/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "BufferLayer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "BufferLayer.h" #include "Colorizer.h" #include "DisplayDevice.h" #include "LayerRejecter.h" #include "clz.h" #include "RenderEngine/RenderEngine.h" #include <gui/BufferItem.h> #include <gui/BufferQueue.h> #include <gui/LayerDebugInfo.h> #include <gui/Surface.h> #include <ui/DebugUtils.h> #include <utils/Errors.h> #include <utils/Log.h> #include <utils/NativeHandle.h> #include <utils/StopWatch.h> #include <utils/Trace.h> #include <cutils/compiler.h> #include <cutils/native_handle.h> #include <cutils/properties.h> #include <math.h> #include <stdlib.h> #include <mutex> namespace android { BufferLayer::BufferLayer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w, uint32_t h, uint32_t flags) : Layer(flinger, client, name, w, h, flags), mConsumer(nullptr), mTextureName(UINT32_MAX), mFormat(PIXEL_FORMAT_NONE), mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), mBufferLatched(false), mPreviousFrameNumber(0), mUpdateTexImageFailed(false), mRefreshPending(false) { ALOGV("Creating Layer %s", name.string()); mFlinger->getRenderEngine().genTextures(1, &mTextureName); mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName); if (flags & ISurfaceComposerClient::eNonPremultiplied) mPremultipliedAlpha = false; mCurrentState.requested = mCurrentState.active; // drawing state & current state are identical mDrawingState = mCurrentState; } BufferLayer::~BufferLayer() { mFlinger->deleteTextureAsync(mTextureName); if (!getBE().mHwcLayers.empty()) { ALOGE("Found stale hardware composer layers when destroying " "surface flinger layer %s", mName.string()); destroyAllHwcLayers(); } } void BufferLayer::useSurfaceDamage() { if (mFlinger->mForceFullDamage) { surfaceDamageRegion = Region::INVALID_REGION; } else { surfaceDamageRegion = mConsumer->getSurfaceDamage(); } } void BufferLayer::useEmptyDamage() { surfaceDamageRegion.clear(); } bool BufferLayer::isProtected() const { const sp<GraphicBuffer>& buffer(getBE().compositionInfo.mBuffer); return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); } bool BufferLayer::isVisible() const { return !(isHiddenByPolicy()) && getAlpha() > 0.0f && (getBE().compositionInfo.mBuffer != nullptr || getBE().compositionInfo.hwc.sidebandStream != nullptr); } bool BufferLayer::isFixedSize() const { return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; } status_t BufferLayer::setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) { uint32_t const maxSurfaceDims = min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims()); // never allow a surface larger than what our underlying GL implementation // can handle. if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) { ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); return BAD_VALUE; } mFormat = format; mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false; mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false; mCurrentOpacity = getOpacityForFormat(format); mConsumer->setDefaultBufferSize(w, h); mConsumer->setDefaultBufferFormat(format); mConsumer->setConsumerUsageBits(getEffectiveUsage(0)); return NO_ERROR; } static constexpr mat4 inverseOrientation(uint32_t transform) { const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); mat4 tr; if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { tr = tr * rot90; } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { tr = tr * flipH; } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { tr = tr * flipV; } return inverse(tr); } /* * onDraw will draw the current layer onto the presentable buffer */ void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip, bool useIdentityTransform) const { ATRACE_CALL(); if (CC_UNLIKELY(getBE().compositionInfo.mBuffer == 0)) { // the texture has not been created yet, this Layer has // in fact never been drawn into. This happens frequently with // SurfaceView because the WindowManager can't know when the client // has drawn the first time. // If there is nothing under us, we paint the screen in black, otherwise // we just skip this update. // figure out if there is something