/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "Layer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include <math.h> #include <stdint.h> #include <stdlib.h> #include <sys/types.h> #include <algorithm> #include <cutils/compiler.h> #include <cutils/native_handle.h> #include <cutils/properties.h> #include <utils/Errors.h> #include <utils/Log.h> #include <utils/NativeHandle.h> #include <utils/StopWatch.h> #include <utils/Trace.h> #include <ui/DebugUtils.h> #include <ui/GraphicBuffer.h> #include <ui/PixelFormat.h> #include <gui/BufferItem.h> #include <gui/LayerDebugInfo.h> #include <gui/Surface.h> #include "BufferLayer.h" #include "Colorizer.h" #include "DisplayDevice.h" #include "Layer.h" #include "LayerRejecter.h" #include "MonitoredProducer.h" #include "SurfaceFlinger.h" #include "clz.h" #include "DisplayHardware/HWComposer.h" #include "RenderEngine/RenderEngine.h" #include <mutex> #include "LayerProtoHelper.h" #define DEBUG_RESIZE 0 namespace android { LayerBE::LayerBE() : mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2) { } int32_t Layer::sSequence = 1; Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w, uint32_t h, uint32_t flags) : contentDirty(false), sequence(uint32_t(android_atomic_inc(&sSequence))), mFlinger(flinger), mPremultipliedAlpha(true), mName(name), mTransactionFlags(0), mPendingStateMutex(), mPendingStates(), mQueuedFrames(0), mSidebandStreamChanged(false), mActiveBufferSlot(BufferQueue::INVALID_BUFFER_SLOT), mCurrentTransform(0), mOverrideScalingMode(-1), mCurrentOpacity(true), mCurrentFrameNumber(0), mFrameLatencyNeeded(false), mFiltering(false), mNeedsFiltering(false), mProtectedByApp(false), mClientRef(client), mPotentialCursor(false), mQueueItemLock(), mQueueItemCondition(), mQueueItems(), mLastFrameNumberReceived(0), mAutoRefresh(false), mFreezeGeometryUpdates(false), mCurrentChildren(LayerVector::StateSet::Current), mDrawingChildren(LayerVector::StateSet::Drawing) { mCurrentCrop.makeInvalid(); uint32_t layerFlags = 0; if (flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden; if (flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque; if (flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure; mName = name; mTransactionName = String8("TX - ") + mName; mCurrentState.active.w = w; mCurrentState.active.h = h; mCurrentState.flags = layerFlags; mCurrentState.active.transform.set(0, 0); mCurrentState.crop.makeInvalid(); mCurrentState.finalCrop.makeInvalid(); mCurrentState.requestedFinalCrop = mCurrentState.finalCrop; mCurrentState.requestedCrop = mCurrentState.crop; mCurrentState.z = 0; mCurrentState.color.a = 1.0f; mCurrentState.layerStack = 0; mCurrentState.sequence = 0; mCurrentState.requested = mCurrentState.active; mCurrentState.appId = 0; mCurrentState.type = 0; // drawing state & current state are identical mDrawingState = mCurrentState; const auto& hwc = flinger->getHwComposer(); const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY); nsecs_t displayPeriod = activeConfig->getVsyncPeriod(); mFrameTracker.setDisplayRefreshPeriod(displayPeriod); CompositorTiming compositorTiming; flinger->getCompositorTiming(&compositorTiming); mFrameEventHistory.initializeCompositorTiming(compositorTiming); } void Layer::onFirstRef() {} Layer::~Layer() { sp<Client> c(mClientRef.promote()); if (c != 0) { c->detachLayer(this); } for (auto& point : mRemoteSyncPoints) { point->setTransactionApplied(); } for (auto& point : mLocalSyncPoints) { point->setFrameAvailable(); } mFrameTracker.logAndResetStats(mName); } // --------------------------------------------------------------------------- // callbacks // --------------------------------------------------------------------------- /* * onLayerDisplayed is only meaningful for BufferLayer, but, is called through * Layer. So, the implementation is done in BufferLayer. When called on a * ColorLayer object, it's essentially a NOP. */ void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {} void Layer::onRemovedFromCurrentState() { // the layer is removed from SF mCurrentState to mLayersPendingRemoval mPendingRemoval = true; if (mCurrentState.zOrderRelativeOf != nullptr) { sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); if (strongRelative != nullptr) { strongRelative->removeZOrderRelative(this); mFlinger->setTransactionFlags(eTraversalNeeded); } mCurrentState.zOrderRelativeOf = nullptr; } for (const auto& child : mCurrentChildren) { child->onRemovedFromCurrentState(); } } void Layer::onRemoved() { // the layer is removed from SF mLayersPendingRemoval abandon(); destroyAllHwcLayers(); for (const auto& child : mCurrentChildren) { child->onRemoved(); } } // --------------------------------------------------------------------------- // set-up // --------------------------------------------------------------------------- const String8& Layer::getName() const { return mName; } bool Layer::getPremultipledAlpha() const { return mPremultipliedAlpha; } sp<IBinder> Layer::getHandle() { Mutex::Autolock _l(mLock); return new Handle(mFlinger, this); } // --------------------------------------------------------------------------- // h/w composer set-up // --------------------------------------------------------------------------- bool Layer::createHwcLayer(HWComposer* hwc, int32_t hwcId) { LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.count(hwcId) != 0, "Already have a layer for hwcId %d", hwcId); HWC2::Layer* layer = hwc->createLayer(hwcId); if (!layer) { return false; } LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers[hwcId]; hwcInfo.hwc = hwc; hwcInfo.layer = layer; layer->setLayerDestroyedListener( [this, hwcId](HWC2::Layer* /*layer*/) { getBE().mHwcLayers.erase(hwcId); }); return true; } bool Layer::destroyHwcLayer(int32_t hwcId) { if (getBE().mHwcLayers.count(hwcId) == 0) { return false; } auto& hwcInfo = getBE().mHwcLayers[hwcId]; LOG_ALWAYS_FATAL_IF(hwcInfo.layer == nullptr, "Attempt to destroy null layer"); LOG_ALWAYS_FATAL_IF(hwcInfo.hwc == nullptr, "Missing HWComposer"); hwcInfo.hwc->destroyLayer(hwcId, hwcInfo.layer); // The layer destroyed listener should have cleared the entry from // mHwcLayers. Verify that. LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.count(hwcId) != 0, "Stale layer entry in getBE().mHwcLayers"); return true; } void Layer::destroyAllHwcLayers() { size_t numLayers = getBE().mHwcLayers.size(); for (size_t i = 0; i < numLayers; ++i) { LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.empty(), "destroyAllHwcLayers failed"); destroyHwcLayer(getBE().mHwcLayers.begin()->first); } LOG_ALWAYS_FATAL_IF(!getBE().mHwcLayers.empty(), "All hardware composer layers should have been destroyed"); } Rect Layer::getContentCrop() const { // this is the crop rectangle that applies to the buffer // itself (as opposed to the window) Rect crop; if (!mCurrentCrop.isEmpty()) { // if the buffer crop is defined, we use that crop = mCurrentCrop; } else if (getBE().compositionInfo.mBuffer != nullptr) { // otherwise we use the whole buffer crop = getBE().compositionInfo.mBuffer->getBounds(); } else { // if we don't have a buffer yet, we use an empty/invalid crop crop.makeInvalid(); } return crop; } static Rect reduce(const Rect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } if (exclude.isRect()) { return win.reduce(exclude.getBounds()); } return