CLEAR_CACHE_ONLY = 1 << 8; static constexpr int FLAG_CLEAR_CODE_CACHE_ONLY = 1 << 9; static constexpr int FLAG_USE_QUOTA = 1 << 12; static constexpr int FLAG_FREE_CACHE_V2 = 1 << 13; static constexpr int FLAG_FREE_CACHE_V2_DEFY_QUOTA = 1 << 14; static constexpr int FLAG_FREE_CACHE_NOOP = 1 << 15; static constexpr int FLAG_FORCE = 1 << 16; namespace { constexpr const char* kDump = "android.permission.DUMP"; static binder::Status ok() { return binder::Status::ok(); } static binder::Status exception(uint32_t code, const std::string& msg) { LOG(ERROR) << msg << " (" << code << ")"; return binder::Status::fromExceptionCode(code, String8(msg.c_str())); } static binder::Status error() { return binder::Status::fromServiceSpecificError(errno); } static binder::Status error(const std::string& msg) { PLOG(ERROR) << msg; return binder::Status::fromServiceSpecificError(errno, String8(msg.c_str())); } static binder::Status error(uint32_t code, const std::string& msg) { LOG(ERROR) << msg << " (" << code << ")"; return binder::Status::fromServiceSpecificError(code, String8(msg.c_str())); } binder::Status checkPermission(const char* permission) { pid_t pid; uid_t uid; if (checkCallingPermission(String16(permission), reinterpret_cast<int32_t*>(&pid), reinterpret_cast<int32_t*>(&uid))) { return ok(); } else { return exception(binder::Status::EX_SECURITY, StringPrintf("UID %d / PID %d lacks permission %s", uid, pid, permission)); } } binder::Status checkUid(uid_t expectedUid) { uid_t uid = IPCThreadState::self()->getCallingUid(); if (uid == expectedUid || uid == AID_ROOT) { return ok(); } else { return exception(binder::Status::EX_SECURITY, StringPrintf("UID %d is not expected UID %d", uid, expectedUid)); } } binder::Status checkArgumentUuid(const std::unique_ptr<std::string>& uuid) { if (!uuid || is_valid_filename(*uuid)) { return ok(); } else { return exception(binder::Status::EX_ILLEGAL_ARGUMENT, StringPrintf("UUID %s is malformed", uuid->c_str())); } } binder::Status checkArgumentPackageName(const std::string& packageName) { if (is_valid_package_name(packageName.c_str())) { return ok(); } else { return exception(binder::Status::EX_ILLEGAL_ARGUMENT, StringPrintf("Package name %s is malformed", packageName.c_str())); } } binder::Status checkArgumentPath(const std::string& path) { if (path.empty()) { return exception(binder::Status::EX_ILLEGAL_ARGUMENT, "Missing path"); } if (path[0] != '/') { return exception(binder::Status::EX_ILLEGAL_ARGUMENT, StringPrintf("Path %s is relative", path.c_str())); } if ((path + '/').find("/../") != std::string::npos) { return exception(binder::Status::EX_ILLEGAL_ARGUMENT, StringPrintf("Path %s is shady", path.c_str())); } for (const char& c : path) { if (c == '\0' || c == '\n') { return exception(binder::Status::EX_ILLEGAL_ARGUMENT, StringPrintf("Path %s is malformed", path.c_str())); } } return ok(); } binder::Status checkArgumentPath(const std::unique_ptr<std::string>& path) { if (path) { return checkArgumentPath(*path); } else { return ok(); } } #define ENFORCE_UID(uid) { \ binder::Status status = checkUid((uid)); \ if (!status.isOk()) { \ return status; \ } \ } #define CHECK_ARGUMENT_UUID(uuid) { \ binder::Status status = checkArgumentUuid((uuid)); \ if (!status.isOk()) { \ return status; \ } \ } #define CHECK_ARGUMENT_PACKAGE_NAME(packageName) { \ binder::Status status = \ checkArgumentPackageName((packageName)); \ if (!status.isOk()) { \ return status; \ } \ } #define CHECK_ARGUMENT_PATH(path) { \ binder::Status status = checkArgumentPath((path)); \ if (!status.isOk()) { \ return status; \ } \ } #define ASSERT_PAGE_SIZE_4K() { \ if (getpagesize() != kVerityPageSize) { \ return error("FSVerity only supports 4K pages"); \ } \ } } // namespace status_t InstalldNativeService::start() { IPCThreadState::self()->disableBackgroundScheduling(true); status_t ret = BinderService<InstalldNativeService>::publish(); if (ret != android::OK) { return ret; } sp<ProcessState> ps(ProcessState::self()); ps->startThreadPool(); ps->giveThreadPoolName(); return android::OK; } status_t InstalldNativeService::dump(int fd, const Vector<String16> & /* args */) { auto out = std::fstream(StringPrintf("/proc/self/fd/%d", fd)); const binder::Status dump_permission = checkPermission(kDump); if (!dump_permission.isOk()) { out << dump_permission.toString8() << endl; return PERMISSION_DENIED; } std::lock_guard<std::recursive_mutex> lock(mLock); out << "installd is happy!" << endl; { std::lock_guard<std::recursive_mutex> lock(mMountsLock); out << endl << "Storage mounts:" << endl; for (const auto& n : mStorageMounts) { out << " " << n.first << " = " << n.second << endl; } out << endl << "Quota reverse mounts:" << endl; for (const auto& n : mQuotaReverseMounts) { out << " " << n.first << " = " << n.second << endl; } } { std::lock_guard<std::recursive_mutex> lock(mQuotasLock); out << endl << "Per-UID cache quotas:" << endl; for (const auto& n : mCacheQuotas) { out << " " << n.first << " = " << n.second << endl; } } out << endl; out.flush(); return NO_ERROR; } /** * Perform restorecon of the given path, but only perform recursive restorecon * if the label of that top-level file actually changed. This can save us * significant time by avoiding no-op traversals of large filesystem trees. */ static int restorecon_app_data_lazy(const std::string& path, const std::string& seInfo, uid_t uid, bool existing) { int res = 0; char* before = nullptr; char* after = nullptr; // Note that SELINUX_ANDROID_RESTORECON_DATADATA flag is set by // libselinux. Not needed here. if (lgetfilecon(path.c_str(), &before) < 0) { PLOG(ERROR) << "Failed before getfilecon for " << path; goto fail; } if (selinux_android_restorecon_pkgdir(path.c_str(), seInfo.c_str(), uid, 0) < 0) { PLOG(ERROR) << "Failed top-level restorecon for " << path; goto fail; } if (lgetfilecon(path.c_str(), &after) < 0) { PLOG(ERROR) << "Failed after getfilecon for " << path; goto fail; } // If the initial top-level restorecon above changed the label, then go // back and restorecon everything recursively if (strcmp(before, after)) { if (existing) { LOG(DEBUG) << "Detected label change from " << before << " to " << after << " at " << path << "; running recursive restorecon"; } if (selinux_android_restorecon_pkgdir(path.c_str(), seInfo.c_str(), uid, SELINUX_ANDROID_RESTORECON_RECURSE) < 0) { PLOG(ERROR) << "Failed recursive restorecon for " << path; goto fail; } } goto done; fail: res = -1; done: free(before); free(after); return res; } static int restorecon_app_data_lazy(const std::string& parent, const char* name, const std::string& seInfo, uid_t uid, bool existing) { return restorecon_app_data_lazy(StringPrintf("%s/%s", parent.c_str(), name), seInfo, uid, existing); } static int prepare_app_dir(const std::string& path, mode_t target_mode, uid_t uid) { if (fs_prepare_dir_strict(path.c_str(), target_mode, uid, uid) != 0) { PLOG(ERROR) << "Failed to prepare " << path; return -1; } return 0; } /** * Ensure that we have a hard-limit quota to protect against abusive apps; * they should never use more than 90% of blocks or 50% of inodes. */ static int prepare_app_quota(const std::unique_ptr<std::string>& uuid ATTRIBUTE_UNUSED, const std::string& device, uid_t uid) { // Skip when reserved blocks are protecting us against abusive apps if (android::base::GetBoolProperty(kPropHasReserved, false)) return 0; // Skip when device no quotas present if (device.empty()) return 0; struct dqblk dq; if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid, reinterpret_cast<char*>(&dq)) != 0) { PLOG(WARNING) << "Failed to find quota for " << uid; return -1; } #if APPLY_HARD_QUOTAS if ((dq.dqb_bhardlimit == 0) || (dq.dqb_ihardlimit == 0)) { auto path = create_data_path(uuid ? uuid->c_str() : nullptr); struct statvfs stat; if (statvfs(path.c_str(), &stat) != 0) { PLOG(WARNING) << "Failed to statvfs " << path; return -1; } dq.dqb_valid = QIF_LIMITS; dq.dqb_bhardlimit = (((static_cast<uint64_t>(stat.f_blocks) * stat.f_frsize) / 10) * 9) / QIF_DQBLKSIZE; dq.dqb_ihardlimit = (stat.f_files / 2); if (quotactl(QCMD(Q_SETQUOTA, USRQUOTA), device.c_str(), uid, reinterpret_cast<char*>(&dq)) != 0) { PLOG(WARNING) << "Failed to set hard quota for " << uid; return -1; } else { LOG(DEBUG) << "Applied hard quotas for " << uid; return 0; } } else { // Hard quota already set; assume it's reasonable return 0; } #else // Hard quotas disabled return 0; #endif } static bool prepare_app_profile_dir(const std::string& packageName, int32_t appId, int32_t userId) { if (!property_get_bool("dalvik.vm.usejitprofiles", false)) { return true; } int32_t uid = multiuser_get_uid(userId, appId); int shared_app_gid = multiuser_get_shared_gid(userId, appId); if (shared_app_gid == -1) { // TODO(calin): this should no longer be possible but do not continue if we don't get // a valid shared gid. PLOG(WARNING) << "Invalid shared_app_gid for " << packageName; return true; } const std::string profile_dir = create_primary_current_profile_package_dir_path(userId, packageName); // read-write-execute only for the app user. if (fs_prepare_dir_strict(profile_dir.c_str(), 0700, uid, uid) != 0) { PLOG(ERROR) << "Failed to prepare " << profile_dir; return false; } const std::string ref_profile_path = create_primary_reference_profile_package_dir_path(packageName); // Prepare the reference profile directory. Note that we use the non strict version of // fs_prepare_dir. This will fix the permission and the ownership to the correct values. // This is particularly important given that in O there were some fixes for how the // shared_app_gid is computed. // // Note that by the time we get here we know that we are using a correct uid (otherwise // prepare_app_dir and the above fs_prepare_file_strict which check the uid). So we // are sure that the gid being used belongs to the owning app and not someone else. // // dex2oat/profman runs under the shared app gid and it needs to read/write reference profiles. if (fs_prepare_dir(ref_profile_path.c_str(), 0770, AID_SYSTEM, shared_app_gid) != 0) { PLOG(ERROR) << "Failed to prepare " << ref_profile_path; return false; } return true; } binder::Status InstalldNativeService::createAppData(const std::unique_ptr<std::string>& uuid, const std::string& packageName, int32_t userId, int32_t flags, int32_t appId, const std::string& seInfo, int32_t targetSdkVersion, int64_t* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; const char* pkgname = packageName.c_str(); // Assume invalid inode unless filled in below if (_aidl_return != nullptr) *_aidl_return = -1; int32_t uid = multiuser_get_uid(userId, appId); int32_t cacheGid = multiuser_get_cache_gid(userId, appId); mode_t targetMode = targetSdkVersion >= MIN_RESTRICTED_HOME_SDK_VERSION ? 0700 : 0751; // If UID doesn't have a specific cache GID, use UID value if (cacheGid == -1) { cacheGid = uid; } if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid_, userId, pkgname); bool existing = (access(path.c_str(), F_OK) == 0); if (prepare_app_dir(path, targetMode, uid) || prepare_app_cache_dir(path, "cache", 02771, uid, cacheGid) || prepare_app_cache_dir(path, "code_cache", 02771, uid, cacheGid)) { return error("Failed to prepare " + path); } // Consider restorecon over contents if label changed if (restorecon_app_data_lazy(path, seInfo, uid, existing) || restorecon_app_data_lazy(path, "cache", seInfo, uid, existing) || restorecon_app_data_lazy(path, "code_cache", seInfo, uid, existing)) { return error("Failed to restorecon " + path); } // Remember inode numbers of cache directories so that we can clear // contents while CE storage is locked if (write_path_inode(path, "cache", kXattrInodeCache) || write_path_inode(path, "code_cache", kXattrInodeCodeCache)) { return error("Failed to write_path_inode for " + path); } // And return the CE inode of the top-level data directory so we can // clear contents while CE storage is locked if ((_aidl_return != nullptr) && get_path_inode(path, reinterpret_cast<ino_t*>(_aidl_return)) != 0) { return error("Failed to get_path_inode for " + path); } } if (flags & FLAG_STORAGE_DE) { auto path = create_data_user_de_package_path(uuid_, userId, pkgname); bool existing = (access(path.c_str(), F_OK) == 0); if (prepare_app_dir(path, targetMode, uid) || prepare_app_cache_dir(path, "cache", 02771, uid, cacheGid) || prepare_app_cache_dir(path, "code_cache", 02771, uid, cacheGid)) { return error("Failed to prepare " + path); } // Consider restorecon over contents if label changed if (restorecon_app_data_lazy(path, seInfo, uid, existing) || restorecon_app_data_lazy(path, "cache", seInfo, uid, existing) || restorecon_app_data_lazy(path, "code_cache", seInfo, uid, existing)) { return error("Failed to restorecon " + path); } if (prepare_app_quota(uuid, findQuotaDeviceForUuid(uuid), uid)) { return error("Failed to set hard quota " + path); } if (!prepare_app_profile_dir(packageName, appId, userId)) { return error("Failed to prepare profiles for " + packageName); } } return ok(); } binder::Status InstalldNativeService::migrateAppData(const std::unique_ptr<std::string>& uuid, const std::string& packageName, int32_t userId, int32_t flags) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; const char* pkgname = packageName.c_str(); // This method only exists to upgrade system apps that have requested // forceDeviceEncrypted, so their default storage always lives in a // consistent location. This only works on non-FBE devices, since we // never want to risk exposing data on a device with real CE/DE storage. auto ce_path = create_data_user_ce_package_path(uuid_, userId, pkgname); auto de_path = create_data_user_de_package_path(uuid_, userId, pkgname); // If neither directory is marked as default, assume CE is default if (getxattr(ce_path.c_str(), kXattrDefault, nullptr, 0) == -1 && getxattr(de_path.c_str(), kXattrDefault, nullptr, 0) == -1) { if (setxattr(ce_path.c_str(), kXattrDefault, nullptr, 0, 0) != 0) { return error("Failed to mark default storage " + ce_path); } } // Migrate default data location if needed auto target = (flags & FLAG_STORAGE_DE) ? de_path : ce_path; auto source = (flags & FLAG_STORAGE_DE) ? ce_path : de_path; if (getxattr(target.c_str(), kXattrDefault, nullptr, 0) == -1) { LOG(WARNING) << "Requested default storage " << target << " is not active; migrating from " << source; if (delete_dir_contents_and_dir(target) != 0) { return error("Failed to delete " + target); } if (rename(source.c_str(), target.c_str()) != 0) { return error("Failed to rename " + source + " to " + target); } } return ok(); } binder::Status InstalldNativeService::clearAppProfiles(const std::string& packageName, const std::string& profileName) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); binder::Status res = ok(); if (!clear_primary_reference_profile(packageName, profileName)) { res = error("Failed to clear reference profile for " + packageName); } if (!clear_primary_current_profiles(packageName, profileName)) { res = error("Failed to clear current profiles for " + packageName); } return res; } binder::Status InstalldNativeService::clearAppData(const std::unique_ptr<std::string>& uuid, const std::string& packageName, int32_t userId, int32_t flags, int64_t ceDataInode) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; const char* pkgname = packageName.c_str(); binder::Status res = ok(); if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid_, userId, pkgname, ceDataInode); if (flags & FLAG_CLEAR_CACHE_ONLY) { path = read_path_inode(path, "cache", kXattrInodeCache); } else if (flags & FLAG_CLEAR_CODE_CACHE_ONLY) { path = read_path_inode(path, "code_cache", kXattrInodeCodeCache); } if (access(path.c_str(), F_OK) == 0) { if (delete_dir_contents(path) != 0) { res = error("Failed to delete contents of " + path); } else if ((flags & (FLAG_CLEAR_CACHE_ONLY | FLAG_CLEAR_CODE_CACHE_ONLY)) == 0) { remove_path_xattr(path, kXattrInodeCache); remove_path_xattr(path, kXattrInodeCodeCache); } } } if (flags & FLAG_STORAGE_DE) { std::string suffix = ""; bool only_cache = false; if (flags & FLAG_CLEAR_CACHE_ONLY) { suffix = CACHE_DIR_POSTFIX; only_cache = true; } else if (flags & FLAG_CLEAR_CODE_CACHE_ONLY) { suffix = CODE_CACHE_DIR_POSTFIX; only_cache = true; } auto path = create_data_user_de_package_path(uuid_, userId, pkgname) + suffix; if (access(path.c_str(), F_OK) == 0) { if (delete_dir_contents(path) != 0) { res = error("Failed to delete contents of " + path); } } } return res; } static int destroy_app_reference_profile(const std::string& pkgname) { return delete_dir_contents_and_dir( create_primary_reference_profile_package_dir_path(pkgname), /*ignore_if_missing*/ true); } static int destroy_app_current_profiles(const std::string& pkgname, userid_t userid) { return delete_dir_contents_and_dir( create_primary_current_profile_package_dir_path(userid, pkgname), /*ignore_if_missing*/ true); } binder::Status InstalldNativeService::destroyAppProfiles(const std::string& packageName) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); binder::Status res = ok(); std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr); for (auto user : users) { if (destroy_app_current_profiles(packageName, user) != 0) { res = error("Failed to destroy current profiles for " + packageName); } } if (destroy_app_reference_profile(packageName) != 0) { res = error("Failed to destroy reference profile for " + packageName); } return res; } binder::Status InstalldNativeService::destroyAppData(const std::unique_ptr<std::string>& uuid, const std::string& packageName, int32_t userId, int32_t flags, int64_t ceDataInode) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; const char* pkgname = packageName.c_str(); binder::Status res = ok(); if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid_, userId, pkgname, ceDataInode); if (delete_dir_contents_and_dir(path) != 0) { res = error("Failed to delete " + path); } } if (flags & FLAG_STORAGE_DE) { auto path = create_data_user_de_package_path(uuid_, userId, pkgname); if (delete_dir_contents_and_dir(path) != 0) { res = error("Failed to delete " + path); } destroy_app_current_profiles(packageName, userId); // TODO(calin): If the package is still installed by other users it's probably // beneficial to keep the reference profile around. // Verify if it's ok to do that. destroy_app_reference_profile(packageName); } return res; } static gid_t get_cache_gid(uid_t uid) { int32_t gid = multiuser_get_cache_gid(multiuser_get_user_id(uid), multiuser_get_app_id(uid)); return (gid != -1) ? gid : uid; } binder::Status InstalldNativeService::fixupAppData(const std::unique_ptr<std::string>& uuid, int32_t flags) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; for (auto user : get_known_users(uuid_)) { ATRACE_BEGIN("fixup user"); FTS* fts; FTSENT* p; auto ce_path = create_data_user_ce_path(uuid_, user); auto de_path = create_data_user_de_path(uuid_, user); char *argv[] = { (char*) ce_path.c_str(), (char*) de_path.c_str(), nullptr }; if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) { return error("Failed to fts_open"); } while ((p = fts_read(fts)) != nullptr) { if (p->fts_info == FTS_D && p->fts_level == 1) { // Track down inodes of cache directories uint64_t raw = 0; ino_t inode_cache = 0; ino_t inode_code_cache = 0; if (getxattr(p->fts_path, kXattrInodeCache, &raw, sizeof(raw)) == sizeof(raw)) { inode_cache = raw; } if (getxattr(p->fts_path, kXattrInodeCodeCache, &raw, sizeof(raw)) == sizeof(raw)) { inode_code_cache = raw; } // Figure out expected GID of each child FTSENT* child = fts_children(fts, 0); while (child != nullptr) { if ((child->fts_statp->st_ino == inode_cache) || (child->fts_statp->st_ino == inode_code_cache) || !strcmp(child->fts_name, "cache") || !strcmp(child->fts_name, "code_cache")) { child->fts_number = get_cache_gid(p->fts_statp->st_uid); } else { child->fts_number = p->fts_statp->st_uid; } child = child->fts_link; } } else if (p->fts_level >= 2) { if (p->fts_level > 2) { // Inherit GID from parent once we're deeper into tree p->fts_number = p->fts_parent->fts_number; } uid_t uid = p->fts_parent->fts_statp->st_uid; gid_t cache_gid = get_cache_gid(uid); gid_t expected = p->fts_number; gid_t actual = p->fts_statp->st_gid; if (actual == expected) { #if FIXUP_DEBUG LOG(DEBUG) << "Ignoring " << p->fts_path << " with expected GID " << expected; #endif if (!(flags & FLAG_FORCE)) { fts_set(fts, p, FTS_SKIP); } } else if ((actual == uid) || (actual == cache_gid)) { // Only consider fixing up when current GID belongs to app if (p->fts_info != FTS_D) { LOG(INFO) << "Fixing " << p->fts_path << " with unexpected GID " << actual << " instead of " << expected; } switch (p->fts_info) { case FTS_DP: // If we're moving towards cache GID, we need to set S_ISGID if (expected == cache_gid) { if (chmod(p->fts_path, 02771) != 0) { PLOG(WARNING) << "Failed to chmod " << p->fts_path; } } // Intentional fall through to also set GID case FTS_F: if (chown(p->fts_path, -1, expected) != 0) { PLOG(WARNING) << "Failed to chown " << p->fts_path; } break; case FTS_SL: case FTS_SLNONE: if (lchown(p->fts_path, -1, expected) != 0) { PLOG(WARNING) << "Failed to chown " << p->fts_path; } break; } } else { // Ignore all other GID transitions, since they're kinda shady LOG(WARNING) << "Ignoring " << p->fts_path << " with unexpected GID " << actual << " instead of " << expected; if (!(flags & FLAG_FORCE)) { fts_set(fts, p, FTS_SKIP); } } } } fts_close(fts); ATRACE_END(); } return ok(); } binder::Status InstalldNativeService::moveCompleteApp(const std::unique_ptr<std::string>& fromUuid, const std::unique_ptr<std::string>& toUuid, const std::string& packageName, const std::string& dataAppName, int32_t appId, const std::string& seInfo, int32_t targetSdkVersion) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(fromUuid); CHECK_ARGUMENT_UUID(toUuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); const char* from_uuid = fromUuid ? fromUuid->c_str() : nullptr; const char* to_uuid = toUuid ? toUuid->c_str() : nullptr; const char* package_name = packageName.c_str(); const char* data_app_name = dataAppName.c_str(); binder::Status res = ok(); std::vector<userid_t> users = get_known_users(from_uuid); // Copy app { auto from = create_data_app_package_path(from_uuid, data_app_name); auto to = create_data_app_package_path(to_uuid, data_app_name); auto to_parent = create_data_app_path(to_uuid); char *argv[] = { (char*) kCpPath, (char*) "-F", /* delete any existing destination file first (--remove-destination) */ (char*) "-p", /* preserve timestamps, ownership, and permissions */ (char*) "-R", /* recurse into subdirectories (DEST must be a directory) */ (char*) "-P", /* Do not follow symlinks [default] */ (char*) "-d", /* don't dereference symlinks */ (char*) from.c_str(), (char*) to_parent.c_str() }; LOG(DEBUG) << "Copying " << from << " to " << to; int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true); if (rc != 0) { res = error(rc, "Failed copying " + from + " to " + to); goto fail; } if (selinux_android_restorecon(to.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE) != 0) { res = error("Failed to restorecon " + to); goto fail; } } // Copy private data for all known users for (auto user : users) { // Data source may not exist for all users; that's okay auto from_ce = create_data_user_ce_package_path(from_uuid, user, package_name); if (access(from_ce.c_str(), F_OK) != 0) { LOG(INFO) << "Missing source " << from_ce; continue; } if (!createAppData(toUuid, packageName, user, FLAG_STORAGE_CE | FLAG_STORAGE_DE, appId, seInfo, targetSdkVersion, nullptr).isOk()) { res = error("Failed to create package target"); goto fail; } char *argv[] = { (char*) kCpPath, (char*) "-F", /* delete any existing destination file first (--remove-destination) */ (char*) "-p", /* preserve timestamps, ownership, and permissions */ (char*) "-R", /* recurse into subdirectories (DEST must be a directory) */ (char*) "-P", /* Do not follow symlinks [default] */ (char*) "-d", /* don't dereference symlinks */ nullptr, nullptr }; { auto from = create_data_user_de_package_path(from_uuid, user, package_name); auto to = create_data_user_de_path(to_uuid, user); argv[6] = (char*) from.c_str(); argv[7] = (char*) to.c_str(); LOG(DEBUG) << "Copying " << from << " to " << to; int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true); if (rc != 0) { res = error(rc, "Failed copying " + from + " to " + to); goto fail; } } { auto from = create_data_user_ce_package_path(from_uuid, user, package_name); auto to = create_data_user_ce_path(to_uuid, user); argv[6] = (char*) from.c_str(); argv[7] = (char*) to.c_str(); LOG(DEBUG) << "Copying " << from << " to " << to; int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true); if (rc != 0) { res = error(rc, "Failed copying " + from + " to " + to); goto fail; } } if (!restoreconAppData(toUuid, packageName, user, FLAG_STORAGE_CE | FLAG_STORAGE_DE, appId, seInfo).isOk()) { res = error("Failed to restorecon"); goto fail; } } // We let the framework scan the new location and persist that before // deleting the data in the old location; this ordering ensures that // we can recover from things like battery pulls. return ok(); fail: // Nuke everything we might have already copied { auto to = create_data_app_package_path(to_uuid, data_app_name); if (delete_dir_contents(to.c_str(), 1, NULL) != 0) { LOG(WARNING) << "Failed to rollback " << to; } } for (auto user : users) { { auto to = create_data_user_de_package_path(to_uuid, user, package_name); if (delete_dir_contents(to.c_str(), 1, NULL) != 0) { LOG(WARNING) << "Failed to rollback " << to; } } { auto to = create_data_user_ce_package_path(to_uuid, user, package_name); if (delete_dir_contents(to.c_str(), 1, NULL) != 0) { LOG(WARNING) << "Failed to rollback " << to; } } } return res; } binder::Status InstalldNativeService::createUserData(const std::unique_ptr<std::string>& uuid, int32_t userId, int32_t userSerial ATTRIBUTE_UNUSED, int32_t flags) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; if (flags & FLAG_STORAGE_DE) { if (uuid_ == nullptr) { if (ensure_config_user_dirs(userId) != 0) { return error(StringPrintf("Failed to ensure dirs for %d", userId)); } } } // Data under /data/media doesn't have an app, but we still want // to limit it to prevent abuse. if (prepare_app_quota(uuid, findQuotaDeviceForUuid(uuid), multiuser_get_uid(userId, AID_MEDIA_RW))) { return error("Failed to set hard quota for media_rw"); } return ok(); } binder::Status InstalldNativeService::destroyUserData(const std::unique_ptr<std::string>& uuid, int32_t userId, int32_t flags) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; binder::Status res = ok(); if (flags & FLAG_STORAGE_DE) { auto path = create_data_user_de_path(uuid_, userId); if (delete_dir_contents_and_dir(path, true) != 0) { res = error("Failed to delete " + path); } if (uuid_ == nullptr) { path = create_data_misc_legacy_path(userId); if (delete_dir_contents_and_dir(path, true) != 0) { res = error("Failed to delete " + path); } path = create_primary_cur_profile_dir_path(userId); if (delete_dir_contents_and_dir(path, true) != 0) { res = error("Failed to delete " + path); } } } if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_path(uuid_, userId); if (delete_dir_contents_and_dir(path, true) != 0) { res = error("Failed to delete " + path); } path = findDataMediaPath(uuid, userId); if (delete_dir_contents_and_dir(path, true) != 0) { res = error("Failed to delete " + path); } } return res; } binder::Status InstalldNativeService::freeCache(const std::unique_ptr<std::string>& uuid, int64_t targetFreeBytes, int64_t cacheReservedBytes, int32_t flags) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; auto data_path = create_data_path(uuid_); auto device = findQuotaDeviceForUuid(uuid); auto noop = (flags & FLAG_FREE_CACHE_NOOP); int64_t free = data_disk_free(data_path); if (free < 0) { return error("Failed to determine free space for " + data_path); } int64_t cleared = 0; int64_t needed = targetFreeBytes - free; LOG(DEBUG) << "Device " << data_path << " has " << free << " free; requested " << targetFreeBytes << "; needed " << needed; if (free >= targetFreeBytes) { return ok(); } if (flags & FLAG_FREE_CACHE_V2) { // This new cache strategy fairly removes files from UIDs by deleting // files from the UIDs which are most over their allocated quota // 1. Create trackers for every known UID ATRACE_BEGIN("create"); std::unordered_map<uid_t, std::shared_ptr<CacheTracker>> trackers; for (auto user : get_known_users(uuid_)) { FTS *fts; FTSENT *p; auto ce_path = create_data_user_ce_path(uuid_, user); auto de_path = create_data_user_de_path(uuid_, user); auto media_path = findDataMediaPath(uuid, user) + "/Android/data/"; char *argv[] = { (char*) ce_path.c_str(), (char*) de_path.c_str(), (char*) media_path.c_str(), nullptr }; if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) { return error("Failed to fts_open"); } while ((p = fts_read(fts)) != NULL) { if (p->fts_info == FTS_D && p->fts_level == 1) { uid_t uid = p->fts_statp->st_uid; if (multiuser_get_app_id(uid) == AID_MEDIA_RW) { uid = (multiuser_get_app_id(p->fts_statp->st_gid) - AID_EXT_GID_START) + AID_APP_START; } auto search = trackers.find(uid); if (search != trackers.end()) { search->second->addDataPath(p->fts_path); } else { auto tracker = std::shared_ptr<CacheTracker>(new CacheTracker( multiuser_get_user_id(uid), multiuser_get_app_id(uid), device)); tracker->addDataPath(p->fts_path); { std::lock_guard<std::recursive_mutex> lock(mQuotasLock); tracker->cacheQuota = mCacheQuotas[uid]; } if (tracker->cacheQuota == 0) { #if MEASURE_DEBUG LOG(WARNING) << "UID " << uid << " has no cache quota; assuming 64MB"; #endif tracker->cacheQuota = 67108864; } trackers[uid] = tracker; } fts_set(fts, p, FTS_SKIP); } } fts_close(fts); } ATRACE_END(); // 2. Populate tracker stats and insert into priority queue ATRACE_BEGIN("populate"); int64_t cacheTotal = 0; auto cmp = [](std::shared_ptr<CacheTracker> left, std::shared_ptr<CacheTracker> right) { return (left->getCacheRatio() < right->getCacheRatio()); }; std::priority_queue<std::shared_ptr<CacheTracker>, std::vector<std::shared_ptr<CacheTracker>>, decltype(cmp)> queue(cmp); for (const auto& it : trackers) { it.second->loadStats(); queue.push(it.second); cacheTotal += it.second->cacheUsed; } ATRACE_END(); // 3. Bounce across the queue, freeing items from whichever tracker is // the most over their assigned quota ATRACE_BEGIN("bounce"); std::shared_ptr<CacheTracker> active; while (active || !queue.empty()) { // Only look at apps under quota when explicitly requested if (active && (active->getCacheRatio() < 10000) && !(flags & FLAG_FREE_CACHE_V2_DEFY_QUOTA)) { LOG(DEBUG) << "Active ratio " << active->getCacheRatio() << " isn't over quota, and defy not requested"; break; } // Only keep clearing when we haven't pushed into reserved area if (cacheReservedBytes > 0 && cleared >= (cacheTotal - cacheReservedBytes)) { LOG(DEBUG) << "Refusing to clear cached data in reserved space"; break; } // Find the best tracker to work with; this might involve swapping // if the active tracker is no longer the most over quota bool nextBetter = active && !queue.empty() && active->getCacheRatio() < queue.top()->getCacheRatio(); if (!active || nextBetter) { if (active) { // Current tracker still has items, so we'll consider it // again later once it bubbles up to surface queue.push(active); } active = queue.top(); queue.pop(); active->ensureItems(); continue; } // If no items remain, go find another tracker if (active->items.empty()) { active = nullptr; continue; } else { auto item = active->items.back(); active->items.pop_back(); LOG(DEBUG) << "Purging " << item->toString() << " from " << active->toString(); if (!noop) { item->purge(); } active->cacheUsed -= item->size; needed -= item->size; cleared += item->size; } // Verify that we're actually done before bailing, since sneaky // apps might be using hardlinks if (needed <= 0) { free = data_disk_free(data_path); needed = targetFreeBytes - free; if (needed <= 0) { break; } else { LOG(WARNING) << "Expected to be done but still need " << needed; } } } ATRACE_END(); } else { return error("Legacy cache logic no longer supported"); } free = data_disk_free(data_path); if (free >= targetFreeBytes) { return ok(); } else { return error(StringPrintf("Failed to free up %" PRId64 " on %s; final free space %" PRId64, targetFreeBytes, data_path.c_str(), free)); } } binder::Status InstalldNativeService::rmdex(const std::string& codePath, const std::string& instructionSet) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(codePath); std::lock_guard<std::recursive_mutex> lock(mLock); char dex_path[PKG_PATH_MAX]; const char* path = codePath.c_str(); const char* instruction_set = instructionSet.c_str(); if (validate_apk_path(path) && validate_system_app_path(path)) { return error("Invalid path " + codePath); } if (!create_cache_path(dex_path, path, instruction_set)) { return error("Failed to create cache path for " + codePath); } ALOGV("unlink %s\n", dex_path); if (unlink(dex_path) < 0) { // It's ok if we don't have a dalvik cache path. Report error only when the path exists // but could not be unlinked. if (errno != ENOENT) { return error(StringPrintf("Failed to unlink %s", dex_path)); } } return ok(); } struct stats { int64_t codeSize; int64_t dataSize; int64_t cacheSize; }; #if MEASURE_DEBUG static std::string toString(std::vector<int64_t> values) { std::stringstream res; res << "["; for (size_t i = 0; i < values.size(); i++) { res << values[i]; if (i < values.size() - 1) { res << ","; } } res << "]"; return res.str(); } #endif static void collectQuotaStats(const std::string& device, int32_t userId, int32_t appId, struct stats* stats, struct stats* extStats) { if (device.empty()) return; struct dqblk dq; if (stats != nullptr) { uid_t uid = multiuser_get_uid(userId, appId); if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for UID " << uid; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for UID " << uid << " " << dq.dqb_curspace; #endif stats->dataSize += dq.dqb_curspace; } int cacheGid = multiuser_get_cache_gid(userId, appId); if (cacheGid != -1) { if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), cacheGid, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << cacheGid; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << cacheGid << " " << dq.dqb_curspace; #endif stats->cacheSize += dq.dqb_curspace; } } int sharedGid = multiuser_get_shared_gid(0, appId); if (sharedGid != -1) { if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), sharedGid, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << sharedGid; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << sharedGid << " " << dq.dqb_curspace; #endif stats->codeSize += dq.dqb_curspace; } } } if (extStats != nullptr) { int extGid = multiuser_get_ext_gid(userId, appId); if (extGid != -1) { if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), extGid, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << extGid; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << extGid << " " << dq.dqb_curspace; #endif extStats->dataSize += dq.dqb_curspace; } } int extCacheGid = multiuser_get_ext_cache_gid(userId, appId); if (extCacheGid != -1) { if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), extCacheGid, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << extCacheGid; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << extCacheGid << " " << dq.dqb_curspace; #endif extStats->dataSize += dq.dqb_curspace; extStats->cacheSize += dq.dqb_curspace; } } } } static void collectManualStats(const std::string& path, struct stats* stats) { DIR *d; int dfd; struct dirent *de; struct stat s; d = opendir(path.c_str()); if (d == nullptr) { if (errno != ENOENT) { PLOG(WARNING) << "Failed to open " << path; } return; } dfd = dirfd(d); while ((de = readdir(d))) { const char *name = de->d_name; int64_t size = 0; if (fstatat(dfd, name, &s, AT_SYMLINK_NOFOLLOW) == 0) { size = s.st_blocks * 512; } if (de->d_type == DT_DIR) { if (!strcmp(name, ".")) { // Don't recurse, but still count node size } else if (!strcmp(name, "..")) { // Don't recurse or count node size continue; } else { // Measure all children nodes size = 0; calculate_tree_size(StringPrintf("%s/%s", path.c_str(), name), &size); } if (!strcmp(name, "cache") || !strcmp(name, "code_cache")) { stats->cacheSize += size; } } // Legacy symlink isn't owned by app if (de->d_type == DT_LNK && !strcmp(name, "lib")) { continue; } // Everything found inside is considered data stats->dataSize += size; } closedir(d); } static void collectManualStatsForUser(const std::string& path, struct stats* stats, bool exclude_apps = false) { DIR *d; int dfd; struct dirent *de; struct stat s; d = opendir(path.c_str()); if (d == nullptr) { if (errno != ENOENT) { PLOG(WARNING) << "Failed to open " << path; } return; } dfd = dirfd(d); while ((de = readdir(d))) { if (de->d_type == DT_DIR) { const char *name = de->d_name; if (fstatat(dfd, name, &s, AT_SYMLINK_NOFOLLOW) != 0) { continue; } int32_t user_uid = multiuser_get_app_id(s.st_uid); if (!strcmp(name, ".") || !strcmp(name, "..")) { continue; } else if (exclude_apps && (user_uid >= AID_APP_START && user_uid <= AID_APP_END)) { continue; } else { collectManualStats(StringPrintf("%s/%s", path.c_str(), name), stats); } } } closedir(d); } static void collectManualExternalStatsForUser(const std::string& path, struct stats* stats) { FTS *fts; FTSENT *p; char *argv[] = { (char*) path.c_str(), nullptr }; if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) { PLOG(ERROR) << "Failed to fts_open " << path; return; } while ((p = fts_read(fts)) != NULL) { p->fts_number = p->fts_parent->fts_number; switch (p->fts_info) { case FTS_D: if (p->fts_level == 4 && !strcmp(p->fts_name, "cache") && !strcmp(p->fts_parent->fts_parent->fts_name, "data") && !strcmp(p->fts_parent->fts_parent->fts_parent->fts_name, "Android")) { p->fts_number = 1; } // Fall through to count the directory case FTS_DEFAULT: case FTS_F: case FTS_SL: case FTS_SLNONE: int64_t size = (p->fts_statp->st_blocks * 512); if (p->fts_number == 1) { stats->cacheSize += size; } stats->dataSize += size; break; } } fts_close(fts); } binder::Status InstalldNativeService::getAppSize(const std::unique_ptr<std::string>& uuid, const std::vector<std::string>& packageNames, int32_t userId, int32_t flags, int32_t appId, const std::vector<int64_t>& ceDataInodes, const std::vector<std::string>& codePaths, std::vector<int64_t>* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); for (const auto& packageName : packageNames) { CHECK_ARGUMENT_PACKAGE_NAME(packageName); } for (const auto& codePath : codePaths) { CHECK_ARGUMENT_PATH(codePath); } // NOTE: Locking is relaxed on this method, since it's limited to // read-only measurements without mutation. // When modifying this logic, always verify using tests: // runtest -x frameworks/base/services/tests/servicestests/src/com/android/server/pm/InstallerTest.java -m testGetAppSize #if MEASURE_DEBUG LOG(INFO) << "Measuring user " << userId << " app " << appId; #endif // Here's a summary of the common storage locations across the platform, // and how they're each tagged: // // /data/app/com.example UID system // /data/app/com.example/oat UID system // /data/user/0/com.example UID u0_a10 GID u0_a10 // /data/user/0/com.example/cache UID u0_a10 GID u0_a10_cache // /data/media/0/foo.txt UID u0_media_rw // /data/media/0/bar.jpg UID u0_media_rw GID u0_media_image // /data/media/0/Android/data/com.example UID u0_media_rw GID u0_a10_ext // /data/media/0/Android/data/com.example/cache UID u0_media_rw GID u0_a10_ext_cache // /data/media/obb/com.example UID system struct stats stats; struct stats extStats; memset(&stats, 0, sizeof(stats)); memset(&extStats, 0, sizeof(extStats)); const char* uuid_ = uuid ? uuid->c_str() : nullptr; auto device = findQuotaDeviceForUuid(uuid); if (device.empty()) { flags &= ~FLAG_USE_QUOTA; } ATRACE_BEGIN("obb"); for (const auto& packageName : packageNames) { auto obbCodePath = create_data_media_obb_path(uuid_, packageName.c_str()); calculate_tree_size(obbCodePath, &extStats.codeSize); } ATRACE_END(); if (flags & FLAG_USE_QUOTA && appId >= AID_APP_START) { ATRACE_BEGIN("code"); for (const auto& codePath : codePaths) { calculate_tree_size(codePath, &stats.codeSize, -1, multiuser_get_shared_gid(0, appId)); } ATRACE_END(); ATRACE_BEGIN("quota"); collectQuotaStats(device, userId, appId, &stats, &extStats); ATRACE_END(); } else { ATRACE_BEGIN("code"); for (const auto& codePath : codePaths) { calculate_tree_size(codePath, &stats.codeSize); } ATRACE_END(); for (size_t i = 0; i < packageNames.size(); i++) { const char* pkgname = packageNames[i].c_str(); ATRACE_BEGIN("data"); auto cePath = create_data_user_ce_package_path(uuid_, userId, pkgname, ceDataInodes[i]); collectManualStats(cePath, &stats); auto dePath = create_data_user_de_package_path(uuid_, userId, pkgname); collectManualStats(dePath, &stats); ATRACE_END(); if (!uuid) { ATRACE_BEGIN("profiles"); calculate_tree_size( create_primary_current_profile_package_dir_path(userId, pkgname), &stats.dataSize); calculate_tree_size( create_primary_reference_profile_package_dir_path(pkgname), &stats.codeSize); ATRACE_END(); } ATRACE_BEGIN("external"); auto extPath = create_data_media_package_path(uuid_, userId, "data", pkgname); collectManualStats(extPath, &extStats); auto mediaPath = create_data_media_package_path(uuid_, userId, "media", pkgname); calculate_tree_size(mediaPath, &extStats.dataSize); ATRACE_END(); } if (!uuid) { ATRACE_BEGIN("dalvik"); int32_t sharedGid = multiuser_get_shared_gid(0, appId); if (sharedGid != -1) { calculate_tree_size(create_data_dalvik_cache_path(), &stats.codeSize, sharedGid, -1); } ATRACE_END(); } } std::vector<int64_t> ret; ret.push_back(stats.codeSize); ret.push_back(stats.dataSize); ret.push_back(stats.cacheSize); ret.push_back(extStats.codeSize); ret.push_back(extStats.dataSize); ret.push_back(extStats.cacheSize); #if MEASURE_DEBUG LOG(DEBUG) << "Final result " << toString(ret); #endif *_aidl_return = ret; return ok(); } binder::Status InstalldNativeService::getUserSize(const std::unique_ptr<std::string>& uuid, int32_t userId, int32_t flags, const std::vector<int32_t>& appIds, std::vector<int64_t>* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); // NOTE: Locking is relaxed on this method, since it's limited to // read-only measurements without mutation. // When modifying this logic, always verify using tests: // runtest -x frameworks/base/services/tests/servicestests/src/com/android/server/pm/InstallerTest.java -m testGetUserSize #if MEASURE_DEBUG LOG(INFO) << "Measuring user " << userId; #endif struct stats stats; struct stats extStats; memset(&stats, 0, sizeof(stats)); memset(&extStats, 0, sizeof(extStats)); const char* uuid_ = uuid ? uuid->c_str() : nullptr; auto device = findQuotaDeviceForUuid(uuid); if (device.empty()) { flags &= ~FLAG_USE_QUOTA; } if (flags & FLAG_USE_QUOTA) { struct dqblk dq; ATRACE_BEGIN("obb"); if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), AID_MEDIA_OBB, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << AID_MEDIA_OBB; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << AID_MEDIA_OBB << " " << dq.dqb_curspace; #endif extStats.codeSize += dq.dqb_curspace; } ATRACE_END(); ATRACE_BEGIN("code"); calculate_tree_size(create_data_app_path(uuid_), &stats.codeSize, -1, -1, true); ATRACE_END(); ATRACE_BEGIN("data"); auto cePath = create_data_user_ce_path(uuid_, userId); collectManualStatsForUser(cePath, &stats, true); auto dePath = create_data_user_de_path(uuid_, userId); collectManualStatsForUser(dePath, &stats, true); ATRACE_END(); if (!uuid) { ATRACE_BEGIN("profile"); auto userProfilePath = create_primary_cur_profile_dir_path(userId); calculate_tree_size(userProfilePath, &stats.dataSize, -1, -1, true); auto refProfilePath = create_primary_ref_profile_dir_path(); calculate_tree_size(refProfilePath, &stats.codeSize, -1, -1, true); ATRACE_END(); } ATRACE_BEGIN("external"); uid_t uid = multiuser_get_uid(userId, AID_MEDIA_RW); if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for UID " << uid; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for UID " << uid << " " << dq.dqb_curspace; #endif extStats.dataSize += dq.dqb_curspace; } ATRACE_END(); if (!uuid) { ATRACE_BEGIN("dalvik"); calculate_tree_size(create_data_dalvik_cache_path(), &stats.codeSize, -1, -1, true); calculate_tree_size(create_primary_cur_profile_dir_path(userId), &stats.dataSize, -1, -1, true); ATRACE_END(); } ATRACE_BEGIN("quota"); int64_t dataSize = extStats.dataSize; for (auto appId : appIds) { if (appId >= AID_APP_START) { collectQuotaStats(device, userId, appId, &stats, &extStats); #if MEASURE_DEBUG // Sleep to make sure we don't lose logs usleep(1); #endif } } extStats.dataSize = dataSize; ATRACE_END(); } else { ATRACE_BEGIN("obb"); auto obbPath = create_data_path(uuid_) + "/media/obb"; calculate_tree_size(obbPath, &extStats.codeSize); ATRACE_END(); ATRACE_BEGIN("code"); calculate_tree_size(create_data_app_path(uuid_), &stats.codeSize); ATRACE_END(); ATRACE_BEGIN("data"); auto cePath = create_data_user_ce_path(uuid_, userId); collectManualStatsForUser(cePath, &stats); auto dePath = create_data_user_de_path(uuid_, userId); collectManualStatsForUser(dePath, &stats); ATRACE_END(); if (!uuid) { ATRACE_BEGIN("profile"); auto userProfilePath = create_primary_cur_profile_dir_path(userId); calculate_tree_size(userProfilePath, &stats.dataSize); auto refProfilePath = create_primary_ref_profile_dir_path(); calculate_tree_size(refProfilePath, &stats.codeSize); ATRACE_END(); } ATRACE_BEGIN("external"); auto dataMediaPath = create_data_media_path(uuid_, userId); collectManualExternalStatsForUser(dataMediaPath, &extStats); #if MEASURE_DEBUG LOG(DEBUG) << "Measured external data " << extStats.dataSize << " cache " << extStats.cacheSize; #endif ATRACE_END(); if (!uuid) { ATRACE_BEGIN("dalvik"); calculate_tree_size(create_data_dalvik_cache_path(), &stats.codeSize); calculate_tree_size(create_primary_cur_profile_dir_path(userId), &stats.dataSize); ATRACE_END(); } } std::vector<int64_t> ret; ret.push_back(stats.codeSize); ret.push_back(stats.dataSize); ret.push_back(stats.cacheSize); ret.push_back(extStats.codeSize); ret.push_back(extStats.dataSize); ret.push_back(extStats.cacheSize); #if MEASURE_DEBUG LOG(DEBUG) << "Final result " << toString(ret); #endif *_aidl_return = ret; return ok(); } binder::Status InstalldNativeService::getExternalSize(const std::unique_ptr<std::string>& uuid, int32_t userId, int32_t flags, const std::vector<int32_t>& appIds, std::vector<int64_t>* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); // NOTE: Locking is relaxed on this method, since it's limited to // read-only measurements without mutation. // When modifying this logic, always verify using tests: // runtest -x frameworks/base/services/tests/servicestests/src/com/android/server/pm/InstallerTest.java -m testGetExternalSize #if MEASURE_DEBUG LOG(INFO) << "Measuring external " << userId; #endif const char* uuid_ = uuid ? uuid->c_str() : nullptr; int64_t totalSize = 0; int64_t audioSize = 0; int64_t videoSize = 0; int64_t imageSize = 0; int64_t appSize = 0; int64_t obbSize = 0; auto device = findQuotaDeviceForUuid(uuid); if (device.empty()) { flags &= ~FLAG_USE_QUOTA; } if (flags & FLAG_USE_QUOTA) { struct dqblk dq; ATRACE_BEGIN("quota"); uid_t uid = multiuser_get_uid(userId, AID_MEDIA_RW); if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid, reinterpret_cast<char*>(&dq)) != 0) { if (errno != ESRCH) { PLOG(ERROR) << "Failed to quotactl " << device << " for UID " << uid; } } else { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for UID " << uid << " " << dq.dqb_curspace; #endif totalSize = dq.dqb_curspace; } gid_t audioGid = multiuser_get_uid(userId, AID_MEDIA_AUDIO); if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), audioGid, reinterpret_cast<char*>(&dq)) == 0) { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << audioGid << " " << dq.dqb_curspace; #endif audioSize = dq.dqb_curspace; } gid_t videoGid = multiuser_get_uid(userId, AID_MEDIA_VIDEO); if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), videoGid, reinterpret_cast<char*>(&dq)) == 0) { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << videoGid << " " << dq.dqb_curspace; #endif videoSize = dq.dqb_curspace; } gid_t imageGid = multiuser_get_uid(userId, AID_MEDIA_IMAGE); if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), imageGid, reinterpret_cast<char*>(&dq)) == 0) { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << imageGid << " " << dq.dqb_curspace; #endif imageSize = dq.dqb_curspace; } if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), AID_MEDIA_OBB, reinterpret_cast<char*>(&dq)) == 0) { #if MEASURE_DEBUG LOG(DEBUG) << "quotactl() for GID " << AID_MEDIA_OBB << " " << dq.dqb_curspace; #endif obbSize = dq.dqb_curspace; } ATRACE_END(); ATRACE_BEGIN("apps"); struct stats extStats; memset(&extStats, 0, sizeof(extStats)); for (auto appId : appIds) { if (appId >= AID_APP_START) { collectQuotaStats(device, userId, appId, nullptr, &extStats); } } appSize = extStats.dataSize; ATRACE_END(); } else { ATRACE_BEGIN("manual"); FTS *fts; FTSENT *p; auto path = create_data_media_path(uuid_, userId); char *argv[] = { (char*) path.c_str(), nullptr }; if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) { return error("Failed to fts_open " + path); } while ((p = fts_read(fts)) != NULL) { char* ext; int64_t size = (p->fts_statp->st_blocks * 512); switch (p->fts_info) { case FTS_F: // Only categorize files not belonging to apps if (p->fts_parent->fts_number == 0) { ext = strrchr(p->fts_name, '.'); if (ext != nullptr) { switch (MatchExtension(++ext)) { case AID_MEDIA_AUDIO: audioSize += size; break; case AID_MEDIA_VIDEO: videoSize += size; break; case AID_MEDIA_IMAGE: imageSize += size; break; } } } // Fall through to always count against total case FTS_D: // Ignore data belonging to specific apps p->fts_number = p->fts_parent->fts_number; if (p->fts_level == 1 && !strcmp(p->fts_name, "Android")) { p->fts_number = 1; } case FTS_DEFAULT: case FTS_SL: case FTS_SLNONE: if (p->fts_parent->fts_number == 1) { appSize += size; } totalSize += size; break; } } fts_close(fts); ATRACE_END(); ATRACE_BEGIN("obb"); auto obbPath = create_data_media_obb_path(uuid_, ""); calculate_tree_size(obbPath, &obbSize); ATRACE_END(); } std::vector<int64_t> ret; ret.push_back(totalSize); ret.push_back(audioSize); ret.push_back(videoSize); ret.push_back(imageSize); ret.push_back(appSize); ret.push_back(obbSize); #if MEASURE_DEBUG LOG(DEBUG) << "Final result " << toString(ret); #endif *_aidl_return = ret; return ok(); } binder::Status InstalldNativeService::setAppQuota(const std::unique_ptr<std::string>& uuid, int32_t userId, int32_t appId, int64_t cacheQuota) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); std::lock_guard<std::recursive_mutex> lock(mQuotasLock); int32_t uid = multiuser_get_uid(userId, appId); mCacheQuotas[uid] = cacheQuota; return ok(); } // Dumps the contents of a profile file, using pkgname's dex files for pretty // printing the result. binder::Status InstalldNativeService::dumpProfiles(int32_t uid, const std::string& packageName, const std::string& profileName, const std::string& codePath, bool* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); CHECK_ARGUMENT_PATH(codePath); std::lock_guard<std::recursive_mutex> lock(mLock); *_aidl_return = dump_profiles(uid, packageName, profileName, codePath); return ok(); } // Copy the contents of a system profile over the data profile. binder::Status InstalldNativeService::copySystemProfile(const std::string& systemProfile, int32_t packageUid, const std::string& packageName, const std::string& profileName, bool* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); *_aidl_return = copy_system_profile(systemProfile, packageUid, packageName, profileName); return ok(); } // TODO: Consider returning error codes. binder::Status InstalldNativeService::mergeProfiles(int32_t uid, const std::string& packageName, const std::string& profileName, bool* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); *_aidl_return = analyze_primary_profiles(uid, packageName, profileName); return ok(); } binder::Status InstalldNativeService::createProfileSnapshot(int32_t appId, const std::string& packageName, const std::string& profileName, const std::string& classpath, bool* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); *_aidl_return = create_profile_snapshot(appId, packageName, profileName, classpath); return ok(); } binder::Status InstalldNativeService::destroyProfileSnapshot(const std::string& packageName, const std::string& profileName) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); std::string snapshot = create_snapshot_profile_path(packageName, profileName); if ((unlink(snapshot.c_str()) != 0) && (errno != ENOENT)) { return error("Failed to destroy profile snapshot for " + packageName + ":" + profileName); } return ok(); } static const char* getCStr(const std::unique_ptr<std::string>& data, const char* default_value = nullptr) { return data == nullptr ? default_value : data->c_str(); } binder::Status InstalldNativeService::dexopt(const std::string& apkPath, int32_t uid, const std::unique_ptr<std::string>& packageName, const std::string& instructionSet, int32_t dexoptNeeded, const std::unique_ptr<std::string>& outputPath, int32_t dexFlags, const std::string& compilerFilter, const std::unique_ptr<std::string>& uuid, const std::unique_ptr<std::string>& classLoaderContext, const std::unique_ptr<std::string>& seInfo, bool downgrade, int32_t targetSdkVersion, const std::unique_ptr<std::string>& profileName, const std::unique_ptr<std::string>& dexMetadataPath, const std::unique_ptr<std::string>& compilationReason) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); CHECK_ARGUMENT_PATH(apkPath); if (packageName && *packageName != "*") { CHECK_ARGUMENT_PACKAGE_NAME(*packageName); } CHECK_ARGUMENT_PATH(outputPath); CHECK_ARGUMENT_PATH(dexMetadataPath); std::lock_guard<std::recursive_mutex> lock(mLock); const char* apk_path = apkPath.c_str(); const char* pkgname = getCStr(packageName, "*"); const char* instruction_set = instructionSet.c_str(); const char* oat_dir = getCStr(outputPath); const char* compiler_filter = compilerFilter.c_str(); const char* volume_uuid = getCStr(uuid); const char* class_loader_context = getCStr(classLoaderContext); const char* se_info = getCStr(seInfo); const char* profile_name = getCStr(profileName); const char* dm_path = getCStr(dexMetadataPath); const char* compilation_reason = getCStr(compilationReason); std::string error_msg; int res = android::installd::dexopt(apk_path, uid, pkgname, instruction_set, dexoptNeeded, oat_dir, dexFlags, compiler_filter, volume_uuid, class_loader_context, se_info, downgrade, targetSdkVersion, profile_name, dm_path, compilation_reason, &error_msg); return res ? error(res, error_msg) : ok(); } binder::Status InstalldNativeService::markBootComplete(const std::string& instructionSet) { ENFORCE_UID(AID_SYSTEM); std::lock_guard<std::recursive_mutex> lock(mLock); const char* instruction_set = instructionSet.c_str(); char boot_marker_path[PKG_PATH_MAX]; sprintf(boot_marker_path, "%s/%s/%s/.booting", android_data_dir.c_str(), DALVIK_CACHE, instruction_set); ALOGV("mark_boot_complete : %s", boot_marker_path); if (unlink(boot_marker_path) != 0) { return error(StringPrintf("Failed to unlink %s", boot_marker_path)); } return ok(); } binder::Status InstalldNativeService::linkNativeLibraryDirectory( const std::unique_ptr<std::string>& uuid, const std::string& packageName, const std::string& nativeLibPath32, int32_t userId) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); CHECK_ARGUMENT_PATH(nativeLibPath32); std::lock_guard<std::recursive_mutex> lock(mLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; const char* pkgname = packageName.c_str(); const char* asecLibDir = nativeLibPath32.c_str(); struct stat s, libStat; binder::Status res = ok(); auto _pkgdir = create_data_user_ce_package_path(uuid_, userId, pkgname); auto _libsymlink = _pkgdir + PKG_LIB_POSTFIX; const char* pkgdir = _pkgdir.c_str(); const char* libsymlink = _libsymlink.c_str(); if (stat(pkgdir, &s) < 0) { return error("Failed to stat " + _pkgdir); } if (chown(pkgdir, AID_INSTALL, AID_INSTALL) < 0) { return error("Failed to chown " + _pkgdir); } if (chmod(pkgdir, 0700) < 0) { res = error("Failed to chmod " + _pkgdir); goto out; } if (lstat(libsymlink, &libStat) < 0) { if (errno != ENOENT) { res = error("Failed to stat " + _libsymlink); goto out; } } else { if (S_ISDIR(libStat.st_mode)) { if (delete_dir_contents(libsymlink, 1, NULL) < 0) { res = error("Failed to delete " + _libsymlink); goto out; } } else if (S_ISLNK(libStat.st_mode)) { if (unlink(libsymlink) < 0) { res = error("Failed to unlink " + _libsymlink); goto out; } } } if (symlink(asecLibDir, libsymlink) < 0) { res = error("Failed to symlink " + _libsymlink + " to " + nativeLibPath32); goto out; } out: if (chmod(pkgdir, s.st_mode) < 0) { auto msg = "Failed to cleanup chmod " + _pkgdir; if (res.isOk()) { res = error(msg); } else { PLOG(ERROR) << msg; } } if (chown(pkgdir, s.st_uid, s.st_gid) < 0) { auto msg = "Failed to cleanup chown " + _pkgdir; if (res.isOk()) { res = error(msg); } else { PLOG(ERROR) << msg; } } return res; } static void run_idmap(const char *target_apk, const char *overlay_apk, int idmap_fd) { execl(kIdMapPath, kIdMapPath, "--fd", target_apk, overlay_apk, StringPrintf("%d", idmap_fd).c_str(), (char*)NULL); PLOG(ERROR) << "execl (" << kIdMapPath << ") failed"; } static void run_verify_idmap(const char *target_apk, const char *overlay_apk, int idmap_fd) { execl(kIdMapPath, kIdMapPath, "--verify", target_apk, overlay_apk, StringPrintf("%d", idmap_fd).c_str(), (char*)NULL); PLOG(ERROR) << "execl (" << kIdMapPath << ") failed"; } static bool delete_stale_idmap(const char* target_apk, const char* overlay_apk, const char* idmap_path, int32_t uid) { int idmap_fd = open(idmap_path, O_RDWR); if (idmap_fd < 0) { PLOG(ERROR) << "idmap open failed: " << idmap_path; unlink(idmap_path); return true; } pid_t pid; pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ if (setgid(uid) != 0) { LOG(ERROR) << "setgid(" << uid << ") failed during idmap"; exit(1); } if (setuid(uid) != 0) { LOG(ERROR) << "setuid(" << uid << ") failed during idmap"; exit(1); } if (flock(idmap_fd, LOCK_EX | LOCK_NB) != 0) { PLOG(ERROR) << "flock(" << idmap_path << ") failed during idmap"; exit(1); } run_verify_idmap(target_apk, overlay_apk, idmap_fd); exit(1); /* only if exec call to deleting stale idmap failed */ } else { int status = wait_child(pid); close(idmap_fd); if (status != 0) { // Failed on verifying if idmap is made from target_apk and overlay_apk. LOG(DEBUG) << "delete stale idmap: " << idmap_path; unlink(idmap_path); return true; } } return false; } // Transform string /a/b/c.apk to (prefix)/a@b@c.apk@(suffix) // eg /a/b/c.apk to /data/resource-cache/a@b@c.apk@idmap static int flatten_path(const char *prefix, const char *suffix, const char *overlay_path, char *idmap_path, size_t N) { if (overlay_path == NULL || idmap_path == NULL) { return -1; } const size_t len_overlay_path = strlen(overlay_path); // will access overlay_path + 1 further below; requires absolute path if (len_overlay_path < 2 || *overlay_path != '/') { return -1; } const size_t len_idmap_root = strlen(prefix); const size_t len_suffix = strlen(suffix); if (SIZE_MAX - len_idmap_root < len_overlay_path || SIZE_MAX - (len_idmap_root + len_overlay_path) < len_suffix) { // additions below would cause overflow return -1; } if (N < len_idmap_root + len_overlay_path + len_suffix) { return -1; } memset(idmap_path, 0, N); snprintf(idmap_path, N, "%s%s%s", prefix, overlay_path + 1, suffix); char *ch = idmap_path + len_idmap_root; while (*ch != '\0') { if (*ch == '/') { *ch = '@'; } ++ch; } return 0; } binder::Status InstalldNativeService::idmap(const std::string& targetApkPath, const std::string& overlayApkPath, int32_t uid) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(targetApkPath); CHECK_ARGUMENT_PATH(overlayApkPath); std::lock_guard<std::recursive_mutex> lock(mLock); const char* target_apk = targetApkPath.c_str(); const char* overlay_apk = overlayApkPath.c_str(); ALOGV("idmap target_apk=%s overlay_apk=%s uid=%d\n", target_apk, overlay_apk, uid); int idmap_fd = -1; char idmap_path[PATH_MAX]; struct stat idmap_stat; bool outdated = false; if (flatten_path(IDMAP_PREFIX, IDMAP_SUFFIX, overlay_apk, idmap_path, sizeof(idmap_path)) == -1) { ALOGE("idmap cannot generate idmap path for overlay %s\n", overlay_apk); goto fail; } if (stat(idmap_path, &idmap_stat) < 0) { outdated = true; } else { outdated = delete_stale_idmap(target_apk, overlay_apk, idmap_path, uid); } if (outdated) { idmap_fd = open(idmap_path, O_RDWR | O_CREAT | O_EXCL, 0644); } else { idmap_fd = open(idmap_path, O_RDWR); } if (idmap_fd < 0) { ALOGE("idmap cannot open '%s' for output: %s\n", idmap_path, strerror(errno)); goto fail; } if (fchown(idmap_fd, AID_SYSTEM, uid) < 0) { ALOGE("idmap cannot chown '%s'\n", idmap_path); goto fail; } if (fchmod(idmap_fd, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0) { ALOGE("idmap cannot chmod '%s'\n", idmap_path); goto fail; } if (!outdated) { close(idmap_fd); return ok(); } pid_t pid; pid = fork(); if (pid == 0) { /* child -- drop privileges before continuing */ if (setgid(uid) != 0) { ALOGE("setgid(%d) failed during idmap\n", uid); exit(1); } if (setuid(uid) != 0) { ALOGE("setuid(%d) failed during idmap\n", uid); exit(1); } if (flock(idmap_fd, LOCK_EX | LOCK_NB) != 0) { ALOGE("flock(%s) failed during idmap: %s\n", idmap_path, strerror(errno)); exit(1); } run_idmap(target_apk, overlay_apk, idmap_fd); exit(1); /* only if exec call to idmap failed */ } else { int status = wait_child(pid); if (status != 0) { ALOGE("idmap failed, status=0x%04x\n", status); goto fail; } } close(idmap_fd); return ok(); fail: if (idmap_fd >= 0) { close(idmap_fd); unlink(idmap_path); } return error(); } binder::Status InstalldNativeService::removeIdmap(const std::string& overlayApkPath) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(overlayApkPath); std::lock_guard<std::recursive_mutex> lock(mLock); const char* overlay_apk = overlayApkPath.c_str(); char idmap_path[PATH_MAX]; if (flatten_path(IDMAP_PREFIX, IDMAP_SUFFIX, overlay_apk, idmap_path, sizeof(idmap_path)) == -1) { ALOGE("idmap cannot generate idmap path for overlay %s\n", overlay_apk); return error(); } if (unlink(idmap_path) < 0) { ALOGE("couldn't unlink idmap file %s\n", idmap_path); return error(); } return ok(); } binder::Status InstalldNativeService::restoreconAppData(const std::unique_ptr<std::string>& uuid, const std::string& packageName, int32_t userId, int32_t flags, int32_t appId, const std::string& seInfo) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(uuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); std::lock_guard<std::recursive_mutex> lock(mLock); binder::Status res = ok(); // SELINUX_ANDROID_RESTORECON_DATADATA flag is set by libselinux. Not needed here. unsigned int seflags = SELINUX_ANDROID_RESTORECON_RECURSE; const char* uuid_ = uuid ? uuid->c_str() : nullptr; const char* pkgName = packageName.c_str(); const char* seinfo = seInfo.c_str(); uid_t uid = multiuser_get_uid(userId, appId); if (flags & FLAG_STORAGE_CE) { auto path = create_data_user_ce_package_path(uuid_, userId, pkgName); if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, seflags) < 0) { res = error("restorecon failed for " + path); } } if (flags & FLAG_STORAGE_DE) { auto path = create_data_user_de_package_path(uuid_, userId, pkgName); if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, seflags) < 0) { res = error("restorecon failed for " + path); } } return res; } binder::Status InstalldNativeService::createOatDir(const std::string& oatDir, const std::string& instructionSet) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(oatDir); std::lock_guard<std::recursive_mutex> lock(mLock); const char* oat_dir = oatDir.c_str(); const char* instruction_set = instructionSet.c_str(); char oat_instr_dir[PKG_PATH_MAX]; if (validate_apk_path(oat_dir)) { return error("Invalid path " + oatDir); } if (fs_prepare_dir(oat_dir, S_IRWXU | S_IRWXG | S_IXOTH, AID_SYSTEM, AID_INSTALL)) { return error("Failed to prepare " + oatDir); } if (selinux_android_restorecon(oat_dir, 0)) { return error("Failed to restorecon " + oatDir); } snprintf(oat_instr_dir, PKG_PATH_MAX, "%s/%s", oat_dir, instruction_set); if (fs_prepare_dir(oat_instr_dir, S_IRWXU | S_IRWXG | S_IXOTH, AID_SYSTEM, AID_INSTALL)) { return error(StringPrintf("Failed to prepare %s", oat_instr_dir)); } return ok(); } binder::Status InstalldNativeService::rmPackageDir(const std::string& packageDir) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(packageDir); std::lock_guard<std::recursive_mutex> lock(mLock); if (validate_apk_path(packageDir.c_str())) { return error("Invalid path " + packageDir); } if (delete_dir_contents_and_dir(packageDir) != 0) { return error("Failed to delete " + packageDir); } return ok(); } binder::Status InstalldNativeService::linkFile(const std::string& relativePath, const std::string& fromBase, const std::string& toBase) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(fromBase); CHECK_ARGUMENT_PATH(toBase); std::lock_guard<std::recursive_mutex> lock(mLock); const char* relative_path = relativePath.c_str(); const char* from_base = fromBase.c_str(); const char* to_base = toBase.c_str(); char from_path[PKG_PATH_MAX]; char to_path[PKG_PATH_MAX]; snprintf(from_path, PKG_PATH_MAX, "%s/%s", from_base, relative_path); snprintf(to_path, PKG_PATH_MAX, "%s/%s", to_base, relative_path); if (validate_apk_path_subdirs(from_path)) { return error(StringPrintf("Invalid from path %s", from_path)); } if (validate_apk_path_subdirs(to_path)) { return error(StringPrintf("Invalid to path %s", to_path)); } if (link(from_path, to_path) < 0) { return error(StringPrintf("Failed to link from %s to %s", from_path, to_path)); } return ok(); } binder::Status InstalldNativeService::moveAb(const std::string& apkPath, const std::string& instructionSet, const std::string& outputPath) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(apkPath); CHECK_ARGUMENT_PATH(outputPath); std::lock_guard<std::recursive_mutex> lock(mLock); const char* apk_path = apkPath.c_str(); const char* instruction_set = instructionSet.c_str(); const char* oat_dir = outputPath.c_str(); bool success = move_ab(apk_path, instruction_set, oat_dir); return success ? ok() : error(); } binder::Status InstalldNativeService::deleteOdex(const std::string& apkPath, const std::string& instructionSet, const std::unique_ptr<std::string>& outputPath) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(apkPath); CHECK_ARGUMENT_PATH(outputPath); std::lock_guard<std::recursive_mutex> lock(mLock); const char* apk_path = apkPath.c_str(); const char* instruction_set = instructionSet.c_str(); const char* oat_dir = outputPath ? outputPath->c_str() : nullptr; bool res = delete_odex(apk_path, instruction_set, oat_dir); return res ? ok() : error(); } // This kernel feature is experimental. // TODO: remove local definition once upstreamed #ifndef FS_IOC_ENABLE_VERITY #define FS_IOC_ENABLE_VERITY _IO('f', 133) #define FS_IOC_SET_VERITY_MEASUREMENT _IOW('f', 134, struct fsverity_measurement) #define FS_VERITY_ALG_SHA256 1 struct fsverity_measurement { __u16 digest_algorithm; __u16 digest_size; __u32 reserved1; __u64 reserved2[3]; __u8 digest[]; }; #endif binder::Status InstalldNativeService::installApkVerity(const std::string& filePath, const ::android::base::unique_fd& verityInputAshmem, int32_t contentSize) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(filePath); std::lock_guard<std::recursive_mutex> lock(mLock); if (!android::base::GetBoolProperty(kPropApkVerityMode, false)) { return ok(); } #ifndef NDEBUG ASSERT_PAGE_SIZE_4K(); #endif // TODO: also check fsverity support in the current file system if compiled with DEBUG. // TODO: change ashmem to some temporary file to support huge apk. if (!ashmem_valid(verityInputAshmem.get())) { return error("FD is not an ashmem"); } // 1. Seek to the next page boundary beyond the end of the file. ::android::base::unique_fd wfd(open(filePath.c_str(), O_WRONLY)); if (wfd.get() < 0) { return error("Failed to open " + filePath); } struct stat st; if (fstat(wfd.get(), &st) < 0) { return error("Failed to stat " + filePath); } // fsverity starts from the block boundary. off_t padding = kVerityPageSize - st.st_size % kVerityPageSize; if (padding == kVerityPageSize) { padding = 0; } if (lseek(wfd.get(), st.st_size + padding, SEEK_SET) < 0) { return error("Failed to lseek " + filePath); } // 2. Write everything in the ashmem to the file. Note that allocated // ashmem size is multiple of page size, which is different from the // actual content size. int shmSize = ashmem_get_size_region(verityInputAshmem.get()); if (shmSize < 0) { return error("Failed to get ashmem size: " + std::to_string(shmSize)); } if (contentSize < 0) { return error("Invalid content size: " + std::to_string(contentSize)); } if (contentSize > shmSize) { return error("Content size overflow: " + std::to_string(contentSize) + " > " + std::to_string(shmSize)); } auto data = std::unique_ptr<void, std::function<void (void *)>>( mmap(NULL, contentSize, PROT_READ, MAP_SHARED, verityInputAshmem.get(), 0), [contentSize] (void* ptr) { if (ptr != MAP_FAILED) { munmap(ptr, contentSize); } }); if (data.get() == MAP_FAILED) { return error("Failed to mmap the ashmem"); } char* cursor = reinterpret_cast<char*>(data.get()); int remaining = contentSize; while (remaining > 0) { int ret = TEMP_FAILURE_RETRY(write(wfd.get(), cursor, remaining)); if (ret < 0) { return error("Failed to write to " + filePath + " (" + std::to_string(remaining) + + "/" + std::to_string(contentSize) + ")"); } cursor += ret; remaining -= ret; } wfd.reset(); // 3. Enable fsverity (needs readonly fd. Once it's done, the file becomes immutable. ::android::base::unique_fd rfd(open(filePath.c_str(), O_RDONLY)); if (ioctl(rfd.get(), FS_IOC_ENABLE_VERITY, nullptr) < 0) { return error("Failed to enable fsverity on " + filePath); } return ok(); } binder::Status InstalldNativeService::assertFsverityRootHashMatches(const std::string& filePath, const std::vector<uint8_t>& expectedHash) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PATH(filePath); std::lock_guard<std::recursive_mutex> lock(mLock); if (!android::base::GetBoolProperty(kPropApkVerityMode, false)) { return ok(); } // TODO: also check fsverity support in the current file system if compiled with DEBUG. if (expectedHash.size() != kSha256Size) { return error("verity hash size should be " + std::to_string(kSha256Size) + " but is " + std::to_string(expectedHash.size())); } ::android::base::unique_fd fd(open(filePath.c_str(), O_RDONLY)); if (fd.get() < 0) { return error("Failed to open " + filePath + ": " + strerror(errno)); } unsigned int buffer_size = sizeof(fsverity_measurement) + kSha256Size; std::vector<char> buffer(buffer_size, 0); fsverity_measurement* config = reinterpret_cast<fsverity_measurement*>(buffer.data()); config->digest_algorithm = FS_VERITY_ALG_SHA256; config->digest_size = kSha256Size; memcpy(config->digest, expectedHash.data(), kSha256Size); if (ioctl(fd.get(), FS_IOC_SET_VERITY_MEASUREMENT, config) < 0) { // This includes an expected failure case with no FSVerity setup. It normally happens when // the apk does not contains the Merkle tree root hash. return error("Failed to measure fsverity on " + filePath + ": " + strerror(errno)); } return ok(); // hashes match } binder::Status InstalldNativeService::reconcileSecondaryDexFile( const std::string& dexPath, const std::string& packageName, int32_t uid, const std::vector<std::string>& isas, const std::unique_ptr<std::string>& volumeUuid, int32_t storage_flag, bool* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(volumeUuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); CHECK_ARGUMENT_PATH(dexPath); std::lock_guard<std::recursive_mutex> lock(mLock); bool result = android::installd::reconcile_secondary_dex_file( dexPath, packageName, uid, isas, volumeUuid, storage_flag, _aidl_return); return result ? ok() : error(); } binder::Status InstalldNativeService::hashSecondaryDexFile( const std::string& dexPath, const std::string& packageName, int32_t uid, const std::unique_ptr<std::string>& volumeUuid, int32_t storageFlag, std::vector<uint8_t>* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_UUID(volumeUuid); CHECK_ARGUMENT_PACKAGE_NAME(packageName); CHECK_ARGUMENT_PATH(dexPath); // mLock is not taken here since we will never modify the file system. // If a file is modified just as we are reading it this may result in an // anomalous hash, but that's ok. bool result = android::installd::hash_secondary_dex_file( dexPath, packageName, uid, volumeUuid, storageFlag, _aidl_return); return result ? ok() : error(); } binder::Status InstalldNativeService::invalidateMounts() { ENFORCE_UID(AID_SYSTEM); std::lock_guard<std::recursive_mutex> lock(mMountsLock); mStorageMounts.clear(); mQuotaReverseMounts.clear(); std::ifstream in("/proc/mounts"); if (!in.is_open()) { return error("Failed to read mounts"); } std::string source; std::string target; std::string ignored; while (!in.eof()) { std::getline(in, source, ' '); std::getline(in, target, ' '); std::getline(in, ignored); #if !BYPASS_SDCARDFS if (target.compare(0, 21, "/mnt/runtime/default/") == 0) { LOG(DEBUG) << "Found storage mount " << source << " at " << target; mStorageMounts[source] = target; } #endif #if !BYPASS_QUOTA if (source.compare(0, 11, "/dev/block/") == 0) { struct dqblk dq; if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), source.c_str(), 0, reinterpret_cast<char*>(&dq)) == 0) { LOG(DEBUG) << "Found quota mount " << source << " at " << target; mQuotaReverseMounts[target] = source; // ext4 only enables DQUOT_USAGE_ENABLED by default, so we // need to kick it again to enable DQUOT_LIMITS_ENABLED. We // only need hard limits enabled when we're not being protected // by reserved blocks. if (!android::base::GetBoolProperty(kPropHasReserved, false)) { if (quotactl(QCMD(Q_QUOTAON, USRQUOTA), source.c_str(), QFMT_VFS_V1, nullptr) != 0 && errno != EBUSY) { PLOG(ERROR) << "Failed to enable USRQUOTA on " << source; } if (quotactl(QCMD(Q_QUOTAON, GRPQUOTA), source.c_str(), QFMT_VFS_V1, nullptr) != 0 && errno != EBUSY) { PLOG(ERROR) << "Failed to enable GRPQUOTA on " << source; } } } } #endif } return ok(); } std::string InstalldNativeService::findDataMediaPath( const std::unique_ptr<std::string>& uuid, userid_t userid) { std::lock_guard<std::recursive_mutex> lock(mMountsLock); const char* uuid_ = uuid ? uuid->c_str() : nullptr; auto path = StringPrintf("%s/media", create_data_path(uuid_).c_str()); auto resolved = mStorageMounts[path]; if (resolved.empty()) { LOG(WARNING) << "Failed to find storage mount for " << path; resolved = path; } return StringPrintf("%s/%u", resolved.c_str(), userid); } std::string InstalldNativeService::findQuotaDeviceForUuid( const std::unique_ptr<std::string>& uuid) { std::lock_guard<std::recursive_mutex> lock(mMountsLock); auto path = create_data_path(uuid ? uuid->c_str() : nullptr); return mQuotaReverseMounts[path]; } binder::Status InstalldNativeService::isQuotaSupported( const std::unique_ptr<std::string>& volumeUuid, bool* _aidl_return) { *_aidl_return = !findQuotaDeviceForUuid(volumeUuid).empty(); return ok(); } binder::Status InstalldNativeService::prepareAppProfile(const std::string& packageName, int32_t userId, int32_t appId, const std::string& profileName, const std::string& codePath, const std::unique_ptr<std::string>& dexMetadata, bool* _aidl_return) { ENFORCE_UID(AID_SYSTEM); CHECK_ARGUMENT_PACKAGE_NAME(packageName); CHECK_ARGUMENT_PATH(codePath); std::lock_guard<std::recursive_mutex> lock(mLock); *_aidl_return = prepare_app_profile(packageName, userId, appId, profileName, codePath, dexMetadata); return ok(); } } // namespace installd } // namespace android