/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "convert.h" #include <android-base/logging.h> namespace android { namespace hardware { namespace sensors { namespace V1_0 { namespace implementation { void convertFromSensor(const sensor_t &src, SensorInfo *dst) { dst->name = src.name; dst->vendor = src.vendor; dst->version = src.version; dst->sensorHandle = src.handle; dst->type = (SensorType)src.type; dst->maxRange = src.maxRange; dst->resolution = src.resolution; dst->power = src.power; dst->minDelay = src.minDelay; dst->fifoReservedEventCount = src.fifoReservedEventCount; dst->fifoMaxEventCount = src.fifoMaxEventCount; dst->typeAsString = src.stringType; dst->requiredPermission = src.requiredPermission; dst->maxDelay = src.maxDelay; dst->flags = src.flags; } void convertToSensor( const ::android::hardware::sensors::V1_0::SensorInfo &src, sensor_t *dst) { dst->name = strdup(src.name.c_str()); dst->vendor = strdup(src.vendor.c_str()); dst->version = src.version; dst->handle = src.sensorHandle; dst->type = (int)src.type; dst->maxRange = src.maxRange; dst->resolution = src.resolution; dst->power = src.power; dst->minDelay = src.minDelay; dst->fifoReservedEventCount = src.fifoReservedEventCount; dst->fifoMaxEventCount = src.fifoMaxEventCount; dst->stringType = strdup(src.typeAsString.c_str()); dst->requiredPermission = strdup(src.requiredPermission.c_str()); dst->maxDelay = src.maxDelay; dst->flags = src.flags; dst->reserved[0] = dst->reserved[1] = 0; } void convertFromSensorEvent(const sensors_event_t &src, Event *dst) { typedef ::android::hardware::sensors::V1_0::SensorType SensorType; typedef ::android::hardware::sensors::V1_0::MetaDataEventType MetaDataEventType; *dst = { .sensorHandle = src.sensor, .sensorType = (SensorType)src.type, .timestamp = src.timestamp }; switch (dst->sensorType) { case SensorType::META_DATA: { dst->u.meta.what = (MetaDataEventType)src.meta_data.what; // Legacy HALs contain the handle reference in the meta data field. // Copy that over to the handle of the event. In legacy HALs this // field was expected to be 0. dst->sensorHandle = src.meta_data.sensor; break; } case SensorType::ACCELEROMETER: case SensorType::MAGNETIC_FIELD: case SensorType::ORIENTATION: case SensorType::GYROSCOPE: case SensorType::GRAVITY: case SensorType::LINEAR_ACCELERATION: { dst->u.vec3.x = src.acceleration.x; dst->u.vec3.y = src.acceleration.y; dst->u.vec3.z = src.acceleration.z; dst->u.vec3.status = (SensorStatus)src.acceleration.status; break; } case SensorType::ROTATION_VECTOR: case SensorType::GAME_ROTATION_VECTOR: case SensorType::GEOMAGNETIC_ROTATION_VECTOR: { dst->u.vec4.x = src.data[0]; dst->u.vec4.y = src.data[1]; dst->u.vec4.z = src.data[2]; dst->u.vec4.w = src.data[3]; break; } case SensorType::MAGNETIC_FIELD_UNCALIBRATED: case SensorType::GYROSCOPE_UNCALIBRATED: case SensorType::ACCELEROMETER_UNCALIBRATED: { dst->u.uncal.x = src.uncalibrated_gyro.x_uncalib; dst->u.uncal.y = src.uncalibrated_gyro.y_uncalib; dst->u.uncal.z = src.uncalibrated_gyro.z_uncalib; dst->u.uncal.x_bias = src.uncalibrated_gyro.x_bias; dst->u.uncal.y_bias = src.uncalibrated_gyro.y_bias; dst->u.uncal.z_bias = src.uncalibrated_gyro.z_bias; break; } case SensorType::DEVICE_ORIENTATION: case SensorType::LIGHT: case SensorType::PRESSURE: case SensorType::TEMPERATURE: case SensorType::PROXIMITY: case SensorType::RELATIVE_HUMIDITY: case SensorType::AMBIENT_TEMPERATURE: case SensorType::SIGNIFICANT_MOTION: case SensorType::STEP_DETECTOR: case SensorType::TILT_DETECTOR: case SensorType::WAKE_GESTURE: case SensorType::GLANCE_GESTURE: case SensorType::PICK_UP_GESTURE: case SensorType::WRIST_TILT_GESTURE: case SensorType::STATIONARY_DETECT: case SensorType::MOTION_DETECT: case SensorType::HEART_BEAT: case SensorType::LOW_LATENCY_OFFBODY_DETECT: { dst->u.scalar = src.data[0]; break; } case SensorType::STEP_COUNTER: { dst->u.stepCount = src.u64.step_counter; break; } case SensorType::HEART_RATE: { dst->u.heartRate.bpm = src.heart_rate.bpm; dst->u.heartRate.status = (SensorStatus)src.heart_rate.status; break; } case SensorType::POSE_6DOF: // 15 floats { for (size_t i = 0; i < 15; ++i) { dst->u.pose6DOF[i] = src.data[i]; } break; } case SensorType::DYNAMIC_SENSOR_META: { dst->u.dynamic.connected = src.dynamic_sensor_meta.connected; dst->u.dynamic.sensorHandle = src.dynamic_sensor_meta.handle; memcpy(dst->u.dynamic.uuid.data(), src.dynamic_sensor_meta.uuid, 16); break; } case SensorType::ADDITIONAL_INFO: { ::android::hardware::sensors::V1_0::AdditionalInfo *dstInfo = &dst->u.additional; const additional_info_event_t &srcInfo = src.additional_info; dstInfo->type = (::android::hardware::sensors::V1_0::AdditionalInfoType) srcInfo.type; dstInfo->serial = srcInfo.serial; CHECK_EQ(sizeof(dstInfo->u), sizeof(srcInfo.data_int32)); memcpy(&dstInfo->u, srcInfo.data_int32, sizeof(srcInfo.data_int32)); break; } default: { CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE); memcpy(dst->u.data.data(), src.data, 16 * sizeof(float)); break; } } } void convertToSensorEvent(const Event &src, sensors_event_t *dst) { *dst = { .version = sizeof(sensors_event_t), .sensor = src.sensorHandle, .type = (int32_t)src.sensorType, .reserved0 = 0, .timestamp = src.timestamp }; switch (src.sensorType) { case SensorType::META_DATA: { // Legacy HALs expect the handle reference in the meta data field. // Copy it over from the handle of the event. dst->meta_data.what = (int32_t)src.u.meta.what; dst->meta_data.sensor = src.sensorHandle; // Set the sensor handle to 0 to maintain compatibility. dst->sensor = 0; break; } case SensorType::ACCELEROMETER: case SensorType::MAGNETIC_FIELD: case SensorType::ORIENTATION: case SensorType::GYROSCOPE: case SensorType::GRAVITY: case SensorType::LINEAR_ACCELERATION: { dst->acceleration.x = src.u.vec3.x; dst->acceleration.y = src.u.vec3.y; dst->acceleration.z = src.u.vec3.z; dst->acceleration.status = (int8_t)src.u.vec3.status; break; } case SensorType::ROTATION_VECTOR: case SensorType::GAME_ROTATION_VECTOR: case SensorType::GEOMAGNETIC_ROTATION_VECTOR: { dst->data[0] = src.u.vec4.x; dst->data[1] = src.u.vec4.y; dst->data[2] = src.u.vec4.z; dst->data[3] = src.u.vec4.w; break; } case SensorType::MAGNETIC_FIELD_UNCALIBRATED: case SensorType::GYROSCOPE_UNCALIBRATED: case SensorType::ACCELEROMETER_UNCALIBRATED: { dst->uncalibrated_gyro.x_uncalib = src.u.uncal.x; dst->uncalibrated_gyro.y_uncalib = src.u.uncal.y; dst->uncalibrated_gyro.z_uncalib = src.u.uncal.z; dst->uncalibrated_gyro.x_bias = src.u.uncal.x_bias; dst->uncalibrated_gyro.y_bias = src.u.uncal.y_bias; dst->uncalibrated_gyro.z_bias = src.u.uncal.z_bias; break; } case SensorType::DEVICE_ORIENTATION: case SensorType::LIGHT: case SensorType::PRESSURE: case SensorType::TEMPERATURE: case SensorType::PROXIMITY: case SensorType::RELATIVE_HUMIDITY: case SensorType::AMBIENT_TEMPERATURE: case SensorType::SIGNIFICANT_MOTION: case SensorType::STEP_DETECTOR: case SensorType::TILT_DETECTOR: case SensorType::WAKE_GESTURE: case SensorType::GLANCE_GESTURE: case SensorType::PICK_UP_GESTURE: case SensorType::WRIST_TILT_GESTURE: case SensorType::STATIONARY_DETECT: case SensorType::MOTION_DETECT: case SensorType::HEART_BEAT: case SensorType::LOW_LATENCY_OFFBODY_DETECT: { dst->data[0] = src.u.scalar; break; } case SensorType::STEP_COUNTER: { dst->u64.step_counter = src.u.stepCount; break; } case SensorType::HEART_RATE: { dst->heart_rate.bpm = src.u.heartRate.bpm; dst->heart_rate.status = (int8_t)src.u.heartRate.status; break; } case SensorType::POSE_6DOF: // 15 floats { for (size_t i = 0; i < 15; ++i) { dst->data[i] = src.u.pose6DOF[i]; } break; } case SensorType::DYNAMIC_SENSOR_META: { dst->dynamic_sensor_meta.connected = src.u.dynamic.connected; dst->dynamic_sensor_meta.handle = src.u.dynamic.sensorHandle; dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later memcpy(dst->dynamic_sensor_meta.uuid, src.u.dynamic.uuid.data(), 16); break; } case SensorType::ADDITIONAL_INFO: { const ::android::hardware::sensors::V1_0::AdditionalInfo &srcInfo = src.u.additional; additional_info_event_t *dstInfo = &dst->additional_info; dstInfo->type = (int32_t)srcInfo.type; dstInfo->serial = srcInfo.serial; CHECK_EQ(sizeof(srcInfo.u), sizeof(dstInfo->data_int32)); memcpy(dstInfo->data_int32, &srcInfo.u, sizeof(dstInfo->data_int32)); break; } default: { CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE); memcpy(dst->data, src.u.data.data(), 16 * sizeof(float)); break; } } } bool convertFromSharedMemInfo(const SharedMemInfo& memIn, sensors_direct_mem_t *memOut) { if (memOut == nullptr) { return false; } switch(memIn.type) { case SharedMemType::ASHMEM: memOut->type = SENSOR_DIRECT_MEM_TYPE_ASHMEM; break; case SharedMemType::GRALLOC: memOut->type = SENSOR_DIRECT_MEM_TYPE_GRALLOC; break; default: return false; } switch(memIn.format) { case SharedMemFormat::SENSORS_EVENT: memOut->format = SENSOR_DIRECT_FMT_SENSORS_EVENT; break; default: return false; } if (memIn.memoryHandle == nullptr) { return false; } memOut->size = memIn.size; memOut->handle = memIn.memoryHandle; return true; } int convertFromRateLevel(RateLevel rate) { switch(rate) { case RateLevel::STOP: return SENSOR_DIRECT_RATE_STOP; case RateLevel::NORMAL: return SENSOR_DIRECT_RATE_NORMAL; case RateLevel::FAST: return SENSOR_DIRECT_RATE_FAST; case RateLevel::VERY_FAST: return SENSOR_DIRECT_RATE_VERY_FAST; default: return -1; } } } // namespace implementation } // namespace V1_0 } // namespace sensors } // namespace hardware } // namespace android