below us Region under; bool finished = false; mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { if (finished || layer == static_cast<BufferLayer const*>(this)) { finished = true; return; } under.orSelf(renderArea.getTransform().transform(layer->visibleRegion)); }); // if not everything below us is covered, we plug the holes! Region holes(clip.subtract(under)); if (!holes.isEmpty()) { clearWithOpenGL(renderArea, 0, 0, 0, 1); } return; } // Bind the current buffer to the GL texture, and wait for it to be // ready for us to draw into. status_t err = mConsumer->bindTextureImage(); if (err != NO_ERROR) { ALOGW("onDraw: bindTextureImage failed (err=%d)", err); // Go ahead and draw the buffer anyway; no matter what we do the screen // is probably going to have something visibly wrong. } bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure()); auto& engine(mFlinger->getRenderEngine()); if (!blackOutLayer) { // TODO: we could be more subtle with isFixedSize() const bool useFiltering = getFiltering() || needsFiltering(renderArea) || isFixedSize(); // Query the texture matrix given our current filtering mode. float textureMatrix[16]; mConsumer->setFilteringEnabled(useFiltering); mConsumer->getTransformMatrix(textureMatrix); if (getTransformToDisplayInverse()) { /* * the code below applies the primary display's inverse transform to * the texture transform */ uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); mat4 tr = inverseOrientation(transform); /** * TODO(b/36727915): This is basically a hack. * * Ensure that regardless of the parent transformation, * this buffer is always transformed from native display * orientation to display orientation. For example, in the case * of a camera where the buffer remains in native orientation, * we want the pixels to always be upright. */ sp<Layer> p = mDrawingParent.promote(); if (p != nullptr) { const auto parentTransform = p->getTransform(); tr = tr * inverseOrientation(parentTransform.getOrientation()); } // and finally apply it to the original texture matrix const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); } // Set things up for texturing. mTexture.setDimensions(getBE().compositionInfo.mBuffer->getWidth(), getBE().compositionInfo.mBuffer->getHeight()); mTexture.setFiltering(useFiltering); mTexture.setMatrix(textureMatrix); engine.setupLayerTexturing(mTexture); } else { engine.setupLayerBlackedOut(); } drawWithOpenGL(renderArea, useIdentityTransform); engine.disableTexturing(); } void BufferLayer::onLayerDisplayed(const sp<Fence>& releaseFence) { mConsumer->setReleaseFence(releaseFence); } void BufferLayer::abandon() { mConsumer->abandon(); } bool BufferLayer::shouldPresentNow(const DispSync& dispSync) const { if (mSidebandStreamChanged || mAutoRefresh) { return true; } Mutex::Autolock lock(mQueueItemLock); if (mQueueItems.empty()) { return false; } auto timestamp = mQueueItems[0].mTimestamp; nsecs_t expectedPresent = mConsumer->computeExpectedPresent(dispSync); // Ignore timestamps more than a second in the future bool isPlausible = timestamp < (expectedPresent + s2ns(1)); ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible " "relative to expectedPresent %" PRId64, mName.string(), timestamp, expectedPresent); bool isDue = timestamp < expectedPresent; return isDue || !isPlausible; } void BufferLayer::setTransformHint(uint32_t orientation) const { mConsumer->setTransformHint(orientation); } bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { if (mBufferLatched) { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); } mRefreshPending = false; return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh; } bool BufferLayer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence, const std::shared_ptr<FenceTime>& presentFence, const CompositorTiming& compositorTiming) { // mFrameLatencyNeeded is true when a new frame was latched for the // composition. if (!mFrameLatencyNeeded) return false; // Update mFrameEventHistory. { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, compositorTiming); } // Update mFrameTracker. nsecs_t desiredPresentTime = mConsumer->getTimestamp(); mFrameTracker.setDesiredPresentTime(desiredPresentTime); const std::string layerName(getName().c_str()); mTimeStats.setDesiredTime(layerName, mCurrentFrameNumber, desiredPresentTime); std::shared_ptr<FenceTime> frameReadyFence = mConsumer->getCurrentFenceTime(); if (frameReadyFence->isValid()) { mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); } else { // There was no fence for this frame, so assume that it was ready // to be presented at the desired present time. mFrameTracker.setFrameReadyTime(desiredPresentTime); } if (presentFence->isValid()) { mTimeStats.setPresentFence(layerName, mCurrentFrameNumber, presentFence); mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); } else { // The HWC doesn't support present fences, so use the refresh // timestamp instead. const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(HWC_DISPLAY_PRIMARY); mTimeStats.setPresentTime(layerName, mCurrentFrameNumber, actualPresentTime); mFrameTracker.setActualPresentTime(actualPresentTime); } mFrameTracker.advanceFrame(); mFrameLatencyNeeded = false; return true; } std::vector<OccupancyTracker::Segment> BufferLayer::getOccupancyHistory(bool forceFlush) { std::vector<OccupancyTracker::Segment> history; status_t result = mConsumer->getOccupancyHistory(forceFlush, &history); if (result != NO_ERROR) { ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), result); return {}; } return history; } bool BufferLayer::getTransformToDisplayInverse() const { return mConsumer->getTransformToDisplayInverse(); } void BufferLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) { if (!mConsumer->releasePendingBuffer()) { return; } auto releaseFenceTime = std::make_shared<FenceTime>(mConsumer->getPrevFinalReleaseFence()); mReleaseTimeline.updateSignalTimes(); mReleaseTimeline.push(releaseFenceTime); Mutex::Autolock lock(mFrameEventHistoryMutex); if (mPreviousFrameNumber != 0) { mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime, std::move(releaseFenceTime)); } } Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) { ATRACE_CALL(); if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) { // mSidebandStreamChanged was true mSidebandStream = mConsumer->getSidebandStream(); // replicated in LayerBE until FE/BE is ready to be synchronized getBE().compositionInfo.hwc.sidebandStream = mSidebandStream; if (getBE().compositionInfo.hwc.sidebandStream != nullptr) { setTransactionFlags(eTransactionNeeded); mFlinger->setTransactionFlags(eTraversalNeeded); } recomputeVisibleRegions = true; const State& s(getDrawingState()); return getTransform().transform(Region(Rect(s.active.w, s.active.h))); } Region outDirtyRegion; if (mQueuedFrames <= 0 && !mAutoRefresh) { return outDirtyRegion; } // if we've already called updateTexImage() without going through // a composition step, we have to skip this layer at this point // because we cannot call updateTeximage() without a corresponding // compositionComplete() call. // we'll trigger an update in onPreComposition(). if (mRefreshPending) { return outDirtyRegion; } // If the head buffer's acquire fence hasn't signaled yet, return and // try again later if (!headFenceHasSignaled()) { mFlinger->signalLayerUpdate(); return outDirtyRegion; } // Capture the old state of the layer for comparisons later const State& s(getDrawingState()); const bool oldOpacity = isOpaque(s); sp<GraphicBuffer> oldBuffer = getBE().compositionInfo.mBuffer; if (!allTransactionsSignaled()) { mFlinger->signalLayerUpdate(); return outDirtyRegion; } // This boolean is used to make sure that SurfaceFlinger's shadow copy // of the buffer queue isn't modified when the buffer queue is returning // BufferItem's that weren't actually queued. This can happen in shared // buffer mode. bool queuedBuffer = false; LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions, getProducerStickyTransform() != 0, mName.string(), mOverrideScalingMode, mFreezeGeometryUpdates); status_t updateResult = mConsumer->updateTexImage(&r, mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer, mLastFrameNumberReceived); if (updateResult == BufferQueue::PRESENT_LATER) { // Producer doesn't want buffer to be displayed yet. Signal a // layer update so we check again at the next opportunity. mFlinger->signalLayerUpdate(); return outDirtyRegion; } else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) { // If the buffer has been rejected, remove it from the shadow queue // and return early if (queuedBuffer) { Mutex::Autolock lock(mQueueItemLock); mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber); mQueueItems.removeAt(0); android_atomic_dec(&mQueuedFrames); } return outDirtyRegion; } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) { // This can occur if something goes wrong when trying to create the // EGLImage for this buffer. If this happens, the buffer has already // been released, so we need to clean up the queue and bug out // early. if (queuedBuffer) { Mutex::Autolock lock(mQueueItemLock); mQueueItems.clear(); android_atomic_and(0, &mQueuedFrames); mTimeStats.clearLayerRecord(getName().c_str()); } // Once we have hit this state, the shadow queue may no longer // correctly reflect the incoming BufferQueue's contents, so even if // updateTexImage starts working, the only safe course of action is // to continue to ignore updates. mUpdateTexImageFailed = true; return outDirtyRegion; } if (queuedBuffer) { // Autolock scope auto currentFrameNumber = mConsumer->getFrameNumber(); Mutex::Autolock lock(mQueueItemLock); // Remove any stale buffers that have been dropped during // updateTexImage while (mQueueItems[0].mFrameNumber != currentFrameNumber) { mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber); mQueueItems.removeAt(0); android_atomic_dec(&mQueuedFrames); } const std::string layerName(getName().c_str()); mTimeStats.setAcquireFence(layerName, currentFrameNumber, mQueueItems[0].mFenceTime); mTimeStats.setLatchTime(layerName, currentFrameNumber, latchTime); mQueueItems.removeAt(0); } // Decrement the queued-frames count. Signal another event if we // have more frames pending. if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) || mAutoRefresh) { mFlinger->signalLayerUpdate(); } // update the active buffer getBE().compositionInfo.mBuffer = mConsumer->getCurrentBuffer(&getBE().compositionInfo.mBufferSlot); // replicated in LayerBE until FE/BE is ready to be synchronized mActiveBuffer = getBE().compositionInfo.mBuffer; if (getBE().compositionInfo.mBuffer == nullptr) { // this can only happen if the very first buffer was rejected. return outDirtyRegion; } mBufferLatched = true; mPreviousFrameNumber = mCurrentFrameNumber; mCurrentFrameNumber = mConsumer->getFrameNumber(); { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime); } mRefreshPending = true; mFrameLatencyNeeded = true; if (oldBuffer == nullptr) { // the first time we receive a buffer, we need to trigger a // geometry invalidation. recomputeVisibleRegions = true; } ui::Dataspace dataSpace = mConsumer->getCurrentDataSpace(); // treat modern dataspaces as legacy dataspaces whenever possible, until // we can trust the buffer producers switch (dataSpace) { case ui::Dataspace::V0_SRGB: dataSpace = ui::Dataspace::SRGB; break; case ui::Dataspace::V0_SRGB_LINEAR: dataSpace = ui::Dataspace::SRGB_LINEAR; break; case ui::Dataspace::V0_JFIF: dataSpace = ui::Dataspace::JFIF; break; case ui::Dataspace::V0_BT601_625: dataSpace = ui::Dataspace::BT601_625; break; case ui::Dataspace::V0_BT601_525: dataSpace = ui::Dataspace::BT601_525; break; case ui::Dataspace::V0_BT709: dataSpace = ui::Dataspace::BT709; break; default: break; } mCurrentDataSpace = dataSpace; Rect crop(mConsumer->getCurrentCrop()); const uint32_t transform(mConsumer->getCurrentTransform()); const uint32_t scalingMode(mConsumer->getCurrentScalingMode()); if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || (scalingMode != mCurrentScalingMode)) { mCurrentCrop = crop; mCurrentTransform = transform; mCurrentScalingMode = scalingMode; recomputeVisibleRegions = true; } if (oldBuffer != nullptr) { uint32_t bufWidth = getBE().compositionInfo.mBuffer->getWidth(); uint32_t bufHeight = getBE().compositionInfo.mBuffer->getHeight(); if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) { recomputeVisibleRegions = true; } } mCurrentOpacity = getOpacityForFormat(getBE().compositionInfo.mBuffer->format); if (oldOpacity != isOpaque(s)) { recomputeVisibleRegions = true; } // Remove any sync points corresponding to the buffer which was just // latched { Mutex::Autolock lock(mLocalSyncPointMutex); auto point = mLocalSyncPoints.begin(); while (point != mLocalSyncPoints.end()) { if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { // This sync point must have been added since we started // latching. Don't drop it yet. ++point; continue; } if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { point = mLocalSyncPoints.erase(point); } else { ++point; } } } // FIXME: postedRegion should be dirty & bounds Region dirtyRegion(Rect(s.active.w, s.active.h)); // transform the dirty region to window-manager space outDirtyRegion = (getTransform().transform(dirtyRegion)); return outDirtyRegion; } void BufferLayer::setDefaultBufferSize(uint32_t w, uint32_t h) { mConsumer->setDefaultBufferSize(w, h); } void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) { // Apply this display's projection's viewport to the visible region // before giving it to the HWC HAL. const Transform& tr = displayDevice->getTransform(); const auto& viewport = displayDevice->getViewport(); Region visible = tr.transform(visibleRegion.intersect(viewport)); auto hwcId = displayDevice->getHwcDisplayId(); auto& hwcInfo = getBE().mHwcLayers[hwcId]; auto& hwcLayer = hwcInfo.layer; auto error = hwcLayer->setVisibleRegion(visible); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), to_string(error).c_str(), static_cast<int32_t>(error)); visible.dump(LOG_TAG); } error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), to_string(error).c_str(), static_cast<int32_t>(error)); surfaceDamageRegion.dump(LOG_TAG); } // Sideband layers if (getBE().compositionInfo.hwc.sidebandStream.get()) { setCompositionType(hwcId, HWC2::Composition::Sideband); ALOGV("[%s] Requesting Sideband composition", mName.string()); error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle()); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(), static_cast<int32_t>(error)); } return; } // Device or Cursor layers if (mPotentialCursor) { ALOGV("[%s] Requesting Cursor composition", mName.string()); setCompositionType(hwcId, HWC2::Composition::Cursor); } else { ALOGV("[%s] Requesting Device composition", mName.string()); setCompositionType(hwcId, HWC2::Composition::Device); } ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace); error = hwcLayer->setDataspace(mCurrentDataSpace); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace, to_string(error).c_str(), static_cast<int32_t>(error)); } const HdrMetadata& metadata = mConsumer->getCurrentHdrMetadata(); error = hwcLayer->setPerFrameMetadata(displayDevice->getSupportedPerFrameMetadata(), metadata); if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), to_string(error).c_str(), static_cast<int32_t>(error)); } uint32_t hwcSlot = 0; sp<GraphicBuffer> hwcBuffer; hwcInfo.bufferCache.getHwcBuffer(getBE().compositionInfo.mBufferSlot, getBE().compositionInfo.mBuffer, &hwcSlot, &hwcBuffer); auto acquireFence = mConsumer->getCurrentFence(); error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), getBE().compositionInfo.mBuffer->handle, to_string(error).c_str(), static_cast<int32_t>(error)); } } bool BufferLayer::isOpaque(const Layer::State& s) const { // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the // layer's opaque flag. if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (getBE().compositionInfo.mBuffer == nullptr)) { return false; } // if the layer has the opaque flag, then we're always opaque, // otherwise we use the current buffer's format. return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity; } void BufferLayer::onFirstRef() { // Creates a custom BufferQueue for SurfaceFlingerConsumer to use sp<IGraphicBufferProducer> producer; sp<IGraphicBufferConsumer> consumer; BufferQueue::createBufferQueue(&producer, &consumer, true); mProducer = new MonitoredProducer(producer, mFlinger, this); mConsumer = new BufferLayerConsumer(consumer, mFlinger->getRenderEngine(), mTextureName, this); mConsumer->setConsumerUsageBits(getEffectiveUsage(0)); mConsumer->setContentsChangedListener(this); mConsumer->setName(mName); if (mFlinger->isLayerTripleBufferingDisabled()) { mProducer->setMaxDequeuedBufferCount(2); } const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice()); updateTransformHint(hw); } // --------------------------------------------------------------------------- // Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener // --------------------------------------------------------------------------- void BufferLayer::onFrameAvailable(const BufferItem& item) { // Add this buffer from our internal queue tracker { // Autolock scope Mutex::Autolock lock(mQueueItemLock); mFlinger->mInterceptor->saveBufferUpdate(this, item.mGraphicBuffer->getWidth(), item.mGraphicBuffer->getHeight(), item.mFrameNumber); // Reset the frame number tracker when we receive the first buffer after // a frame number reset if (item.mFrameNumber == 1) { mLastFrameNumberReceived = 0; } // Ensure that callbacks are handled in order while (item.mFrameNumber != mLastFrameNumberReceived + 1) { status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500)); if (result != NO_ERROR) { ALOGE("[%s] Timed out waiting on callback", mName.string()); } } mQueueItems.push_back(item); android_atomic_inc(&mQueuedFrames); // Wake up any pending callbacks mLastFrameNumberReceived = item.mFrameNumber; mQueueItemCondition.broadcast(); } mFlinger->signalLayerUpdate(); } void BufferLayer::onFrameReplaced(const BufferItem& item) { { // Autolock scope Mutex::Autolock lock(mQueueItemLock); // Ensure that callbacks are handled in order while (item.mFrameNumber != mLastFrameNumberReceived + 1) { status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500)); if (result != NO_ERROR) { ALOGE("[%s] Timed out waiting on callback", mName.string()); } } if (mQueueItems.empty()) { ALOGE("Can't replace a frame on an empty queue"); return; } mQueueItems.editItemAt(mQueueItems.size() - 1) = item; // Wake up any pending callbacks mLastFrameNumberReceived = item.mFrameNumber; mQueueItemCondition.broadcast(); } } void BufferLayer::onSidebandStreamChanged() { if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) { // mSidebandStreamChanged was false mFlinger->signalLayerUpdate(); } } bool BufferLayer::needsFiltering(const RenderArea& renderArea) const { return mNeedsFiltering || renderArea.needsFiltering(); } // As documented in libhardware header, formats in the range // 0x100 - 0x1FF are specific to the HAL implementation, and // are known to have no alpha channel // TODO: move definition for device-specific range into // hardware.h, instead of using hard-coded values here. #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) bool BufferLayer::getOpacityForFormat(uint32_t format) { if (HARDWARE_IS_DEVICE_FORMAT(format)) { return true; } switch (format) { case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_RGBA_FP16: case HAL_PIXEL_FORMAT_RGBA_1010102: return false; } // in all other case, we have no blending (also for unknown formats) return true; } bool BufferLayer::isHdrY410() const { // pixel format is HDR Y410 masquerading as RGBA_1010102 return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && mConsumer->getCurrentApi() == NATIVE_WINDOW_API_MEDIA && getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); } void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const { ATRACE_CALL(); const State& s(getDrawingState()); computeGeometry(renderArea, getBE().mMesh, useIdentityTransform); /* * NOTE: the way we compute the texture coordinates here produces * different results than when we take the HWC path -- in the later case * the "source crop" is rounded to texel boundaries. * This can produce significantly different results when the texture * is scaled by a large amount. * * The GL code below is more logical (imho), and the difference with * HWC is due to a limitation of the HWC API to integers -- a question * is suspend is whether we should ignore this problem or revert to * GL composition when a buffer scaling is applied (maybe with some * minimal value)? Or, we could make GL behave like HWC -- but this feel * like more of a hack. */ const Rect bounds{computeBounds()}; // Rounds from FloatRect Transform t = getTransform(); Rect win = bounds; if (!s.finalCrop.isEmpty()) { win = t.transform(win); if (!win.intersect(s.finalCrop, &win)) { win.clear(); } win = t.inverse().transform(win); if (!win.intersect(bounds, &win)) { win.clear(); } } float left = float(win.left) / float(s.active.w); float top = float(win.top) / float(s.active.h); float right = float(win.right) / float(s.active.w); float bottom = float(win.bottom) / float(s.active.h); // TODO: we probably want to generate the texture coords with the mesh // here we assume that we only have 4 vertices Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>()); texCoords[0] = vec2(left, 1.0f - top); texCoords[1] = vec2(left, 1.0f - bottom); texCoords[2] = vec2(right, 1.0f - bottom); texCoords[3] = vec2(right, 1.0f - top); auto& engine(mFlinger->getRenderEngine()); engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */, getColor()); engine.setSourceDataSpace(mCurrentDataSpace); if (isHdrY410()) { engine.setSourceY410BT2020(true); } engine.drawMesh(getBE().mMesh); engine.disableBlending(); engine.setSourceY410BT2020(false); } uint32_t BufferLayer::getProducerStickyTransform() const { int producerStickyTransform = 0; int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform); if (ret != OK) { ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__, strerror(-ret), ret); return 0; } return static_cast<uint32_t>(producerStickyTransform); } bool BufferLayer::latchUnsignaledBuffers() { static bool propertyLoaded = false; static bool latch = false; static std::mutex mutex; std::lock_guard<std::mutex> lock(mutex); if (!propertyLoaded) { char value[PROPERTY_VALUE_MAX] = {}; property_get("debug.sf.latch_unsignaled", value, "0"); latch = atoi(value); propertyLoaded = true; } return latch; } uint64_t BufferLayer::getHeadFrameNumber() const { Mutex::Autolock lock(mQueueItemLock); if (!mQueueItems.empty()) { return mQueueItems[0].mFrameNumber; } else { return mCurrentFrameNumber; } } bool BufferLayer::headFenceHasSignaled() const { if (latchUnsignaledBuffers()) { return true; } Mutex::Autolock lock(mQueueItemLock); if (mQueueItems.empty()) { return true; } if (mQueueItems[0].mIsDroppable) { // Even though this buffer's fence may not have signaled yet, it could // be replaced by another buffer before it has a chance to, which means // that it's possible to get into a situation where a buffer is never // able to be latched. To avoid this, grab this buffer anyway. return true; } return mQueueItems[0].mFenceTime->getSignalTime() != Fence::SIGNAL_TIME_PENDING; } uint32_t BufferLayer::getEffectiveScalingMode() const { if (mOverrideScalingMode >= 0) { return mOverrideScalingMode; } return mCurrentScalingMode; } // ---------------------------------------------------------------------------- // transaction // ---------------------------------------------------------------------------- void BufferLayer::notifyAvailableFrames() { auto headFrameNumber = getHeadFrameNumber(); bool headFenceSignaled = headFenceHasSignaled(); Mutex::Autolock lock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { point->setFrameAvailable(); } } } sp<IGraphicBufferProducer> BufferLayer::getProducer() const { return mProducer; } // --------------------------------------------------------------------------- // h/w composer set-up // --------------------------------------------------------------------------- bool BufferLayer::allTransactionsSignaled() { auto headFrameNumber = getHeadFrameNumber(); bool matchingFramesFound = false; bool allTransactionsApplied = true; Mutex::Autolock lock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { if (point->getFrameNumber() > headFrameNumber) { break; } matchingFramesFound = true; if (!point->frameIsAvailable()) { // We haven't notified the remote layer that the frame for // this point is available yet. Notify it now, and then // abort this attempt to latch. point->setFrameAvailable(); allTransactionsApplied = false; break; } allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); } return !matchingFramesFound || allTransactionsApplied; } } // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif