/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "BufferQueue_test" //#define LOG_NDEBUG 0 #include "DummyConsumer.h" #include <gui/BufferItem.h> #include <gui/BufferQueue.h> #include <gui/IProducerListener.h> #include <ui/GraphicBuffer.h> #include <binder/IPCThreadState.h> #include <binder/IServiceManager.h> #include <binder/ProcessState.h> #include <utils/String8.h> #include <utils/threads.h> #include <system/window.h> #include <gtest/gtest.h> #include <thread> using namespace std::chrono_literals; namespace android { class BufferQueueTest : public ::testing::Test { public: protected: BufferQueueTest() { const ::testing::TestInfo* const testInfo = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGV("Begin test: %s.%s", testInfo->test_case_name(), testInfo->name()); } ~BufferQueueTest() { const ::testing::TestInfo* const testInfo = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGV("End test: %s.%s", testInfo->test_case_name(), testInfo->name()); } void GetMinUndequeuedBufferCount(int* bufferCount) { ASSERT_TRUE(bufferCount != NULL); ASSERT_EQ(OK, mProducer->query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, bufferCount)); ASSERT_GE(*bufferCount, 0); } void createBufferQueue() { BufferQueue::createBufferQueue(&mProducer, &mConsumer); } void testBufferItem(const IGraphicBufferProducer::QueueBufferInput& input, const BufferItem& item) { int64_t timestamp; bool isAutoTimestamp; android_dataspace dataSpace; Rect crop; int scalingMode; uint32_t transform; sp<Fence> fence; input.deflate(×tamp, &isAutoTimestamp, &dataSpace, &crop, &scalingMode, &transform, &fence, NULL); ASSERT_EQ(timestamp, item.mTimestamp); ASSERT_EQ(isAutoTimestamp, item.mIsAutoTimestamp); ASSERT_EQ(dataSpace, item.mDataSpace); ASSERT_EQ(crop, item.mCrop); ASSERT_EQ(static_cast<uint32_t>(scalingMode), item.mScalingMode); ASSERT_EQ(transform, item.mTransform); ASSERT_EQ(fence, item.mFence); } sp<IGraphicBufferProducer> mProducer; sp<IGraphicBufferConsumer> mConsumer; }; static const uint32_t TEST_DATA = 0x12345678u; // XXX: Tests that fork a process to hold the BufferQueue must run before tests // that use a local BufferQueue, or else Binder will get unhappy // // In one instance this was a crash in the createBufferQueue where the // binder call to create a buffer allocator apparently got garbage back. // See b/36592665. TEST_F(BufferQueueTest, DISABLED_BufferQueueInAnotherProcess) { const String16 PRODUCER_NAME = String16("BQTestProducer"); const String16 CONSUMER_NAME = String16("BQTestConsumer"); pid_t forkPid = fork(); ASSERT_NE(forkPid, -1); if (forkPid == 0) { // Child process sp<IGraphicBufferProducer> producer; sp<IGraphicBufferConsumer> consumer; BufferQueue::createBufferQueue(&producer, &consumer); sp<IServiceManager> serviceManager = defaultServiceManager(); serviceManager->addService(PRODUCER_NAME, IInterface::asBinder(producer)); serviceManager->addService(CONSUMER_NAME, IInterface::asBinder(consumer)); ProcessState::self()->startThreadPool(); IPCThreadState::self()->joinThreadPool(); LOG_ALWAYS_FATAL("Shouldn't be here"); } sp<IServiceManager> serviceManager = defaultServiceManager(); sp<IBinder> binderProducer = serviceManager->getService(PRODUCER_NAME); mProducer = interface_cast<IGraphicBufferProducer>(binderProducer); EXPECT_TRUE(mProducer != NULL); sp<IBinder> binderConsumer = serviceManager->getService(CONSUMER_NAME); mConsumer = interface_cast<IGraphicBufferConsumer>(binderConsumer); EXPECT_TRUE(mConsumer != NULL); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(NULL, NATIVE_WINDOW_API_CPU, false, &output)); int slot; sp<Fence> fence; sp<GraphicBuffer> buffer; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); uint32_t* dataIn; ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN, reinterpret_cast<void**>(&dataIn))); *dataIn = TEST_DATA; ASSERT_EQ(OK, buffer->unlock()); IGraphicBufferProducer::QueueBufferInput input(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); uint32_t* dataOut; ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, reinterpret_cast<void**>(&dataOut))); ASSERT_EQ(*dataOut, TEST_DATA); ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); } TEST_F(BufferQueueTest, AcquireBuffer_ExceedsMaxAcquireCount_Fails) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); mConsumer->consumerConnect(dc, false); IGraphicBufferProducer::QueueBufferOutput qbo; mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &qbo); mProducer->setMaxDequeuedBufferCount(3); int slot; sp<Fence> fence; sp<GraphicBuffer> buf; IGraphicBufferProducer::QueueBufferInput qbi(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); BufferItem item; for (int i = 0; i < 2; i++) { ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); } ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); // Acquire the third buffer, which should fail. ASSERT_EQ(INVALID_OPERATION, mConsumer->acquireBuffer(&item, 0)); } TEST_F(BufferQueueTest, SetMaxAcquiredBufferCountWithIllegalValues_ReturnsError) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); mConsumer->consumerConnect(dc, false); EXPECT_EQ(OK, mConsumer->setMaxBufferCount(10)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(10)); IGraphicBufferProducer::QueueBufferOutput qbo; mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &qbo); mProducer->setMaxDequeuedBufferCount(3); int minBufferCount; ASSERT_NO_FATAL_FAILURE(GetMinUndequeuedBufferCount(&minBufferCount)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount( minBufferCount - 1)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(0)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(-3)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount( BufferQueue::MAX_MAX_ACQUIRED_BUFFERS+1)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(100)); int slot; sp<Fence> fence; sp<GraphicBuffer> buf; IGraphicBufferProducer::QueueBufferInput qbi(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); BufferItem item; EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(3)); for (int i = 0; i < 3; i++) { ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); } EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(2)); } TEST_F(BufferQueueTest, SetMaxAcquiredBufferCountWithLegalValues_Succeeds) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); mConsumer->consumerConnect(dc, false); IGraphicBufferProducer::QueueBufferOutput qbo; mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &qbo); mProducer->setMaxDequeuedBufferCount(2); int minBufferCount; ASSERT_NO_FATAL_FAILURE(GetMinUndequeuedBufferCount(&minBufferCount)); EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1)); EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(2)); EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(minBufferCount)); int slot; sp<Fence> fence; sp<GraphicBuffer> buf; IGraphicBufferProducer::QueueBufferInput qbi(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); BufferItem item; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(3)); for (int i = 0; i < 2; i++) { ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); } EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount( BufferQueue::MAX_MAX_ACQUIRED_BUFFERS)); } TEST_F(BufferQueueTest, SetMaxBufferCountWithLegalValues_Succeeds) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); mConsumer->consumerConnect(dc, false); // Test shared buffer mode EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1)); } TEST_F(BufferQueueTest, SetMaxBufferCountWithIllegalValues_ReturnsError) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); mConsumer->consumerConnect(dc, false); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount(0)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount( BufferQueue::NUM_BUFFER_SLOTS + 1)); EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(5)); EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount(3)); } TEST_F(BufferQueueTest, DetachAndReattachOnProducerSide) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &output)); ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(-1)); // Index too low ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer( BufferQueueDefs::NUM_BUFFER_SLOTS)); // Index too high ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(0)); // Not dequeued int slot; sp<Fence> fence; sp<GraphicBuffer> buffer; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(slot)); // Not requested ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); ASSERT_EQ(OK, mProducer->detachBuffer(slot)); ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(slot)); // Not dequeued sp<GraphicBuffer> safeToClobberBuffer; // Can no longer request buffer from this slot ASSERT_EQ(BAD_VALUE, mProducer->requestBuffer(slot, &safeToClobberBuffer)); uint32_t* dataIn; ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN, reinterpret_cast<void**>(&dataIn))); *dataIn = TEST_DATA; ASSERT_EQ(OK, buffer->unlock()); int newSlot; ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(NULL, safeToClobberBuffer)); ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(&newSlot, NULL)); ASSERT_EQ(OK, mProducer->attachBuffer(&newSlot, buffer)); IGraphicBufferProducer::QueueBufferInput input(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(newSlot, input, &output)); BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); uint32_t* dataOut; ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, reinterpret_cast<void**>(&dataOut))); ASSERT_EQ(*dataOut, TEST_DATA); ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); } TEST_F(BufferQueueTest, DetachAndReattachOnConsumerSide) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &output)); int slot; sp<Fence> fence; sp<GraphicBuffer> buffer; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); IGraphicBufferProducer::QueueBufferInput input(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(-1)); // Index too low ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer( BufferQueueDefs::NUM_BUFFER_SLOTS)); // Index too high ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(0)); // Not acquired BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); ASSERT_EQ(OK, mConsumer->detachBuffer(item.mSlot)); ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(item.mSlot)); // Not acquired uint32_t* dataIn; ASSERT_EQ(OK, item.mGraphicBuffer->lock( GraphicBuffer::USAGE_SW_WRITE_OFTEN, reinterpret_cast<void**>(&dataIn))); *dataIn = TEST_DATA; ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); int newSlot; sp<GraphicBuffer> safeToClobberBuffer; ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(NULL, safeToClobberBuffer)); ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(&newSlot, NULL)); ASSERT_EQ(OK, mConsumer->attachBuffer(&newSlot, item.mGraphicBuffer)); ASSERT_EQ(OK, mConsumer->releaseBuffer(newSlot, 0, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); uint32_t* dataOut; ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, reinterpret_cast<void**>(&dataOut))); ASSERT_EQ(*dataOut, TEST_DATA); ASSERT_EQ(OK, buffer->unlock()); } TEST_F(BufferQueueTest, MoveFromConsumerToProducer) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &output)); int slot; sp<Fence> fence; sp<GraphicBuffer> buffer; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); uint32_t* dataIn; ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN, reinterpret_cast<void**>(&dataIn))); *dataIn = TEST_DATA; ASSERT_EQ(OK, buffer->unlock()); IGraphicBufferProducer::QueueBufferInput input(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); ASSERT_EQ(OK, mConsumer->detachBuffer(item.mSlot)); int newSlot; ASSERT_EQ(OK, mProducer->attachBuffer(&newSlot, item.mGraphicBuffer)); ASSERT_EQ(OK, mProducer->queueBuffer(newSlot, input, &output)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0))); uint32_t* dataOut; ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN, reinterpret_cast<void**>(&dataOut))); ASSERT_EQ(*dataOut, TEST_DATA); ASSERT_EQ(OK, item.mGraphicBuffer->unlock()); } TEST_F(BufferQueueTest, TestDisallowingAllocation) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); static const uint32_t WIDTH = 320; static const uint32_t HEIGHT = 240; ASSERT_EQ(OK, mConsumer->setDefaultBufferSize(WIDTH, HEIGHT)); int slot; sp<Fence> fence; sp<GraphicBuffer> buffer; // This should return an error since it would require an allocation ASSERT_EQ(OK, mProducer->allowAllocation(false)); ASSERT_EQ(WOULD_BLOCK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); // This should succeed, now that we've lifted the prohibition ASSERT_EQ(OK, mProducer->allowAllocation(true)); ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); // Release the previous buffer back to the BufferQueue mProducer->cancelBuffer(slot, fence); // This should fail since we're requesting a different size ASSERT_EQ(OK, mProducer->allowAllocation(false)); ASSERT_EQ(WOULD_BLOCK, mProducer->dequeueBuffer(&slot, &fence, WIDTH * 2, HEIGHT * 2, 0, GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr)); } TEST_F(BufferQueueTest, TestGenerationNumbers) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); ASSERT_EQ(OK, mProducer->setGenerationNumber(1)); // Get one buffer to play with int slot; sp<Fence> fence; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); sp<GraphicBuffer> buffer; ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); // Ensure that the generation number we set propagates to allocated buffers ASSERT_EQ(1U, buffer->getGenerationNumber()); ASSERT_EQ(OK, mProducer->detachBuffer(slot)); ASSERT_EQ(OK, mProducer->setGenerationNumber(2)); // These should fail, since we've changed the generation number on the queue int outSlot; ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(&outSlot, buffer)); ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(&outSlot, buffer)); buffer->setGenerationNumber(2); // This should succeed now that we've changed the buffer's generation number ASSERT_EQ(OK, mProducer->attachBuffer(&outSlot, buffer)); ASSERT_EQ(OK, mProducer->detachBuffer(outSlot)); // This should also succeed with the new generation number ASSERT_EQ(OK, mConsumer->attachBuffer(&outSlot, buffer)); } TEST_F(BufferQueueTest, TestSharedBufferModeWithoutAutoRefresh) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); ASSERT_EQ(OK, mProducer->setSharedBufferMode(true)); // Get a buffer int sharedSlot; sp<Fence> fence; sp<GraphicBuffer> buffer; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer)); // Queue the buffer IGraphicBufferProducer::QueueBufferInput input(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); // Repeatedly queue and dequeue a buffer from the producer side, it should // always return the same one. And we won't run out of buffers because it's // always the same one and because async mode gets enabled. int slot; for (int i = 0; i < 5; i++) { ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(sharedSlot, slot); ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); } // acquire the buffer BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(sharedSlot, item.mSlot); testBufferItem(input, item); ASSERT_EQ(true, item.mQueuedBuffer); ASSERT_EQ(false, item.mAutoRefresh); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); // attempt to acquire a second time should return no buffer available ASSERT_EQ(IGraphicBufferConsumer::NO_BUFFER_AVAILABLE, mConsumer->acquireBuffer(&item, 0)); } TEST_F(BufferQueueTest, TestSharedBufferModeWithAutoRefresh) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); ASSERT_EQ(OK, mProducer->setSharedBufferMode(true)); ASSERT_EQ(OK, mProducer->setAutoRefresh(true)); // Get a buffer int sharedSlot; sp<Fence> fence; sp<GraphicBuffer> buffer; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer)); // Queue the buffer IGraphicBufferProducer::QueueBufferInput input(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); // Repeatedly acquire and release a buffer from the consumer side, it should // always return the same one. BufferItem item; for (int i = 0; i < 5; i++) { ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(sharedSlot, item.mSlot); testBufferItem(input, item); ASSERT_EQ(i == 0, item.mQueuedBuffer); ASSERT_EQ(true, item.mAutoRefresh); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); } // Repeatedly queue and dequeue a buffer from the producer side, it should // always return the same one. int slot; for (int i = 0; i < 5; i++) { ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(sharedSlot, slot); ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); } // Repeatedly acquire and release a buffer from the consumer side, it should // always return the same one. First grabbing them from the queue and then // when the queue is empty, returning the shared buffer. for (int i = 0; i < 10; i++) { ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(sharedSlot, item.mSlot); ASSERT_EQ(0, item.mTimestamp); ASSERT_EQ(false, item.mIsAutoTimestamp); ASSERT_EQ(HAL_DATASPACE_UNKNOWN, item.mDataSpace); ASSERT_EQ(Rect(0, 0, 1, 1), item.mCrop); ASSERT_EQ(NATIVE_WINDOW_SCALING_MODE_FREEZE, item.mScalingMode); ASSERT_EQ(0u, item.mTransform); ASSERT_EQ(Fence::NO_FENCE, item.mFence); ASSERT_EQ(i == 0, item.mQueuedBuffer); ASSERT_EQ(true, item.mAutoRefresh); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); } } TEST_F(BufferQueueTest, TestSharedBufferModeUsingAlreadyDequeuedBuffer) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); // Dequeue a buffer int sharedSlot; sp<Fence> fence; sp<GraphicBuffer> buffer; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer)); // Enable shared buffer mode ASSERT_EQ(OK, mProducer->setSharedBufferMode(true)); // Queue the buffer IGraphicBufferProducer::QueueBufferInput input(0, false, HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); // Repeatedly queue and dequeue a buffer from the producer side, it should // always return the same one. And we won't run out of buffers because it's // always the same one and because async mode gets enabled. int slot; for (int i = 0; i < 5; i++) { ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(sharedSlot, slot); ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output)); } // acquire the buffer BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(sharedSlot, item.mSlot); testBufferItem(input, item); ASSERT_EQ(true, item.mQueuedBuffer); ASSERT_EQ(false, item.mAutoRefresh); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); // attempt to acquire a second time should return no buffer available ASSERT_EQ(IGraphicBufferConsumer::NO_BUFFER_AVAILABLE, mConsumer->acquireBuffer(&item, 0)); } TEST_F(BufferQueueTest, TestTimeouts) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); // Fill up the queue. Since the controlledByApp flags are set to true, this // queue should be in non-blocking mode, and we should be recycling the same // two buffers for (int i = 0; i < 5; ++i) { int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence = Fence::NO_FENCE; auto result = mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr); if (i < 2) { ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); } else { ASSERT_EQ(OK, result); } sp<GraphicBuffer> buffer; ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); IGraphicBufferProducer::QueueBufferInput input(0ull, true, HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); IGraphicBufferProducer::QueueBufferOutput output{}; ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); } const auto TIMEOUT = ms2ns(250); mProducer->setDequeueTimeout(TIMEOUT); // Setting a timeout will change the BufferQueue into blocking mode (with // one droppable buffer in the queue and one free from the previous // dequeue/queues), so dequeue and queue two more buffers: one to replace // the current droppable buffer, and a second to max out the buffer count sp<GraphicBuffer> buffer; // Save a buffer to attach later for (int i = 0; i < 2; ++i) { int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence = Fence::NO_FENCE; ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); IGraphicBufferProducer::QueueBufferInput input(0ull, true, HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); } int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence = Fence::NO_FENCE; auto startTime = systemTime(); ASSERT_EQ(TIMED_OUT, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_GE(systemTime() - startTime, TIMEOUT); // We're technically attaching the same buffer multiple times (since we // queued it previously), but that doesn't matter for this test startTime = systemTime(); ASSERT_EQ(TIMED_OUT, mProducer->attachBuffer(&slot, buffer)); ASSERT_GE(systemTime() - startTime, TIMEOUT); } TEST_F(BufferQueueTest, CanAttachWhileDisallowingAllocation) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> sourceFence; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &sourceFence, 0, 0, 0, 0, nullptr, nullptr)); sp<GraphicBuffer> buffer; ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); ASSERT_EQ(OK, mProducer->detachBuffer(slot)); ASSERT_EQ(OK, mProducer->allowAllocation(false)); slot = BufferQueue::INVALID_BUFFER_SLOT; ASSERT_EQ(OK, mProducer->attachBuffer(&slot, buffer)); } TEST_F(BufferQueueTest, CanRetrieveLastQueuedBuffer) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &output)); // Dequeue and queue the first buffer, storing the handle int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); sp<GraphicBuffer> firstBuffer; ASSERT_EQ(OK, mProducer->requestBuffer(slot, &firstBuffer)); IGraphicBufferProducer::QueueBufferInput input(0ull, true, HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); // Dequeue a second buffer slot = BufferQueue::INVALID_BUFFER_SLOT; ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); sp<GraphicBuffer> secondBuffer; ASSERT_EQ(OK, mProducer->requestBuffer(slot, &secondBuffer)); // Ensure it's a new buffer ASSERT_NE(firstBuffer->getNativeBuffer()->handle, secondBuffer->getNativeBuffer()->handle); // Queue the second buffer ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); // Acquire and release both buffers for (size_t i = 0; i < 2; ++i) { BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); } // Make sure we got the second buffer back sp<GraphicBuffer> returnedBuffer; sp<Fence> returnedFence; float transform[16]; ASSERT_EQ(OK, mProducer->getLastQueuedBuffer(&returnedBuffer, &returnedFence, transform)); ASSERT_EQ(secondBuffer->getNativeBuffer()->handle, returnedBuffer->getNativeBuffer()->handle); } TEST_F(BufferQueueTest, TestOccupancyHistory) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &output)); int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence = Fence::NO_FENCE; sp<GraphicBuffer> buffer = nullptr; IGraphicBufferProducer::QueueBufferInput input(0ull, true, HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); BufferItem item{}; // Preallocate, dequeue, request, and cancel 3 buffers so we don't get // BUFFER_NEEDS_REALLOCATION below int slots[3] = {}; mProducer->setMaxDequeuedBufferCount(3); for (size_t i = 0; i < 3; ++i) { status_t result = mProducer->dequeueBuffer(&slots[i], &fence, 0, 0, 0, 0, nullptr, nullptr); ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer)); } for (size_t i = 0; i < 3; ++i) { ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE)); } // Create 3 segments // The first segment is a two-buffer segment, so we only put one buffer into // the queue at a time for (size_t i = 0; i < 5; ++i) { ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); std::this_thread::sleep_for(16ms); } // Sleep between segments std::this_thread::sleep_for(500ms); // The second segment is a double-buffer segment. It starts the same as the // two-buffer segment, but then at the end, we put two buffers in the queue // at the same time before draining it. for (size_t i = 0; i < 5; ++i) { ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); std::this_thread::sleep_for(16ms); } ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); std::this_thread::sleep_for(16ms); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); // Sleep between segments std::this_thread::sleep_for(500ms); // The third segment is a triple-buffer segment, so the queue is switching // between one buffer and two buffers deep. ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); for (size_t i = 0; i < 5; ++i) { ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); std::this_thread::sleep_for(16ms); } ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); // Now we read the segments std::vector<OccupancyTracker::Segment> history; ASSERT_EQ(OK, mConsumer->getOccupancyHistory(false, &history)); // Since we didn't force a flush, we should only get the first two segments // (since the third segment hasn't been closed out by the appearance of a // new segment yet) ASSERT_EQ(2u, history.size()); // The first segment (which will be history[1], since the newest segment // should be at the front of the vector) should be a two-buffer segment, // which implies that the occupancy average should be between 0 and 1, and // usedThirdBuffer should be false const auto& firstSegment = history[1]; ASSERT_EQ(5u, firstSegment.numFrames); ASSERT_LT(0, firstSegment.occupancyAverage); ASSERT_GT(1, firstSegment.occupancyAverage); ASSERT_EQ(false, firstSegment.usedThirdBuffer); // The second segment should be a double-buffered segment, which implies that // the occupancy average should be between 0 and 1, but usedThirdBuffer // should be true const auto& secondSegment = history[0]; ASSERT_EQ(7u, secondSegment.numFrames); ASSERT_LT(0, secondSegment.occupancyAverage); ASSERT_GT(1, secondSegment.occupancyAverage); ASSERT_EQ(true, secondSegment.usedThirdBuffer); // If we read the segments again without flushing, we shouldn't get any new // segments ASSERT_EQ(OK, mConsumer->getOccupancyHistory(false, &history)); ASSERT_EQ(0u, history.size()); // Read the segments again, this time forcing a flush so we get the third // segment ASSERT_EQ(OK, mConsumer->getOccupancyHistory(true, &history)); ASSERT_EQ(1u, history.size()); // This segment should be a triple-buffered segment, which implies that the // occupancy average should be between 1 and 2, and usedThirdBuffer should // be true const auto& thirdSegment = history[0]; ASSERT_EQ(6u, thirdSegment.numFrames); ASSERT_LT(1, thirdSegment.occupancyAverage); ASSERT_GT(2, thirdSegment.occupancyAverage); ASSERT_EQ(true, thirdSegment.usedThirdBuffer); } TEST_F(BufferQueueTest, TestDiscardFreeBuffers) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false, &output)); int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence = Fence::NO_FENCE; sp<GraphicBuffer> buffer = nullptr; IGraphicBufferProducer::QueueBufferInput input(0ull, true, HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); BufferItem item{}; // Preallocate, dequeue, request, and cancel 4 buffers so we don't get // BUFFER_NEEDS_REALLOCATION below int slots[4] = {}; mProducer->setMaxDequeuedBufferCount(4); for (size_t i = 0; i < 4; ++i) { status_t result = mProducer->dequeueBuffer(&slots[i], &fence, 0, 0, 0, 0, nullptr, nullptr); ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer)); } for (size_t i = 0; i < 4; ++i) { ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE)); } // Get buffers in all states: dequeued, filled, acquired, free // Fill 3 buffers ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); // Dequeue 1 buffer ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); // Acquire and free 1 buffer ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); // Acquire 1 buffer, leaving 1 filled buffer in queue ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); // Now discard the free buffers ASSERT_EQ(OK, mConsumer->discardFreeBuffers()); // Check no free buffers in dump String8 dumpString; mConsumer->dumpState(String8{}, &dumpString); // Parse the dump to ensure that all buffer slots that are FREE also // have a null GraphicBuffer // Fragile - assumes the following format for the dump for a buffer entry: // ":%p\][^:]*state=FREE" where %p is the buffer pointer in hex. ssize_t idx = dumpString.find("state=FREE"); while (idx != -1) { ssize_t bufferPtrIdx = idx - 1; while (bufferPtrIdx > 0) { if (dumpString[bufferPtrIdx] == ':') { bufferPtrIdx++; break; } bufferPtrIdx--; } ASSERT_GT(bufferPtrIdx, 0) << "Can't parse queue dump to validate"; ssize_t nullPtrIdx = dumpString.find("0x0]", bufferPtrIdx); ASSERT_EQ(bufferPtrIdx, nullPtrIdx) << "Free buffer not discarded"; idx = dumpString.find("FREE", idx + 1); } } TEST_F(BufferQueueTest, TestBufferReplacedInQueueBuffer) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, true, &output)); ASSERT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1)); int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence = Fence::NO_FENCE; sp<GraphicBuffer> buffer = nullptr; IGraphicBufferProducer::QueueBufferInput input(0ull, true, HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); BufferItem item{}; // Preallocate, dequeue, request, and cancel 2 buffers so we don't get // BUFFER_NEEDS_REALLOCATION below int slots[2] = {}; ASSERT_EQ(OK, mProducer->setMaxDequeuedBufferCount(2)); for (size_t i = 0; i < 2; ++i) { status_t result = mProducer->dequeueBuffer(&slots[i], &fence, 0, 0, 0, 0, nullptr, nullptr); ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer)); } for (size_t i = 0; i < 2; ++i) { ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE)); } // Fill 2 buffers without consumer consuming them. Verify that all // queued buffer returns proper bufferReplaced flag ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(false, output.bufferReplaced); ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); ASSERT_EQ(true, output.bufferReplaced); } TEST_F(BufferQueueTest, TestStaleBufferHandleSentAfterDisconnect) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; sp<IProducerListener> dummyListener(new DummyProducerListener); ASSERT_EQ(OK, mProducer->connect(dummyListener, NATIVE_WINDOW_API_CPU, true, &output)); int slot = BufferQueue::INVALID_BUFFER_SLOT; sp<Fence> fence = Fence::NO_FENCE; sp<GraphicBuffer> buffer = nullptr; IGraphicBufferProducer::QueueBufferInput input(0ull, true, HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT, NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE); // Dequeue, request, and queue one buffer status_t result = mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr); ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result); ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); // Acquire and release the buffer. Upon acquiring, the buffer handle should // be non-null since this is the first time we've acquired this slot. BufferItem item; ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(slot, item.mSlot); ASSERT_NE(nullptr, item.mGraphicBuffer.get()); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); // Dequeue and queue the buffer again ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); // Acquire and release the buffer again. Upon acquiring, the buffer handle // should be null since this is not the first time we've acquired this slot. ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(slot, item.mSlot); ASSERT_EQ(nullptr, item.mGraphicBuffer.get()); ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber, EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE)); // Dequeue and queue the buffer again ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr)); ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output)); // Disconnect the producer end. This should clear all of the slots and mark // the buffer in the queue as stale. ASSERT_EQ(OK, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); // Acquire the buffer again. Upon acquiring, the buffer handle should not be // null since the queued buffer should have been marked as stale, which // should trigger the BufferQueue to resend the buffer handle. ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0)); ASSERT_EQ(slot, item.mSlot); ASSERT_NE(nullptr, item.mGraphicBuffer.get()); } TEST_F(BufferQueueTest, TestProducerConnectDisconnect) { createBufferQueue(); sp<DummyConsumer> dc(new DummyConsumer); ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true)); IGraphicBufferProducer::QueueBufferOutput output; sp<IProducerListener> dummyListener(new DummyProducerListener); ASSERT_EQ(NO_INIT, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); ASSERT_EQ(OK, mProducer->connect( dummyListener, NATIVE_WINDOW_API_CPU, true, &output)); ASSERT_EQ(BAD_VALUE, mProducer->connect( dummyListener, NATIVE_WINDOW_API_MEDIA, true, &output)); ASSERT_EQ(BAD_VALUE, mProducer->disconnect(NATIVE_WINDOW_API_MEDIA)); ASSERT_EQ(OK, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); ASSERT_EQ(NO_INIT, mProducer->disconnect(NATIVE_WINDOW_API_CPU)); } } // namespace android