/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "InputHub" //#define LOG_NDEBUG 0 #include "InputHub.h" #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <string.h> #include <sys/capability.h> #include <sys/epoll.h> #include <sys/eventfd.h> #include <sys/inotify.h> #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/utsname.h> #include <unistd.h> #include <vector> #include <android/input.h> #include <hardware_legacy/power.h> #include <linux/input.h> #include <utils/Log.h> #include "BitUtils.h" namespace android { static const char WAKE_LOCK_ID[] = "KeyEvents"; static const int NO_TIMEOUT = -1; static const int EPOLL_MAX_EVENTS = 16; static const int INPUT_MAX_EVENTS = 128; static constexpr bool testBit(int bit, const uint8_t arr[]) { return arr[bit / 8] & (1 << (bit % 8)); } static constexpr size_t sizeofBitArray(size_t bits) { return (bits + 7) / 8; } static void getLinuxRelease(int* major, int* minor) { struct utsname info; if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) { *major = 0, *minor = 0; ALOGE("Could not get linux version: %s", strerror(errno)); } } class EvdevDeviceNode : public InputDeviceNode { public: static EvdevDeviceNode* openDeviceNode(const std::string& path); virtual ~EvdevDeviceNode() { ALOGV("closing %s (fd=%d)", mPath.c_str(), mFd); if (mFd >= 0) { ::close(mFd); } } virtual int getFd() const { return mFd; } virtual const std::string& getPath() const override { return mPath; } virtual const std::string& getName() const override { return mName; } virtual const std::string& getLocation() const override { return mLocation; } virtual const std::string& getUniqueId() const override { return mUniqueId; } virtual uint16_t getBusType() const override { return mBusType; } virtual uint16_t getVendorId() const override { return mVendorId; } virtual uint16_t getProductId() const override { return mProductId; } virtual uint16_t getVersion() const override { return mVersion; } virtual bool hasKey(int32_t key) const override; virtual bool hasKeyInRange(int32_t start, int32_t end) const override; virtual bool hasRelativeAxis(int32_t axis) const override; virtual bool hasAbsoluteAxis(int32_t axis) const override; virtual bool hasSwitch(int32_t sw) const override; virtual bool hasForceFeedback(int32_t ff) const override; virtual bool hasInputProperty(int property) const override; virtual int32_t getKeyState(int32_t key) const override; virtual int32_t getSwitchState(int32_t sw) const override; virtual const AbsoluteAxisInfo* getAbsoluteAxisInfo(int32_t axis) const override; virtual status_t getAbsoluteAxisValue(int32_t axis, int32_t* outValue) const override; virtual void vibrate(nsecs_t duration) override; virtual void cancelVibrate() override; virtual void disableDriverKeyRepeat() override; private: EvdevDeviceNode(const std::string& path, int fd) : mFd(fd), mPath(path) {} status_t queryProperties(); void queryAxisInfo(); int mFd; std::string mPath; std::string mName; std::string mLocation; std::string mUniqueId; uint16_t mBusType; uint16_t mVendorId; uint16_t mProductId; uint16_t mVersion; uint8_t mKeyBitmask[KEY_CNT / 8]; uint8_t mAbsBitmask[ABS_CNT / 8]; uint8_t mRelBitmask[REL_CNT / 8]; uint8_t mSwBitmask[SW_CNT / 8]; uint8_t mLedBitmask[LED_CNT / 8]; uint8_t mFfBitmask[FF_CNT / 8]; uint8_t mPropBitmask[INPUT_PROP_CNT / 8]; std::unordered_map<uint32_t, std::unique_ptr<AbsoluteAxisInfo>> mAbsInfo; bool mFfEffectPlaying = false; int16_t mFfEffectId = -1; }; EvdevDeviceNode* EvdevDeviceNode::openDeviceNode(const std::string& path) { auto fd = TEMP_FAILURE_RETRY(::open(path.c_str(), O_RDONLY | O_NONBLOCK | O_CLOEXEC)); if (fd < 0) { ALOGE("could not open evdev device %s. err=%d", path.c_str(), errno); return nullptr; } // Tell the kernel that we want to use the monotonic clock for reporting // timestamps associated with input events. This is important because the // input system uses the timestamps extensively and assumes they were // recorded using the monotonic clock. // // The EVIOCSCLOCKID ioctl was introduced in Linux 3.4. int clockId = CLOCK_MONOTONIC; if (TEMP_FAILURE_RETRY(ioctl(fd, EVIOCSCLOCKID, &clockId)) < 0) { ALOGW("Could not set input clock id to CLOCK_MONOTONIC. errno=%d", errno); } auto node = new EvdevDeviceNode(path, fd); status_t ret = node->queryProperties(); if (ret != OK) { ALOGE("could not open evdev device %s: failed to read properties. errno=%d", path.c_str(), ret); delete node; return nullptr; } return node; } status_t EvdevDeviceNode::queryProperties() { char buffer[80]; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGNAME(sizeof(buffer) - 1), buffer)) < 1) { ALOGV("could not get device name for %s.", mPath.c_str()); } else { buffer[sizeof(buffer) - 1] = '\0'; mName = buffer; } int driverVersion; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGVERSION, &driverVersion))) { ALOGE("could not get driver version for %s. err=%d", mPath.c_str(), errno); return -errno; } struct input_id inputId; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGID, &inputId))) { ALOGE("could not get device input id for %s. err=%d", mPath.c_str(), errno); return -errno; } mBusType = inputId.bustype; mVendorId = inputId.vendor; mProductId = inputId.product; mVersion = inputId.version; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGPHYS(sizeof(buffer) - 1), buffer)) < 1) { ALOGV("could not get location for %s.", mPath.c_str()); } else { buffer[sizeof(buffer) - 1] = '\0'; mLocation = buffer; } if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGUNIQ(sizeof(buffer) - 1), buffer)) < 1) { ALOGV("could not get unique id for %s.", mPath.c_str()); } else { buffer[sizeof(buffer) - 1] = '\0'; mUniqueId = buffer; } ALOGV("add device %s", mPath.c_str()); ALOGV(" bus: %04x\n" " vendor: %04x\n" " product: %04x\n" " version: %04x\n", mBusType, mVendorId, mProductId, mVersion); ALOGV(" name: \"%s\"\n" " location: \"%s\"\n" " unique_id: \"%s\"\n" " descriptor: (TODO)\n" " driver: v%d.%d.%d", mName.c_str(), mLocation.c_str(), mUniqueId.c_str(), driverVersion >> 16, (driverVersion >> 8) & 0xff, (driverVersion >> 16) & 0xff); TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_KEY, sizeof(mKeyBitmask)), mKeyBitmask)); TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_ABS, sizeof(mAbsBitmask)), mAbsBitmask)); TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_REL, sizeof(mRelBitmask)), mRelBitmask)); TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_SW, sizeof(mSwBitmask)), mSwBitmask)); TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_LED, sizeof(mLedBitmask)), mLedBitmask)); TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_FF, sizeof(mFfBitmask)), mFfBitmask)); TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGPROP(sizeof(mPropBitmask)), mPropBitmask)); queryAxisInfo(); return OK; } void EvdevDeviceNode::queryAxisInfo() { for (int32_t axis = 0; axis < ABS_MAX; ++axis) { if (testBit(axis, mAbsBitmask)) { struct input_absinfo info; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGABS(axis), &info))) { ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis, mPath.c_str(), mFd, errno); continue; } mAbsInfo[axis] = std::unique_ptr<AbsoluteAxisInfo>(new AbsoluteAxisInfo{ .minValue = info.minimum, .maxValue = info.maximum, .flat = info.flat, .fuzz = info.fuzz, .resolution = info.resolution }); } } } bool EvdevDeviceNode::hasKey(int32_t key) const { if (key >= 0 && key <= KEY_MAX) { return testBit(key, mKeyBitmask); } return false; } bool EvdevDeviceNode::hasKeyInRange(int32_t startKey, int32_t endKey) const { return testBitInRange(mKeyBitmask, startKey, endKey); } bool EvdevDeviceNode::hasRelativeAxis(int axis) const { if (axis >= 0 && axis <= REL_MAX) { return testBit(axis, mRelBitmask); } return false; } bool EvdevDeviceNode::hasAbsoluteAxis(int axis) const { if (axis >= 0 && axis <= ABS_MAX) { return getAbsoluteAxisInfo(axis) != nullptr; } return false; } const AbsoluteAxisInfo* EvdevDeviceNode::getAbsoluteAxisInfo(int32_t axis) const { if (axis < 0 || axis > ABS_MAX) { return nullptr; } const auto absInfo = mAbsInfo.find(axis); if (absInfo != mAbsInfo.end()) { return absInfo->second.get(); } return nullptr; } bool EvdevDeviceNode::hasSwitch(int32_t sw) const { if (sw >= 0 && sw <= SW_MAX) { return testBit(sw, mSwBitmask); } return false; } bool EvdevDeviceNode::hasForceFeedback(int32_t ff) const { if (ff >= 0 && ff <= FF_MAX) { return testBit(ff, mFfBitmask); } return false; } bool EvdevDeviceNode::hasInputProperty(int property) const { if (property >= 0 && property <= INPUT_PROP_MAX) { return testBit(property, mPropBitmask); } return false; } int32_t EvdevDeviceNode::getKeyState(int32_t key) const { if (key >= 0 && key <= KEY_MAX) { if (testBit(key, mKeyBitmask)) { uint8_t keyState[sizeofBitArray(KEY_CNT)]; memset(keyState, 0, sizeof(keyState)); if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGKEY(sizeof(keyState)), keyState)) >= 0) { return testBit(key, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; } int32_t EvdevDeviceNode::getSwitchState(int32_t sw) const { if (sw >= 0 && sw <= SW_MAX) { if (testBit(sw, mSwBitmask)) { uint8_t swState[sizeofBitArray(SW_CNT)]; memset(swState, 0, sizeof(swState)); if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGSW(sizeof(swState)), swState)) >= 0) { return testBit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; } status_t EvdevDeviceNode::getAbsoluteAxisValue(int32_t axis, int32_t* outValue) const { *outValue = 0; if (axis >= 0 && axis <= ABS_MAX) { if (testBit(axis, mAbsBitmask)) { struct input_absinfo info; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGABS(axis), &info))) { ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis, mPath.c_str(), mFd, errno); return -errno; } *outValue = info.value; return OK; } } return -1; } void EvdevDeviceNode::vibrate(nsecs_t duration) { ff_effect effect{}; effect.type = FF_RUMBLE; effect.id = mFfEffectId; effect.u.rumble.strong_magnitude = 0xc000; effect.u.rumble.weak_magnitude = 0xc000; effect.replay.length = (duration + 999'999LL) / 1'000'000LL; effect.replay.delay = 0; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCSFF, &effect))) { ALOGW("Could not upload force feedback effect to device %s due to error %d.", mPath.c_str(), errno); return; } mFfEffectId = effect.id; struct input_event ev{}; ev.type = EV_FF; ev.code = mFfEffectId; ev.value = 1; size_t written = TEMP_FAILURE_RETRY(write(mFd, &ev, sizeof(ev))); if (written != sizeof(ev)) { ALOGW("Could not start force feedback effect on device %s due to error %d.", mPath.c_str(), errno); return; } mFfEffectPlaying = true; } void EvdevDeviceNode::cancelVibrate() { if (mFfEffectPlaying) { mFfEffectPlaying = false; struct input_event ev{}; ev.type = EV_FF; ev.code = mFfEffectId; ev.value = 0; size_t written = TEMP_FAILURE_RETRY(write(mFd, &ev, sizeof(ev))); if (written != sizeof(ev)) { ALOGW("Could not stop force feedback effect on device %s due to error %d.", mPath.c_str(), errno); return; } } } void EvdevDeviceNode::disableDriverKeyRepeat() { unsigned int repeatRate[] = {0, 0}; if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCSREP, repeatRate))) { ALOGW("Unable to disable kernel key repeat for %s due to error %d.", mPath.c_str(), errno); } } InputHub::InputHub(const std::shared_ptr<InputCallbackInterface>& cb) : mInputCallback(cb) { // Determine the type of suspend blocking we can do on this device. There // are 3 options, in decreasing order of preference: // 1) EPOLLWAKEUP: introduced in Linux kernel 3.5, this flag can be set on // an epoll event to indicate that a wake lock should be held from the // time an fd has data until the next epoll_wait (or the epoll fd is // closed). // 2) EVIOCSSUSPENDBLOCK: introduced into the Android kernel's evdev // driver, this ioctl blocks suspend while the event queue for the fd is // not empty. This was never accepted into the mainline kernel, and it was // replaced by EPOLLWAKEUP. // 3) explicit wake locks: use acquire_wake_lock to manage suspend // blocking explicitly in the InputHub code. // // (1) can be checked by simply observing the Linux kernel version. (2) // requires an fd from an evdev node, which cannot be done in the InputHub // constructor. So we assume (3) unless (1) is true, and we can verify // whether (2) is true once we have an evdev fd (and we're not in (1)). int major, minor; getLinuxRelease(&major, &minor); if (major > 3 || (major == 3 && minor >= 5)) { ALOGI("Using EPOLLWAKEUP to block suspend while processing input events."); mWakeupMechanism = WakeMechanism::EPOLL_WAKEUP; mNeedToCheckSuspendBlockIoctl = false; } if (manageWakeLocks()) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); } // epoll_create argument is ignored, but it must be > 0. mEpollFd = epoll_create(1); LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); mINotifyFd = inotify_init(); LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance. errno=%d", errno); struct epoll_event eventItem; memset(&eventItem, 0, sizeof(eventItem)); eventItem.events = EPOLLIN; if (mWakeupMechanism == WakeMechanism::EPOLL_WAKEUP) { eventItem.events |= EPOLLWAKEUP; } eventItem.data.u32 = mINotifyFd; int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); int wakeFds[2]; result = pipe(wakeFds); LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); mWakeEventFd = eventfd(0, EFD_NONBLOCK); LOG_ALWAYS_FATAL_IF(mWakeEventFd == -1, "Could not create wake event fd. errno=%d", errno); eventItem.data.u32 = mWakeEventFd; result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, &eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance. errno=%d", errno); } InputHub::~InputHub() { ::close(mEpollFd); ::close(mINotifyFd); ::close(mWakeEventFd); if (manageWakeLocks()) { release_wake_lock(WAKE_LOCK_ID); } } status_t InputHub::registerDevicePath(const std::string& path) { ALOGV("registering device path %s", path.c_str()); int wd = inotify_add_watch(mINotifyFd, path.c_str(), IN_DELETE | IN_CREATE); if (wd < 0) { ALOGE("Could not add %s to INotify watch. errno=%d", path.c_str(), errno); return -errno; } mWatchedPaths[wd] = path; scanDir(path); return OK; } status_t InputHub::unregisterDevicePath(const std::string& path) { int wd = -1; for (auto pair : mWatchedPaths) { if (pair.second == path) { wd = pair.first; break; } } if (wd == -1) { return BAD_VALUE; } mWatchedPaths.erase(wd); if (inotify_rm_watch(mINotifyFd, wd) != 0) { return -errno; } return OK; } status_t InputHub::poll() { bool deviceChange = false; if (manageWakeLocks()) { // Mind the wake lock dance! // If we're relying on wake locks, we hold a wake lock at all times // except during epoll_wait(). This works due to some subtle // choreography. When a device driver has pending (unread) events, it // acquires a kernel wake lock. However, once the last pending event // has been read, the device driver will release the kernel wake lock. // To prevent the system from going to sleep when this happens, the // InputHub holds onto its own user wake lock while the client is // processing events. Thus the system can only sleep if there are no // events pending or currently being processed. release_wake_lock(WAKE_LOCK_ID); } struct epoll_event pendingEventItems[EPOLL_MAX_EVENTS]; int pollResult = epoll_wait(mEpollFd, pendingEventItems, EPOLL_MAX_EVENTS, NO_TIMEOUT); if (manageWakeLocks()) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); } if (pollResult == 0) { ALOGW("epoll_wait should not return 0 with no timeout"); return UNKNOWN_ERROR; } if (pollResult < 0) { // An error occurred. Return even if it's EINTR, and let the caller // restart the poll. ALOGE("epoll_wait returned with errno=%d", errno); return -errno; } // pollResult > 0: there are events to process nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); std::vector<int> removedDeviceFds; int inputFd = -1; std::shared_ptr<InputDeviceNode> deviceNode; for (int i = 0; i < pollResult; ++i) { const struct epoll_event& eventItem = pendingEventItems[i]; int dataFd = static_cast<int>(eventItem.data.u32); if (dataFd == mINotifyFd) { if (eventItem.events & EPOLLIN) { deviceChange = true; } else { ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); } continue; } if (dataFd == mWakeEventFd) { if (eventItem.events & EPOLLIN) { ALOGV("awoken after wake()"); uint64_t u; ssize_t nRead = TEMP_FAILURE_RETRY(read(mWakeEventFd, &u, sizeof(uint64_t))); if (nRead != sizeof(uint64_t)) { ALOGW("Could not read event fd; waking anyway."); } } else { ALOGW("Received unexpected epoll event 0x%08x for wake event.", eventItem.events); } continue; } // Update the fd and device node when the fd changes. When several // events are read back-to-back with the same fd, this saves many reads // from the hash table. if (inputFd != dataFd) { inputFd = dataFd; deviceNode = mDeviceNodes[inputFd]; } if (deviceNode == nullptr) { ALOGE("could not find device node for fd %d", inputFd); continue; } if (eventItem.events & EPOLLIN) { struct input_event ievs[INPUT_MAX_EVENTS]; for (;;) { ssize_t readSize = TEMP_FAILURE_RETRY(read(inputFd, ievs, sizeof(ievs))); if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { ALOGW("could not get event, removed? (fd: %d, size: %zd errno: %d)", inputFd, readSize, errno); removedDeviceFds.push_back(inputFd); break; } else if (readSize < 0) { if (errno != EAGAIN && errno != EINTR) { ALOGW("could not get event. errno=%d", errno); } break; } else if (readSize % sizeof(input_event) != 0) { ALOGE("could not get event. wrong size=%zd", readSize); break; } else { size_t count = static_cast<size_t>(readSize) / sizeof(struct input_event); for (size_t i = 0; i < count; ++i) { auto& iev = ievs[i]; auto when = s2ns(iev.time.tv_sec) + us2ns(iev.time.tv_usec); InputEvent inputEvent = { when, iev.type, iev.code, iev.value }; mInputCallback->onInputEvent(deviceNode, inputEvent, now); } } } } else if (eventItem.events & EPOLLHUP) { ALOGI("Removing device fd %d due to epoll hangup event.", inputFd); removedDeviceFds.push_back(inputFd); } else { ALOGW("Received unexpected epoll event 0x%08x for device fd %d", eventItem.events, inputFd); } } if (removedDeviceFds.size()) { for (auto deviceFd : removedDeviceFds) { auto deviceNode = mDeviceNodes[deviceFd]; if (deviceNode != nullptr) { status_t ret = closeNodeByFd(deviceFd); if (ret != OK) { ALOGW("Could not close device with fd %d. errno=%d", deviceFd, ret); } else { mInputCallback->onDeviceRemoved(deviceNode); } } } } if (deviceChange) { readNotify(); } return OK; } status_t InputHub::wake() { ALOGV("wake() called"); uint64_t u = 1; ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &u, sizeof(uint64_t))); if (nWrite != sizeof(uint64_t) && errno != EAGAIN) { ALOGW("Could not write wake signal, errno=%d", errno); return -errno; } return OK; } void InputHub::dump(String8& dump) { // TODO } status_t InputHub::readNotify() { char event_buf[512]; struct inotify_event* event; ssize_t res = TEMP_FAILURE_RETRY(read(mINotifyFd, event_buf, sizeof(event_buf))); if (res < static_cast<int>(sizeof(*event))) { ALOGW("could not get inotify event, %s\n", strerror(errno)); return -errno; } size_t event_pos = 0; while (res >= static_cast<int>(sizeof(*event))) { event = reinterpret_cast<struct inotify_event*>(event_buf + event_pos); if (event->len) { std::string path = mWatchedPaths[event->wd]; path.append("/").append(event->name); ALOGV("inotify event for path %s", path.c_str()); if (event->mask & IN_CREATE) { auto deviceNode = openNode(path); if (deviceNode == nullptr) { ALOGE("could not open device node %s. err=%zd", path.c_str(), res); } else { mInputCallback->onDeviceAdded(deviceNode); } } else { auto deviceNode = findNodeByPath(path); if (deviceNode != nullptr) { status_t ret = closeNode(deviceNode.get()); if (ret != OK) { ALOGW("Could not close device %s. errno=%d", path.c_str(), ret); } else { mInputCallback->onDeviceRemoved(deviceNode); } } else { ALOGW("could not find device node for %s", path.c_str()); } } } int event_size = sizeof(*event) + event->len; res -= event_size; event_pos += event_size; } return OK; } status_t InputHub::scanDir(const std::string& path) { auto dir = ::opendir(path.c_str()); if (dir == nullptr) { ALOGE("could not open device path %s to scan for devices. err=%d", path.c_str(), errno); return -errno; } while (auto dirent = readdir(dir)) { if (strcmp(dirent->d_name, ".") == 0 || strcmp(dirent->d_name, "..") == 0) { continue; } std::string filename = path + "/" + dirent->d_name; auto node = openNode(filename); if (node == nullptr) { ALOGE("could not open device node %s", filename.c_str()); } else { mInputCallback->onDeviceAdded(node); } } ::closedir(dir); return OK; } std::shared_ptr<InputDeviceNode> InputHub::openNode(const std::string& path) { ALOGV("opening %s...", path.c_str()); auto evdevNode = std::shared_ptr<EvdevDeviceNode>(EvdevDeviceNode::openDeviceNode(path)); if (evdevNode == nullptr) { return nullptr; } auto fd = evdevNode->getFd(); ALOGV("opened %s with fd %d", path.c_str(), fd); mDeviceNodes[fd] = evdevNode; struct epoll_event eventItem{}; eventItem.events = EPOLLIN; if (mWakeupMechanism == WakeMechanism::EPOLL_WAKEUP) { eventItem.events |= EPOLLWAKEUP; } eventItem.data.u32 = fd; if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { ALOGE("Could not add device fd to epoll instance. errno=%d", errno); return nullptr; } if (mNeedToCheckSuspendBlockIoctl) { #ifndef EVIOCSSUSPENDBLOCK // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels // will use an epoll flag instead, so as long as we want to support this // feature, we need to be prepared to define the ioctl ourselves. #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) #endif if (TEMP_FAILURE_RETRY(ioctl(fd, EVIOCSSUSPENDBLOCK, 1))) { // no wake mechanism, continue using explicit wake locks ALOGI("Using explicit wakelocks to block suspend while processing input events."); } else { mWakeupMechanism = WakeMechanism::LEGACY_EVDEV_SUSPENDBLOCK_IOCTL; // release any held wakelocks since we won't need them anymore release_wake_lock(WAKE_LOCK_ID); ALOGI("Using EVIOCSSUSPENDBLOCK to block suspend while processing input events."); } mNeedToCheckSuspendBlockIoctl = false; } return evdevNode; } status_t InputHub::closeNode(const InputDeviceNode* node) { for (auto pair : mDeviceNodes) { if (pair.second.get() == node) { return closeNodeByFd(pair.first); } } return BAD_VALUE; } status_t InputHub::closeNodeByFd(int fd) { status_t ret = OK; if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, NULL)) { ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); ret = -errno; } mDeviceNodes.erase(fd); ::close(fd); return ret; } std::shared_ptr<InputDeviceNode> InputHub::findNodeByPath(const std::string& path) { for (auto pair : mDeviceNodes) { if (pair.second->getPath() == path) return pair.second; } return nullptr; } bool InputHub::manageWakeLocks() const { return mWakeupMechanism != WakeMechanism::EPOLL_WAKEUP; } } // namespace android