Region(win).subtract(exclude).getBounds(); } static FloatRect reduce(const FloatRect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } // Convert through Rect (by rounding) for lack of FloatRegion return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); } Rect Layer::computeScreenBounds(bool reduceTransparentRegion) const { const Layer::State& s(getDrawingState()); Rect win(s.active.w, s.active.h); if (!s.crop.isEmpty()) { win.intersect(s.crop, &win); } Transform t = getTransform(); win = t.transform(win); if (!s.finalCrop.isEmpty()) { win.intersect(s.finalCrop, &win); } const sp<Layer>& p = mDrawingParent.promote(); // Now we need to calculate the parent bounds, so we can clip ourselves to those. // When calculating the parent bounds for purposes of clipping, // we don't need to constrain the parent to its transparent region. // The transparent region is an optimization based on the // buffer contents of the layer, but does not affect the space allocated to // it by policy, and thus children should be allowed to extend into the // parent's transparent region. In fact one of the main uses, is to reduce // buffer allocation size in cases where a child window sits behind a main window // (by marking the hole in the parent window as a transparent region) if (p != nullptr) { Rect bounds = p->computeScreenBounds(false); bounds.intersect(win, &win); } if (reduceTransparentRegion) { auto const screenTransparentRegion = t.transform(s.activeTransparentRegion); win = reduce(win, screenTransparentRegion); } return win; } FloatRect Layer::computeBounds() const { const Layer::State& s(getDrawingState()); return computeBounds(s.activeTransparentRegion); } FloatRect Layer::computeBounds(const Region& activeTransparentRegion) const { const Layer::State& s(getDrawingState()); Rect win(s.active.w, s.active.h); if (!s.crop.isEmpty()) { win.intersect(s.crop, &win); } Rect bounds = win; const auto& p = mDrawingParent.promote(); if (p != nullptr) { // Look in computeScreenBounds recursive call for explanation of // why we pass false here. bounds = p->computeScreenBounds(false /* reduceTransparentRegion */); } Transform t = getTransform(); FloatRect floatWin = win.toFloatRect(); if (p != nullptr) { floatWin = t.transform(floatWin); floatWin = floatWin.intersect(bounds.toFloatRect()); floatWin = t.inverse().transform(floatWin); } // subtract the transparent region and snap to the bounds return reduce(floatWin, activeTransparentRegion); } Rect Layer::computeInitialCrop(const sp<const DisplayDevice>& hw) const { // the crop is the area of the window that gets cropped, but not // scaled in any ways. const State& s(getDrawingState()); // apply the projection's clipping to the window crop in // layerstack space, and convert-back to layer space. // if there are no window scaling involved, this operation will map to full // pixels in the buffer. // FIXME: the 3 lines below can produce slightly incorrect clipping when we have // a viewport clipping and a window transform. we should use floating point to fix this. Rect activeCrop(s.active.w, s.active.h); if (!s.crop.isEmpty()) { activeCrop.intersect(s.crop, &activeCrop); } Transform t = getTransform(); activeCrop = t.transform(activeCrop); if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) { activeCrop.clear(); } if (!s.finalCrop.isEmpty()) { if (!activeCrop.intersect(s.finalCrop, &activeCrop)) { activeCrop.clear(); } } const auto& p = mDrawingParent.promote(); if (p != nullptr) { auto parentCrop = p->computeInitialCrop(hw); activeCrop.intersect(parentCrop, &activeCrop); } return activeCrop; } FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const { // the content crop is the area of the content that gets scaled to the // layer's size. This is in buffer space. FloatRect crop = getContentCrop().toFloatRect(); // In addition there is a WM-specified crop we pull from our drawing state. const State& s(getDrawingState()); // Screen space to make reduction to parent crop clearer. Rect activeCrop = computeInitialCrop(hw); Transform t = getTransform(); // Back to layer space to work with the content crop. activeCrop = t.inverse().transform(activeCrop); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { activeCrop.clear(); } // subtract the transparent region and snap to the bounds activeCrop = reduce(activeCrop, s.activeTransparentRegion); // Transform the window crop to match the buffer coordinate system, // which means using the inverse of the current transform set on the // SurfaceFlingerConsumer. uint32_t invTransform = mCurrentTransform; if (getTransformToDisplayInverse()) { /* * the code below applies the primary display's inverse transform to the * buffer */ uint32_t invTransformOrient = DisplayDevice::getPrimaryDisplayOrientationTransform(); // calculate the inverse transform if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) { invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H; } // and apply to the current transform invTransform = (Transform(invTransformOrient) * Transform(invTransform)).getOrientation(); } int winWidth = s.active.w; int winHeight = s.active.h; if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { // If the activeCrop has been rotate the ends are rotated but not // the space itself so when transforming ends back we can't rely on // a modification of the axes of rotation. To account for this we // need to reorient the inverse rotation in terms of the current // axes of rotation. bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0; bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0; if (is_h_flipped == is_v_flipped) { invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H; } winWidth = s.active.h; winHeight = s.active.w; } const Rect winCrop = activeCrop.transform(invTransform, s.active.w, s.active.h); // below, crop is intersected with winCrop expressed in crop's coordinate space float xScale = crop.getWidth() / float(winWidth); float yScale = crop.getHeight() / float(winHeight); float insetL = winCrop.left * xScale; float insetT = winCrop.top * yScale; float insetR = (winWidth - winCrop.right) * xScale; float insetB = (winHeight - winCrop.bottom) * yScale; crop.left += insetL; crop.top += insetT; crop.right -= insetR; crop.bottom -= insetB; return crop; } void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z) { const auto hwcId = displayDevice->getHwcDisplayId(); auto& hwcInfo = getBE().mHwcLayers[hwcId]; // enable this layer hwcInfo.forceClientComposition = false; if (isSecure() && !displayDevice->isSecure()) { hwcInfo.forceClientComposition = true; } auto& hwcLayer = hwcInfo.layer; // this gives us only the "orientation" component of the transform const State& s(getDrawingState()); auto blendMode = HWC2::BlendMode::None; if (!isOpaque(s) || getAlpha() != 1.0f) { blendMode = mPremultipliedAlpha ? HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage; } auto error = hwcLayer->setBlendMode(blendMode); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:" " %s (%d)", mName.string(), to_string(blendMode).c_str(), to_string(error).c_str(), static_cast<int32_t>(error)); // apply the layer's transform, followed by the display's global transform // here we're guaranteed that the layer's transform preserves rects Region activeTransparentRegion(s.activeTransparentRegion); Transform t = getTransform(); if (!s.crop.isEmpty()) { Rect activeCrop(s.crop); activeCrop = t.transform(activeCrop); if (!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) { activeCrop.clear(); } activeCrop = t.inverse().transform(activeCrop, true); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { activeCrop.clear(); } // mark regions outside the crop as transparent activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top)); activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom, s.active.w, s.active.h)); activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); activeTransparentRegion.orSelf( Rect(activeCrop.right, activeCrop.top, s.active.w, activeCrop.bottom)); } // computeBounds returns a FloatRect to provide more accuracy during the // transformation. We then round upon constructing 'frame'. Rect frame{t.transform(computeBounds(activeTransparentRegion))}; if (!s.finalCrop.isEmpty()) { if (!frame.intersect(s.finalCrop, &frame)) { frame.clear(); } } if (!frame.intersect(displayDevice->getViewport(), &frame)) { frame.clear(); } const Transform& tr(displayDevice->getTransform()); Rect transformedFrame = tr.transform(frame); error = hwcLayer->setDisplayFrame(transformedFrame); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", mName.string(), transformedFrame.left, transformedFrame.top, transformedFrame.right, transformedFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error)); } else { hwcInfo.displayFrame = transformedFrame; } FloatRect sourceCrop = computeCrop(displayDevice); error = hwcLayer->setSourceCrop(sourceCrop); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " "%s (%d)", mName.string(), sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom, to_string(error).c_str(), static_cast<int32_t>(error)); } else { hwcInfo.sourceCrop = sourceCrop; } float alpha = static_cast<float>(getAlpha()); error = hwcLayer->setPlaneAlpha(alpha); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: " "%s (%d)", mName.string(), alpha, to_string(error).c_str(), static_cast<int32_t>(error)); error = hwcLayer->setZOrder(z); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)", mName.string(), z, to_string(error).c_str(), static_cast<int32_t>(error)); int type = s.type; int appId = s.appId; sp<Layer> parent = mDrawingParent.promote(); if (parent.get()) { auto& parentState = parent->getDrawingState(); if (parentState.type >= 0 || parentState.appId >= 0) { type = parentState.type; appId = parentState.appId; } } error = hwcLayer->setInfo(type, appId); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set info (%d)", mName.string(), static_cast<int32_t>(error)); /* * Transformations are applied in this order: * 1) buffer orientation/flip/mirror * 2) state transformation (window manager) * 3) layer orientation (screen orientation) * (NOTE: the matrices are multiplied in reverse order) */ const Transform bufferOrientation(mCurrentTransform); Transform transform(tr * t * bufferOrientation); if (getTransformToDisplayInverse()) { /* * the code below applies the primary display's inverse transform to the * buffer */ uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); // calculate the inverse transform if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H; } /* * Here we cancel out the orientation component of the WM transform. * The scaling and translate components are already included in our bounds * computation so it's enough to just omit it in the composition. * See comment in onDraw with ref to b/36727915 for why. */ transform = Transform(invTransform) * tr * bufferOrientation; } // this gives us only the "orientation" component of the transform const uint32_t orientation = transform.getOrientation(); if (orientation & Transform::ROT_INVALID) { // we can only handle simple transformation hwcInfo.forceClientComposition = true; } else { auto transform = static_cast<HWC2::Transform>(orientation); hwcInfo.transform = transform; auto error = hwcLayer->setTransform(transform); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: " "%s (%d)", mName.string(), to_string(transform).c_str(), to_string(error).c_str(), static_cast<int32_t>(error)); } } void Layer::forceClientComposition(int32_t hwcId) { if (getBE().mHwcLayers.count(hwcId) == 0) { ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId); return; } getBE().mHwcLayers[hwcId].forceClientComposition = true; } bool Layer::getForceClientComposition(int32_t hwcId) { if (getBE().mHwcLayers.count(hwcId) == 0) { ALOGE("getForceClientComposition: no HWC layer found (%d)", hwcId); return false; } return getBE().mHwcLayers[hwcId].forceClientComposition; } void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) { auto hwcId = displayDevice->getHwcDisplayId(); if (getBE().mHwcLayers.count(hwcId) == 0 || getCompositionType(hwcId) != HWC2::Composition::Cursor) { return; } // This gives us only the "orientation" component of the transform const State& s(getCurrentState()); // Apply the layer's transform, followed by the display's global transform // Here we're guaranteed that the layer's transform preserves rects Rect win(s.active.w, s.active.h); if (!s.crop.isEmpty()) { win.intersect(s.crop, &win); } // Subtract the transparent region and snap to the bounds Rect bounds = reduce(win, s.activeTransparentRegion); Rect frame(getTransform().transform(bounds)); frame.intersect(displayDevice->getViewport(), &frame); if (!s.finalCrop.isEmpty()) { frame.intersect(s.finalCrop, &frame); } auto& displayTransform(displayDevice->getTransform()); auto position = displayTransform.transform(frame); auto error = getBE().mHwcLayers[hwcId].layer->setCursorPosition(position.left, position.top); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position " "to (%d, %d): %s (%d)", mName.string(), position.left, position.top, to_string(error).c_str(), static_cast<int32_t>(error)); } // --------------------------------------------------------------------------- // drawing... // --------------------------------------------------------------------------- void Layer::draw(const RenderArea& renderArea, const Region& clip) const { onDraw(renderArea, clip, false); } void Layer::draw(const RenderArea& renderArea, bool useIdentityTransform) const { onDraw(renderArea, Region(renderArea.getBounds()), useIdentityTransform); } void Layer::draw(const RenderArea& renderArea) const { onDraw(renderArea, Region(renderArea.getBounds()), false); } void Layer::clearWithOpenGL(const RenderArea& renderArea, float red, float green, float blue, float alpha) const { auto& engine(mFlinger->getRenderEngine()); computeGeometry(renderArea, getBE().mMesh, false); engine.setupFillWithColor(red, green, blue, alpha); engine.drawMesh(getBE().mMesh); } void Layer::clearWithOpenGL(const RenderArea& renderArea) const { clearWithOpenGL(renderArea, 0, 0, 0, 0); } void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc) { if (getBE().mHwcLayers.count(hwcId) == 0) { ALOGE("setCompositionType called without a valid HWC layer"); return; } auto& hwcInfo = getBE().mHwcLayers[hwcId]; auto& hwcLayer = hwcInfo.layer; ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(), to_string(type).c_str(), static_cast<int>(callIntoHwc)); if (hwcInfo.compositionType != type) { ALOGV(" actually setting"); hwcInfo.compositionType = type; if (callIntoHwc) { auto error = hwcLayer->setCompositionType(type); ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set " "composition type %s: %s (%d)", mName.string(), to_string(type).c_str(), to_string(error).c_str(), static_cast<int32_t>(error)); } } } HWC2::Composition Layer::getCompositionType(int32_t hwcId) const { if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) { // If we're querying the composition type for a display that does not // have a HWC counterpart, then it will always be Client return HWC2::Composition::Client; } if (getBE().mHwcLayers.count(hwcId) == 0) { ALOGE("getCompositionType called with an invalid HWC layer"); return HWC2::Composition::Invalid; } return getBE().mHwcLayers.at(hwcId).compositionType; } void Layer::setClearClientTarget(int32_t hwcId, bool clear) { if (getBE().mHwcLayers.count(hwcId) == 0) { ALOGE("setClearClientTarget called without a valid HWC layer"); return; } getBE().mHwcLayers[hwcId].clearClientTarget = clear; } bool Layer::getClearClientTarget(int32_t hwcId) const { if (getBE().mHwcLayers.count(hwcId) == 0) { ALOGE("getClearClientTarget called without a valid HWC layer"); return false; } return getBE().mHwcLayers.at(hwcId).clearClientTarget; } bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) { if (point->getFrameNumber() <= mCurrentFrameNumber) { // Don't bother with a SyncPoint, since we've already latched the // relevant frame return false; } Mutex::Autolock lock(mLocalSyncPointMutex); mLocalSyncPoints.push_back(point); return true; } void Layer::setFiltering(bool filtering) { mFiltering = filtering; } bool Layer::getFiltering() const { return mFiltering; } // ---------------------------------------------------------------------------- // local state // ---------------------------------------------------------------------------- static void boundPoint(vec2* point, const Rect& crop) { if (point->x < crop.left) { point->x = crop.left; } if (point->x > crop.right) { point->x = crop.right; } if (point->y < crop.top) { point->y = crop.top; } if (point->y > crop.bottom) { point->y = crop.bottom; } } void Layer::computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const { const Layer::State& s(getDrawingState()); const Transform renderAreaTransform(renderArea.getTransform()); const uint32_t height = renderArea.getHeight(); FloatRect win = computeBounds(); vec2 lt = vec2(win.left, win.top); vec2 lb = vec2(win.left, win.bottom); vec2 rb = vec2(win.right, win.bottom); vec2 rt = vec2(win.right, win.top); Transform layerTransform = getTransform(); if (!useIdentityTransform) { lt = layerTransform.transform(lt); lb = layerTransform.transform(lb); rb = layerTransform.transform(rb); rt = layerTransform.transform(rt); } if (!s.finalCrop.isEmpty()) { boundPoint(<, s.finalCrop); boundPoint(&lb, s.finalCrop); boundPoint(&rb, s.finalCrop); boundPoint(&rt, s.finalCrop); } Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); position[0] = renderAreaTransform.transform(lt); position[1] = renderAreaTransform.transform(lb); position[2] = renderAreaTransform.transform(rb); position[3] = renderAreaTransform.transform(rt); for (size_t i = 0; i < 4; i++) { position[i].y = height - position[i].y; } } bool Layer::isSecure() const { const Layer::State& s(mDrawingState); return (s.flags & layer_state_t::eLayerSecure); } void Layer::setVisibleRegion(const Region& visibleRegion) { // always called from main thread this->visibleRegion = visibleRegion; } void Layer::setCoveredRegion(const Region& coveredRegion) { // always called from main thread this->coveredRegion = coveredRegion; } void Layer::setVisibleNonTransparentRegion(const Region& setVisibleNonTransparentRegion) { // always called from main thread this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; } void Layer::clearVisibilityRegions() { visibleRegion.clear(); visibleNonTransparentRegion.clear(); coveredRegion.clear(); } // ---------------------------------------------------------------------------- // transaction // ---------------------------------------------------------------------------- void Layer::pushPendingState() { if (!mCurrentState.modified) { return; } // If this transaction is waiting on the receipt of a frame, generate a sync // point and send it to the remote layer. if (mCurrentState.barrierLayer != nullptr) { sp<Layer> barrierLayer = mCurrentState.barrierLayer.promote(); if (barrierLayer == nullptr) { ALOGE("[%s] Unable to promote barrier Layer.", mName.string()); // If we can't promote the layer we are intended to wait on, // then it is expired or otherwise invalid. Allow this transaction // to be applied as per normal (no synchronization). mCurrentState.barrierLayer = nullptr; } else { auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber); if (barrierLayer->addSyncPoint(syncPoint)) { mRemoteSyncPoints.push_back(std::move(syncPoint)); } else { // We already missed the frame we're supposed to synchronize // on, so go ahead and apply the state update mCurrentState.barrierLayer = nullptr; } } // Wake us up to check if the frame has been received setTransactionFlags(eTransactionNeeded); mFlinger->setTransactionFlags(eTraversalNeeded); } mPendingStates.push_back(mCurrentState); ATRACE_INT(mTransactionName.string(), mPendingStates.size()); } void Layer::popPendingState(State* stateToCommit) { *stateToCommit = mPendingStates[0]; mPendingStates.removeAt(0); ATRACE_INT(mTransactionName.string(), mPendingStates.size()); } bool Layer::applyPendingStates(State* stateToCommit) { bool stateUpdateAvailable = false; while (!mPendingStates.empty()) { if (mPendingStates[0].barrierLayer != nullptr) { if (mRemoteSyncPoints.empty()) { // If we don't have a sync point for this, apply it anyway. It // will be visually wrong, but it should keep us from getting // into too much trouble. ALOGE("[%s] No local sync point found", mName.string()); popPendingState(stateToCommit); stateUpdateAvailable = true; continue; } if (mRemoteSyncPoints.front()->getFrameNumber() != mPendingStates[0].frameNumber) { ALOGE("[%s] Unexpected sync point frame number found", mName.string()); // Signal our end of the sync point and then dispose of it mRemoteSyncPoints.front()->setTransactionApplied(); mRemoteSyncPoints.pop_front(); continue; } if (mRemoteSyncPoints.front()->frameIsAvailable()) { // Apply the state update popPendingState(stateToCommit); stateUpdateAvailable = true; // Signal our end of the sync point and then dispose of it mRemoteSyncPoints.front()->setTransactionApplied(); mRemoteSyncPoints.pop_front(); } else { break; } } else { popPendingState(stateToCommit); stateUpdateAvailable = true; } } // If we still have pending updates, wake SurfaceFlinger back up and point // it at this layer so we can process them if (!mPendingStates.empty()) { setTransactionFlags(eTransactionNeeded); mFlinger->setTransactionFlags(eTraversalNeeded); } mCurrentState.modified = false; return stateUpdateAvailable; } uint32_t Layer::doTransaction(uint32_t flags) { ATRACE_CALL(); pushPendingState(); Layer::State c = getCurrentState(); if (!applyPendingStates(&c)) { return 0; } const Layer::State& s(getDrawingState()); const bool sizeChanged = (c.requested.w != s.requested.w) || (c.requested.h != s.requested.h); if (sizeChanged) { // the size changed, we need to ask our client to request a new buffer ALOGD_IF(DEBUG_RESIZE, "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" " requested={ wh={%4u,%4u} }}\n" " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" " requested={ wh={%4u,%4u} }}\n", this, getName().string(), mCurrentTransform, getEffectiveScalingMode(), c.active.w, c.active.h, c.crop.left, c.crop.top, c.crop.right, c.crop.bottom, c.crop.getWidth(), c.crop.getHeight(), c.requested.w, c.requested.h, s.active.w, s.active.h, s.crop.left, s.crop.top, s.crop.right, s.crop.bottom, s.crop.getWidth(), s.crop.getHeight(), s.requested.w, s.requested.h); // record the new size, form this point on, when the client request // a buffer, it'll get the new size. setDefaultBufferSize(c.requested.w, c.requested.h); } // Don't let Layer::doTransaction update the drawing state // if we have a pending resize, unless we are in fixed-size mode. // the drawing state will be updated only once we receive a buffer // with the correct size. // // In particular, we want to make sure the clip (which is part // of the geometry state) is latched together with the size but is // latched immediately when no resizing is involved. // // If a sideband stream is attached, however, we want to skip this // optimization so that transactions aren't missed when a buffer // never arrives // // In the case that we don't have a buffer we ignore other factors // and avoid entering the resizePending state. At a high level the // resizePending state is to avoid applying the state of the new buffer // to the old buffer. However in the state where we don't have an old buffer // there is no such concern but we may still be being used as a parent layer. const bool resizePending = ((c.requested.w != c.active.w) || (c.requested.h != c.active.h)) && (getBE().compositionInfo.mBuffer != nullptr); if (!isFixedSize()) { if (resizePending && getBE().compositionInfo.hwc.sidebandStream == nullptr) { flags |= eDontUpdateGeometryState; } } // Here we apply various requested geometry states, depending on our // latching configuration. See Layer.h for a detailed discussion of // how geometry latching is controlled. if (!(flags & eDontUpdateGeometryState)) { Layer::State& editCurrentState(getCurrentState()); // If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize // mode, which causes attributes which normally latch regardless of scaling mode, // to be delayed. We copy the requested state to the active state making sure // to respect these rules (again see Layer.h for a detailed discussion). // // There is an awkward asymmetry in the handling of the crop states in the position // states, as can be seen below. Largely this arises from position and transform // being stored in the same data structure while having different latching rules. // b/38182305 // // Careful that "c" and editCurrentState may not begin as equivalent due to // applyPendingStates in the presence of deferred transactions. if (mFreezeGeometryUpdates) { float tx = c.active.transform.tx(); float ty = c.active.transform.ty(); c.active = c.requested; c.active.transform.set(tx, ty); editCurrentState.active = c.active; } else { editCurrentState.active = editCurrentState.requested; c.active = c.requested; } } if (s.active != c.active) { // invalidate and recompute the visible regions if needed flags |= Layer::eVisibleRegion; } if (c.sequence != s.sequence) { // invalidate and recompute the visible regions if needed flags |= eVisibleRegion; this->contentDirty = true; // we may use linear filtering, if the matrix scales us const uint8_t type = c.active.transform.getType(); mNeedsFiltering = (!c.active.transform.preserveRects() || (type >= Transform::SCALE)); } // If the layer is hidden, signal and clear out all local sync points so // that transactions for layers depending on this layer's frames becoming // visible are not blocked if (c.flags & layer_state_t::eLayerHidden) { clearSyncPoints(); } // Commit the transaction commitTransaction(c); return flags; } void Layer::commitTransaction(const State& stateToCommit) { mDrawingState = stateToCommit; } uint32_t Layer::getTransactionFlags(uint32_t flags) { return android_atomic_and(~flags, &mTransactionFlags) & flags; } uint32_t Layer::setTransactionFlags(uint32_t flags) { return android_atomic_or(flags, &mTransactionFlags); } bool Layer::setPosition(float x, float y, bool immediate) { if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y) return false; mCurrentState.sequence++; // We update the requested and active position simultaneously because // we want to apply the position portion of the transform matrix immediately, // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. mCurrentState.requested.transform.set(x, y); if (immediate && !mFreezeGeometryUpdates) { // Here we directly update the active state // unlike other setters, because we store it within // the transform, but use different latching rules. // b/38182305 mCurrentState.active.transform.set(x, y); } mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) { ssize_t idx = mCurrentChildren.indexOf(childLayer); if (idx < 0) { return false; } if (childLayer->setLayer(z)) { mCurrentChildren.removeAt(idx); mCurrentChildren.add(childLayer); return true; } return false; } bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer, const sp<IBinder>& relativeToHandle, int32_t relativeZ) { ssize_t idx = mCurrentChildren.indexOf(childLayer); if (idx < 0) { return false; } if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) { mCurrentChildren.removeAt(idx); mCurrentChildren.add(childLayer); return true; } return false; } bool Layer::setLayer(int32_t z) { if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false; mCurrentState.sequence++; mCurrentState.z = z; mCurrentState.modified = true; // Discard all relative layering. if (mCurrentState.zOrderRelativeOf != nullptr) { sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); if (strongRelative != nullptr) { strongRelative->removeZOrderRelative(this); } mCurrentState.zOrderRelativeOf = nullptr; } setTransactionFlags(eTransactionNeeded); return true; } void Layer::removeZOrderRelative(const wp<Layer>& relative) { mCurrentState.zOrderRelatives.remove(relative); mCurrentState.sequence++; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); } void Layer::addZOrderRelative(const wp<Layer>& relative) { mCurrentState.zOrderRelatives.add(relative); mCurrentState.modified = true; mCurrentState.sequence++; setTransactionFlags(eTransactionNeeded); } bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) { sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get()); if (handle == nullptr) { return false; } sp<Layer> relative = handle->owner.promote(); if (relative == nullptr) { return false; } if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) && mCurrentState.zOrderRelativeOf == relative) { return false; } mCurrentState.sequence++; mCurrentState.modified = true; mCurrentState.z = relativeZ; auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote(); if (oldZOrderRelativeOf != nullptr) { oldZOrderRelativeOf->removeZOrderRelative(this); } mCurrentState.zOrderRelativeOf = relative; relative->addZOrderRelative(this); setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setSize(uint32_t w, uint32_t h) { if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) return false; mCurrentState.requested.w = w; mCurrentState.requested.h = h; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setAlpha(float alpha) { if (mCurrentState.color.a == alpha) return false; mCurrentState.sequence++; mCurrentState.color.a = alpha; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setColor(const half3& color) { if (color.r == mCurrentState.color.r && color.g == mCurrentState.color.g && color.b == mCurrentState.color.b) return false; mCurrentState.sequence++; mCurrentState.color.r = color.r; mCurrentState.color.g = color.g; mCurrentState.color.b = color.b; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) { mCurrentState.sequence++; mCurrentState.requested.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setTransparentRegionHint(const Region& transparent) { mCurrentState.requestedTransparentRegion = transparent; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setFlags(uint8_t flags, uint8_t mask) { const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); if (mCurrentState.flags == newFlags) return false; mCurrentState.sequence++; mCurrentState.flags = newFlags; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setCrop(const Rect& crop, bool immediate) { if (mCurrentState.requestedCrop == crop) return false; mCurrentState.sequence++; mCurrentState.requestedCrop = crop; if (immediate && !mFreezeGeometryUpdates) { mCurrentState.crop = crop; } mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setFinalCrop(const Rect& crop, bool immediate) { if (mCurrentState.requestedFinalCrop == crop) return false; mCurrentState.sequence++; mCurrentState.requestedFinalCrop = crop; if (immediate && !mFreezeGeometryUpdates) { mCurrentState.finalCrop = crop; } mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setOverrideScalingMode(int32_t scalingMode) { if (scalingMode == mOverrideScalingMode) return false; mOverrideScalingMode = scalingMode; setTransactionFlags(eTransactionNeeded); return true; } void Layer::setInfo(int32_t type, int32_t appId) { mCurrentState.appId = appId; mCurrentState.type = type; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); } bool Layer::setLayerStack(uint32_t layerStack) { if (mCurrentState.layerStack == layerStack) return false; mCurrentState.sequence++; mCurrentState.layerStack = layerStack; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } uint32_t Layer::getLayerStack() const { auto p = mDrawingParent.promote(); if (p == nullptr) { return getDrawingState().layerStack; } return p->getLayerStack(); } void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber) { mCurrentState.barrierLayer = barrierLayer; mCurrentState.frameNumber = frameNumber; // We don't set eTransactionNeeded, because just receiving a deferral // request without any other state updates shouldn't actually induce a delay mCurrentState.modified = true; pushPendingState(); mCurrentState.barrierLayer = nullptr; mCurrentState.frameNumber = 0; mCurrentState.modified = false; } void Layer::deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber) { sp<Handle> handle = static_cast<Handle*>(barrierHandle.get()); deferTransactionUntil(handle->owner.promote(), frameNumber); } // ---------------------------------------------------------------------------- // pageflip handling... // ---------------------------------------------------------------------------- bool Layer::isHiddenByPolicy() const { const Layer::State& s(mDrawingState); const auto& parent = mDrawingParent.promote(); if (parent != nullptr && parent->isHiddenByPolicy()) { return true; } return s.flags & layer_state_t::eLayerHidden; } uint32_t Layer::getEffectiveUsage(uint32_t usage) const { // TODO: should we do something special if mSecure is set? if (mProtectedByApp) { // need a hardware-protected path to external video sink usage |= GraphicBuffer::USAGE_PROTECTED; } if (mPotentialCursor) { usage |= GraphicBuffer::USAGE_CURSOR; } usage |= GraphicBuffer::USAGE_HW_COMPOSER; return usage; } void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const { uint32_t orientation = 0; if (!mFlinger->mDebugDisableTransformHint) { // The transform hint is used to improve performance, but we can // only have a single transform hint, it cannot // apply to all displays. const Transform& planeTransform(hw->getTransform()); orientation = planeTransform.getOrientation(); if (orientation & Transform::ROT_INVALID) { orientation = 0; } } setTransformHint(orientation); } // ---------------------------------------------------------------------------- // debugging // ---------------------------------------------------------------------------- LayerDebugInfo Layer::getLayerDebugInfo() const { LayerDebugInfo info; const Layer::State& ds = getDrawingState(); info.mName = getName(); sp<Layer> parent = getParent(); info.mParentName = (parent == nullptr ? std::string("none") : parent->getName().string()); info.mType = String8(getTypeId()); info.mTransparentRegion = ds.activeTransparentRegion; info.mVisibleRegion = visibleRegion; info.mSurfaceDamageRegion = surfaceDamageRegion; info.mLayerStack = getLayerStack(); info.mX = ds.active.transform.tx(); info.mY = ds.active.transform.ty(); info.mZ = ds.z; info.mWidth = ds.active.w; info.mHeight = ds.active.h; info.mCrop = ds.crop; info.mFinalCrop = ds.finalCrop; info.mColor = ds.color; info.mFlags = ds.flags; info.mPixelFormat = getPixelFormat(); info.mDataSpace = static_cast<android_dataspace>(mCurrentDataSpace); info.mMatrix[0][0] = ds.active.transform[0][0]; info.mMatrix[0][1] = ds.active.transform[0][1]; info.mMatrix[1][0] = ds.active.transform[1][0]; info.mMatrix[1][1] = ds.active.transform[1][1]; { sp<const GraphicBuffer> buffer = getBE().compositionInfo.mBuffer; if (buffer != 0) { info.mActiveBufferWidth = buffer->getWidth(); info.mActiveBufferHeight = buffer->getHeight(); info.mActiveBufferStride = buffer->getStride(); info.mActiveBufferFormat = buffer->format; } else { info.mActiveBufferWidth = 0; info.mActiveBufferHeight = 0; info.mActiveBufferStride = 0; info.mActiveBufferFormat = 0; } } info.mNumQueuedFrames = getQueuedFrameCount(); info.mRefreshPending = isBufferLatched(); info.mIsOpaque = isOpaque(ds); info.mContentDirty = contentDirty; return info; } void Layer::miniDumpHeader(String8& result) { result.append("----------------------------------------"); result.append("---------------------------------------\n"); result.append(" Layer name\n"); result.append(" Z | "); result.append(" Comp Type | "); result.append(" Disp Frame (LTRB) | "); result.append(" Source Crop (LTRB)\n"); result.append("----------------------------------------"); result.append("---------------------------------------\n"); } void Layer::miniDump(String8& result, int32_t hwcId) const { if (getBE().mHwcLayers.count(hwcId) == 0) { return; } String8 name; if (mName.length() > 77) { std::string shortened; shortened.append(mName.string(), 36); shortened.append("[...]"); shortened.append(mName.string() + (mName.length() - 36), 36); name = shortened.c_str(); } else { name = mName; } result.appendFormat(" %s\n", name.string()); const Layer::State& layerState(getDrawingState()); const LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers.at(hwcId); if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) { result.appendFormat(" rel %6d | ", layerState.z); } else { result.appendFormat(" %10d | ", layerState.z); } result.appendFormat("%10s | ", to_string(getCompositionType(hwcId)).c_str()); const Rect& frame = hwcInfo.displayFrame; result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom); const FloatRect& crop = hwcInfo.sourceCrop; result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right, crop.bottom); result.append("- - - - - - - - - - - - - - - - - - - - "); result.append("- - - - - - - - - - - - - - - - - - - -\n"); } void Layer::dumpFrameStats(String8& result) const { mFrameTracker.dumpStats(result); } void Layer::clearFrameStats() { mFrameTracker.clearStats(); } void Layer::logFrameStats() { mFrameTracker.logAndResetStats(mName); } void Layer::getFrameStats(FrameStats* outStats) const { mFrameTracker.getStats(outStats); } void Layer::dumpFrameEvents(String8& result) { result.appendFormat("- Layer %s (%s, %p)\n", getName().string(), getTypeId(), this); Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.checkFencesForCompletion(); mFrameEventHistory.dump(result); } void Layer::onDisconnect() { Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.onDisconnect(); mTimeStats.onDisconnect(getName().c_str()); } void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, FrameEventHistoryDelta* outDelta) { if (newTimestamps) { mTimeStats.setPostTime(getName().c_str(), newTimestamps->frameNumber, newTimestamps->postedTime); } Mutex::Autolock lock(mFrameEventHistoryMutex); if (newTimestamps) { // If there are any unsignaled fences in the aquire timeline at this // point, the previously queued frame hasn't been latched yet. Go ahead // and try to get the signal time here so the syscall is taken out of // the main thread's critical path. mAcquireTimeline.updateSignalTimes(); // Push the new fence after updating since it's likely still pending. mAcquireTimeline.push(newTimestamps->acquireFence); mFrameEventHistory.addQueue(*newTimestamps); } if (outDelta) { mFrameEventHistory.getAndResetDelta(outDelta); } } size_t Layer::getChildrenCount() const { size_t count = 0; for (const sp<Layer>& child : mCurrentChildren) { count += 1 + child->getChildrenCount(); } return count; } void Layer::addChild(const sp<Layer>& layer) { mCurrentChildren.add(layer); layer->setParent(this); } ssize_t Layer::removeChild(const sp<Layer>& layer) { layer->setParent(nullptr); return mCurrentChildren.remove(layer); } bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) { sp<Handle> handle = nullptr; sp<Layer> newParent = nullptr; if (newParentHandle == nullptr) { return false; } handle = static_cast<Handle*>(newParentHandle.get()); newParent = handle->owner.promote(); if (newParent == nullptr) { ALOGE("Unable to promote Layer handle"); return false; } for (const sp<Layer>& child : mCurrentChildren) { newParent->addChild(child); sp<Client> client(child->mClientRef.promote()); if (client != nullptr) { client->updateParent(newParent); } } mCurrentChildren.clear(); return true; } void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) { for (const sp<Layer>& child : mDrawingChildren) { child->mDrawingParent = newParent; } } bool Layer::reparent(const sp<IBinder>& newParentHandle) { if (newParentHandle == nullptr) { return false; } auto handle = static_cast<Handle*>(newParentHandle.get()); sp<Layer> newParent = handle->owner.promote(); if (newParent == nullptr) { ALOGE("Unable to promote Layer handle"); return false; } sp<Layer> parent = getParent(); if (parent != nullptr) { parent->removeChild(this); } newParent->addChild(this); sp<Client> client(mClientRef.promote()); sp<Client> newParentClient(newParent->mClientRef.promote()); if (client != newParentClient) { client->updateParent(newParent); } return true; } bool Layer::detachChildren() { for (const sp<Layer>& child : mCurrentChildren) { sp<Client> parentClient = mClientRef.promote(); sp<Client> client(child->mClientRef.promote()); if (client != nullptr && parentClient != client) { client->detachLayer(child.get()); child->detachChildren(); } } return true; } bool Layer::isLegacyDataSpace() const { // return true when no higher bits are set return !(mCurrentDataSpace & (ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK)); } void Layer::setParent(const sp<Layer>& layer) { mCurrentParent = layer; } void Layer::clearSyncPoints() { for (const auto& child : mCurrentChildren) { child->clearSyncPoints(); } Mutex::Autolock lock(mLocalSyncPointMutex); for (auto& point : mLocalSyncPoints) { point->setFrameAvailable(); } mLocalSyncPoints.clear(); } int32_t Layer::getZ() const { return mDrawingState.z; } bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const State& state = useDrawing ? mDrawingState : mCurrentState; return state.zOrderRelativeOf != nullptr; } __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList( LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) { LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, "makeTraversalList received invalid stateSet"); const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mCurrentState; if (state.zOrderRelatives.size() == 0) { *outSkipRelativeZUsers = true; return children; } LayerVector traverse(stateSet); for (const wp<Layer>& weakRelative : state.zOrderRelatives) { sp<Layer> strongRelative = weakRelative.promote(); if (strongRelative != nullptr) { traverse.add(strongRelative); } } for (const sp<Layer>& child : children) { const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; if (childState.zOrderRelativeOf != nullptr) { continue; } traverse.add(child); } return traverse; } /** * Negatively signed relatives are before 'this' in Z-order. */ void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { // In the case we have other layers who are using a relative Z to us, makeTraversalList will // produce a new list for traversing, including our relatives, and not including our children // who are relatives of another surface. In the case that there are no relative Z, // makeTraversalList returns our children directly to avoid significant overhead. // However in this case we need to take the responsibility for filtering children which // are relatives of another surface here. bool skipRelativeZUsers = false; const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); size_t i = 0; for (; i < list.size(); i++) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } if (relative->getZ() >= 0) { break; } relative->traverseInZOrder(stateSet, visitor); } visitor(this); for (; i < list.size(); i++) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } relative->traverseInZOrder(stateSet, visitor); } } /** * Positively signed relatives are before 'this' in reverse Z-order. */ void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { // See traverseInZOrder for documentation. bool skipRelativeZUsers = false; LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); int32_t i = 0; for (i = int32_t(list.size()) - 1; i >= 0; i--) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } if (relative->getZ() < 0) { break; } relative->traverseInReverseZOrder(stateSet, visitor); } visitor(this); for (; i >= 0; i--) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } relative->traverseInReverseZOrder(stateSet, visitor); } } LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet, const std::vector<Layer*>& layersInTree) { LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, "makeTraversalList received invalid stateSet"); const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mCurrentState; LayerVector traverse(stateSet); for (const wp<Layer>& weakRelative : state.zOrderRelatives) { sp<Layer> strongRelative = weakRelative.promote(); // Only add relative layers that are also descendents of the top most parent of the tree. // If a relative layer is not a descendent, then it should be ignored. if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { traverse.add(strongRelative); } } for (const sp<Layer>& child : children) { const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a // descendent of the top most parent of the tree. If it's not a descendent, then just add // the child here since it won't be added later as a relative. if (std::binary_search(layersInTree.begin(), layersInTree.end(), childState.zOrderRelativeOf.promote().get())) { continue; } traverse.add(child); } return traverse; } void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree); size_t i = 0; for (; i < list.size(); i++) { const auto& relative = list[i]; if (relative->getZ() >= 0) { break; } relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } visitor(this); for (; i < list.size(); i++) { const auto& relative = list[i]; relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } } std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; std::vector<Layer*> layersInTree = {this}; for (size_t i = 0; i < children.size(); i++) { const auto& child = children[i]; std::vector<Layer*> childLayers = child->getLayersInTree(stateSet); layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend()); } return layersInTree; } void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { std::vector<Layer*> layersInTree = getLayersInTree(stateSet); std::sort(layersInTree.begin(), layersInTree.end()); traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } Transform Layer::getTransform() const { Transform t; const auto& p = mDrawingParent.promote(); if (p != nullptr) { t = p->getTransform(); // If the parent is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g. // it isFixedSize) then there may be additional scaling not accounted // for in the transform. We need to mirror this scaling in child surfaces // or we will break the contract where WM can treat child surfaces as // pixels in the parent surface. if (p->isFixedSize() && p->getBE().compositionInfo.mBuffer != nullptr) { int bufferWidth; int bufferHeight; if ((p->mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) == 0) { bufferWidth = p->getBE().compositionInfo.mBuffer->getWidth(); bufferHeight = p->getBE().compositionInfo.mBuffer->getHeight(); } else { bufferHeight = p->getBE().compositionInfo.mBuffer->getWidth(); bufferWidth = p->getBE().compositionInfo.mBuffer->getHeight(); } float sx = p->getDrawingState().active.w / static_cast<float>(bufferWidth); float sy = p->getDrawingState().active.h / static_cast<float>(bufferHeight); Transform extraParentScaling; extraParentScaling.set(sx, 0, 0, sy); t = t * extraParentScaling; } } return t * getDrawingState().active.transform; } half Layer::getAlpha() const { const auto& p = mDrawingParent.promote(); half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; return parentAlpha * getDrawingState().color.a; } half4 Layer::getColor() const { const half4 color(getDrawingState().color); return half4(color.r, color.g, color.b, getAlpha()); } void Layer::commitChildList() { for (size_t i = 0; i < mCurrentChildren.size(); i++) { const auto& child = mCurrentChildren[i]; child->commitChildList(); } mDrawingChildren = mCurrentChildren; mDrawingParent = mCurrentParent; } void Layer::writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet) { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mCurrentState; Transform requestedTransform = state.active.transform; Transform transform = getTransform(); layerInfo->set_id(sequence); layerInfo->set_name(getName().c_str()); layerInfo->set_type(String8(getTypeId())); for (const auto& child : children) { layerInfo->add_children(child->sequence); } for (const wp<Layer>& weakRelative : state.zOrderRelatives) { sp<Layer> strongRelative = weakRelative.promote(); if (strongRelative != nullptr) { layerInfo->add_relatives(strongRelative->sequence); } } LayerProtoHelper::writeToProto(state.activeTransparentRegion, layerInfo->mutable_transparent_region()); LayerProtoHelper::writeToProto(visibleRegion, layerInfo->mutable_visible_region()); LayerProtoHelper::writeToProto(surfaceDamageRegion, layerInfo->mutable_damage_region()); layerInfo->set_layer_stack(getLayerStack()); layerInfo->set_z(state.z); PositionProto* position = layerInfo->mutable_position(); position->set_x(transform.tx()); position->set_y(transform.ty()); PositionProto* requestedPosition = layerInfo->mutable_requested_position(); requestedPosition->set_x(requestedTransform.tx()); requestedPosition->set_y(requestedTransform.ty()); SizeProto* size = layerInfo->mutable_size(); size->set_w(state.active.w); size->set_h(state.active.h); LayerProtoHelper::writeToProto(state.crop, layerInfo->mutable_crop()); LayerProtoHelper::writeToProto(state.finalCrop, layerInfo->mutable_final_crop()); layerInfo->set_is_opaque(isOpaque(state)); layerInfo->set_invalidate(contentDirty); // XXX (b/79210409) mCurrentDataSpace is not protected layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(mCurrentDataSpace))); layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat())); LayerProtoHelper::writeToProto(getColor(), layerInfo->mutable_color()); LayerProtoHelper::writeToProto(state.color, layerInfo->mutable_requested_color()); layerInfo->set_flags(state.flags); LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform()); LayerProtoHelper::writeToProto(requestedTransform, layerInfo->mutable_requested_transform()); auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote(); if (parent != nullptr) { layerInfo->set_parent(parent->sequence); } auto zOrderRelativeOf = state.zOrderRelativeOf.promote(); if (zOrderRelativeOf != nullptr) { layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence); } // XXX getBE().compositionInfo.mBuffer is not protected auto buffer = getBE().compositionInfo.mBuffer; if (buffer != nullptr) { LayerProtoHelper::writeToProto(buffer, layerInfo->mutable_active_buffer()); } layerInfo->set_queued_frames(getQueuedFrameCount()); layerInfo->set_refresh_pending(isBufferLatched()); layerInfo->set_window_type(state.type); layerInfo->set_app_id(state.appId); } void Layer::writeToProto(LayerProto* layerInfo, int32_t hwcId) { writeToProto(layerInfo, LayerVector::StateSet::Drawing); const auto& hwcInfo = getBE().mHwcLayers.at(hwcId); const Rect& frame = hwcInfo.displayFrame; LayerProtoHelper::writeToProto(frame, layerInfo->mutable_hwc_frame()); const FloatRect& crop = hwcInfo.sourceCrop; LayerProtoHelper::writeToProto(crop, layerInfo->mutable_hwc_crop()); const int32_t transform = static_cast<int32_t>(hwcInfo.transform); layerInfo->set_hwc_transform(transform); const int32_t compositionType = static_cast<int32_t>(hwcInfo.compositionType); layerInfo->set_hwc_composition_type(compositionType); if (std::strcmp(getTypeId(), "BufferLayer") == 0 && static_cast<BufferLayer*>(this)->isProtected()) { layerInfo->set_is_protected(true); } else { layerInfo->set_is_protected(false); } } // --------------------------------------------------------------------------- }; // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif