/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <fcntl.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <fstream> #include <iostream> #include <memory> #include <gtest/gtest.h> #include <openssl/bn.h> #include <openssl/evp.h> #include <openssl/x509.h> #define LOG_TAG "keymaster_test" #include <utils/Log.h> #include <hardware/keymaster0.h> namespace android { class UniqueBlob : public std::unique_ptr<uint8_t[]> { public: explicit UniqueBlob(size_t length) : mLength(length) { } UniqueBlob(uint8_t* bytes, size_t length) : std::unique_ptr<uint8_t[]>(bytes), mLength(length) { } bool operator==(const UniqueBlob &other) const { if (other.length() != mLength) { return false; } const uint8_t* mine = get(); const uint8_t* theirs = other.get(); for (size_t i = 0; i < mLength; i++) { if (mine[i] != theirs[i]) { return false; } } return true; } size_t length() const { return mLength; } friend std::ostream &operator<<(std::ostream &stream, const UniqueBlob& blob); private: size_t mLength; }; std::ostream &operator<<(std::ostream &stream, const UniqueBlob& blob) { const size_t length = blob.mLength; stream << "Blob length=" << length << " < "; const uint8_t* data = blob.get(); for (size_t i = 0; i < length; i++) { stream << std::hex << std::setw(2) << std::setfill('0') << static_cast<unsigned int>(data[i]) << ' '; } stream << '>' << std::endl; return stream; } class UniqueKey : public UniqueBlob { public: UniqueKey(keymaster0_device_t** dev, uint8_t* bytes, size_t length) : UniqueBlob(bytes, length), mDevice(dev) { } ~UniqueKey() { if (mDevice != NULL && *mDevice != NULL) { keymaster0_device_t* dev = *mDevice; if (dev->delete_keypair != NULL) { dev->delete_keypair(dev, get(), length()); } } } private: keymaster0_device_t** mDevice; }; class UniqueReadOnlyBlob { public: UniqueReadOnlyBlob(uint8_t* data, size_t dataSize) : mDataSize(dataSize) { int pageSize = sysconf(_SC_PAGE_SIZE); if (pageSize == -1) { return; } int fd = open("/dev/zero", O_RDONLY); if (fd == -1) { return; } mBufferSize = (dataSize + pageSize - 1) & ~(pageSize - 1); uint8_t* buffer = (uint8_t*) mmap(NULL, mBufferSize, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); close(fd); if (buffer == NULL) { return; } memcpy(buffer, data, dataSize); if (mprotect(buffer, mBufferSize, PROT_READ) == -1) { munmap(buffer, mBufferSize); return; } mBuffer = buffer; } ~UniqueReadOnlyBlob() { munmap(mBuffer, mBufferSize); } uint8_t* get() const { return mBuffer; } size_t length() const { return mDataSize; } private: uint8_t* mBuffer; size_t mBufferSize; size_t mDataSize; }; struct BIGNUM_Delete { void operator()(BIGNUM* p) const { BN_free(p); } }; typedef std::unique_ptr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; struct EVP_PKEY_Delete { void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); } }; typedef std::unique_ptr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; struct PKCS8_PRIV_KEY_INFO_Delete { void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); } }; typedef std::unique_ptr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; struct RSA_Delete { void operator()(RSA* p) const { RSA_free(p); } }; typedef std::unique_ptr<RSA, RSA_Delete> Unique_RSA; struct EC_KEY_Delete { void operator()(EC_KEY* p) const { EC_KEY_free(p); } }; typedef std::unique_ptr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY; /* * DER-encoded PKCS#8 format RSA key. Generated using: * * openssl genrsa 2048 | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1 */ static uint8_t TEST_RSA_KEY_1[] = { 0x30, 0x82, 0x04, 0xBE, 0x02, 0x01, 0x00, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, 0x04, 0xA8, 0x30, 0x82, 0x04, 0xA4, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01, 0x01, 0x00, 0xD8, 0x58, 0xD4, 0x9F, 0xC0, 0xE8, 0xF0, 0xFF, 0x87, 0x27, 0x43, 0xE6, 0x2E, 0xE6, 0x9A, 0x42, 0x3B, 0x39, 0x94, 0x84, 0x43, 0x55, 0x8D, 0x20, 0x5B, 0x71, 0x88, 0xE6, 0xD1, 0x62, 0xC8, 0xF2, 0x20, 0xD0, 0x75, 0x13, 0x83, 0xA3, 0x5D, 0x19, 0xA8, 0x62, 0xD0, 0x5F, 0x3E, 0x8A, 0x7C, 0x0E, 0x26, 0xA9, 0xFF, 0xB2, 0x5E, 0x63, 0xAA, 0x3C, 0x8D, 0x13, 0x41, 0xAA, 0xD5, 0x03, 0x01, 0x01, 0x53, 0xC9, 0x02, 0x1C, 0xEC, 0xE8, 0xC4, 0x70, 0x3F, 0x43, 0xE5, 0x51, 0xD0, 0x6E, 0x52, 0x0B, 0xC4, 0x0A, 0xA3, 0x61, 0xDE, 0xE3, 0x72, 0x0C, 0x94, 0xF1, 0x1C, 0x2D, 0x36, 0x77, 0xBB, 0x16, 0xA8, 0x63, 0x4B, 0xD1, 0x07, 0x00, 0x42, 0x2D, 0x2B, 0x10, 0x80, 0x45, 0xF3, 0x0C, 0xF9, 0xC5, 0xAC, 0xCC, 0x64, 0x87, 0xFD, 0x5D, 0xC8, 0x51, 0xD4, 0x1C, 0x9E, 0x6E, 0x9B, 0xC4, 0x27, 0x5E, 0x73, 0xA7, 0x2A, 0xF6, 0x90, 0x42, 0x0C, 0x34, 0x93, 0xB7, 0x02, 0x19, 0xA9, 0x64, 0x6C, 0x46, 0x3B, 0x40, 0x02, 0x2F, 0x54, 0x69, 0x79, 0x26, 0x7D, 0xF6, 0x85, 0x90, 0x01, 0xD0, 0x21, 0x07, 0xD0, 0x14, 0x00, 0x65, 0x9C, 0xAC, 0x24, 0xE8, 0x78, 0x42, 0x3B, 0x90, 0x75, 0x19, 0x55, 0x11, 0x4E, 0xD9, 0xE6, 0x97, 0x87, 0xBC, 0x8D, 0x2C, 0x9B, 0xF0, 0x1F, 0x14, 0xEB, 0x6A, 0x57, 0xCE, 0x78, 0xAD, 0xCE, 0xD9, 0xFB, 0xB9, 0xA1, 0xEF, 0x0C, 0x1F, 0xDD, 0xE3, 0x5B, 0x73, 0xA0, 0xEC, 0x37, 0x9C, 0xE1, 0xFD, 0x86, 0x28, 0xC3, 0x4A, 0x42, 0xD0, 0xA3, 0xFE, 0x57, 0x09, 0x29, 0xD8, 0xF6, 0xEC, 0xE3, 0xC0, 0x71, 0x7C, 0x29, 0x27, 0xC2, 0xD1, 0x3E, 0x22, 0xBC, 0xBD, 0x5A, 0x85, 0x41, 0xF6, 0x15, 0xDA, 0x0C, 0x58, 0x5A, 0x61, 0x5B, 0x78, 0xB8, 0xAA, 0xEC, 0x5C, 0x1C, 0x79, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x01, 0x00, 0x1D, 0x10, 0x31, 0xE0, 0x14, 0x26, 0x36, 0xD9, 0xDC, 0xEA, 0x25, 0x70, 0xF2, 0xB3, 0xFF, 0xDD, 0x0D, 0xDF, 0xBA, 0x57, 0xDA, 0x43, 0xCF, 0xE5, 0x9C, 0xE3, 0x2F, 0xA4, 0xF2, 0x53, 0xF6, 0xF2, 0xAF, 0xFD, 0xD0, 0xFC, 0x82, 0x1E, 0x9C, 0x0F, 0x2A, 0x53, 0xBB, 0xF2, 0x4F, 0x90, 0x83, 0x01, 0xD3, 0xA7, 0xDA, 0xB5, 0xB7, 0x80, 0x64, 0x0A, 0x26, 0x59, 0x83, 0xE4, 0xD3, 0x20, 0xC8, 0x2D, 0xC9, 0x77, 0xA3, 0x55, 0x07, 0x6E, 0x6D, 0x95, 0x36, 0xAA, 0x84, 0x4F, 0xED, 0x54, 0x24, 0xA9, 0x77, 0xF8, 0x85, 0xE2, 0x4B, 0xF2, 0xFA, 0x0B, 0x3E, 0xA6, 0xF5, 0x46, 0x0D, 0x9F, 0x1F, 0xFE, 0xF7, 0x37, 0xFF, 0xA3, 0x60, 0xF1, 0x63, 0xF2, 0x75, 0x6A, 0x8E, 0x10, 0xD7, 0x89, 0xD2, 0xB3, 0xFF, 0x76, 0xA5, 0xBA, 0xAF, 0x0A, 0xBE, 0x32, 0x5F, 0xF0, 0x48, 0x48, 0x4B, 0x9C, 0x9A, 0x3D, 0x12, 0xA7, 0xD2, 0x07, 0xC7, 0x59, 0x32, 0x94, 0x95, 0x65, 0x2F, 0x87, 0x34, 0x76, 0xBA, 0x7C, 0x08, 0x4B, 0xAB, 0xA6, 0x24, 0xDF, 0x64, 0xDB, 0x48, 0x63, 0x42, 0x06, 0xE2, 0x2C, 0x3D, 0xFB, 0xE5, 0x47, 0x81, 0x94, 0x98, 0xF7, 0x32, 0x4B, 0x28, 0xEB, 0x42, 0xB8, 0xE9, 0x8E, 0xFC, 0xC9, 0x43, 0xC9, 0x47, 0xE6, 0xE7, 0x1C, 0xDC, 0x71, 0xEF, 0x4D, 0x8A, 0xB1, 0xFC, 0x45, 0x37, 0xEC, 0xB3, 0x16, 0x88, 0x5B, 0xE2, 0xEC, 0x8B, 0x6B, 0x75, 0x16, 0xBE, 0x6B, 0xF8, 0x2C, 0xF8, 0xC9, 0xD1, 0xF7, 0x55, 0x87, 0x57, 0x5F, 0xDE, 0xF4, 0x7E, 0x72, 0x13, 0x06, 0x2A, 0x21, 0xB7, 0x78, 0x21, 0x05, 0xFD, 0xE2, 0x5F, 0x7B, 0x7C, 0xF0, 0x26, 0x2B, 0x75, 0x7F, 0x68, 0xF9, 0xA6, 0x98, 0xFD, 0x54, 0x0E, 0xCC, 0x22, 0x41, 0x7F, 0x29, 0x81, 0x2F, 0xA3, 0x3C, 0x3D, 0x64, 0xC8, 0x41, 0x02, 0x81, 0x81, 0x00, 0xFA, 0xFA, 0xE4, 0x2E, 0x30, 0xF0, 0x7A, 0x8D, 0x95, 0xB8, 0x39, 0x58, 0x27, 0x0F, 0x89, 0x0C, 0xDF, 0xFE, 0x2F, 0x55, 0x3B, 0x6F, 0xDD, 0x5F, 0x12, 0xB3, 0xD1, 0xCF, 0x5B, 0x8D, 0xB6, 0x10, 0x1C, 0x87, 0x0C, 0x30, 0x89, 0x2D, 0xBB, 0xB8, 0xA1, 0x78, 0x0F, 0x54, 0xA6, 0x36, 0x46, 0x05, 0x8B, 0x5A, 0xFF, 0x48, 0x03, 0x13, 0xAE, 0x95, 0x96, 0x5D, 0x6C, 0xDA, 0x5D, 0xF7, 0xAD, 0x1D, 0x33, 0xED, 0x23, 0xF5, 0x4B, 0x03, 0x78, 0xE7, 0x50, 0xD1, 0x2D, 0x95, 0x22, 0x35, 0x02, 0x5B, 0x4A, 0x4E, 0x73, 0xC9, 0xB7, 0x05, 0xC4, 0x21, 0x86, 0x1F, 0x1E, 0x40, 0x83, 0xBC, 0x8A, 0x3A, 0x95, 0x24, 0x62, 0xF4, 0x58, 0x38, 0x64, 0x4A, 0x89, 0x8A, 0x27, 0x59, 0x12, 0x9D, 0x21, 0xC3, 0xA6, 0x42, 0x1E, 0x2A, 0x3F, 0xD8, 0x65, 0x1F, 0x6E, 0x3E, 0x4D, 0x5C, 0xCC, 0xEA, 0x8E, 0x15, 0x02, 0x81, 0x81, 0x00, 0xDC, 0xAC, 0x9B, 0x00, 0xDB, 0xF9, 0xB2, 0xBF, 0xC4, 0x5E, 0xB6, 0xB7, 0x63, 0xEB, 0x13, 0x4B, 0xE2, 0xA6, 0xC8, 0x72, 0x90, 0xD8, 0xC2, 0x33, 0x33, 0xF0, 0x66, 0x75, 0xBD, 0x50, 0x7C, 0xA4, 0x8F, 0x82, 0xFB, 0xFF, 0x44, 0x3B, 0xE7, 0x15, 0x3A, 0x0C, 0x7A, 0xF8, 0x92, 0x86, 0x4A, 0x79, 0x32, 0x08, 0x82, 0x1D, 0x6A, 0xBA, 0xAD, 0x8A, 0xB3, 0x3D, 0x7F, 0xA5, 0xB4, 0x6F, 0x67, 0x86, 0x7E, 0xB2, 0x9C, 0x2A, 0xF6, 0x7C, 0x49, 0x21, 0xC5, 0x3F, 0x00, 0x3F, 0x9B, 0xF7, 0x0F, 0x6C, 0x35, 0x80, 0x75, 0x73, 0xC0, 0xF8, 0x3E, 0x30, 0x5F, 0x74, 0x2F, 0x15, 0x41, 0xEA, 0x0F, 0xCE, 0x0E, 0x18, 0x17, 0x68, 0xBA, 0xC4, 0x29, 0xF2, 0xE2, 0x2C, 0x1D, 0x55, 0x83, 0xB6, 0x64, 0x2E, 0x03, 0x12, 0xA4, 0x0D, 0xBF, 0x4F, 0x2E, 0xBE, 0x7C, 0x41, 0xD9, 0xCD, 0xD0, 0x52, 0x91, 0xD5, 0x02, 0x81, 0x81, 0x00, 0xD4, 0x55, 0xEB, 0x32, 0xC1, 0x28, 0xD3, 0x26, 0x72, 0x22, 0xB8, 0x31, 0x42, 0x6A, 0xBC, 0x52, 0x6E, 0x37, 0x48, 0xA8, 0x5D, 0x6E, 0xD8, 0xE5, 0x14, 0x97, 0x99, 0xCC, 0x4A, 0xF2, 0xEB, 0xB3, 0x59, 0xCF, 0x4F, 0x9A, 0xC8, 0x94, 0x2E, 0x9B, 0x97, 0xD0, 0x51, 0x78, 0x16, 0x5F, 0x18, 0x82, 0x9C, 0x51, 0xD2, 0x64, 0x84, 0x65, 0xE4, 0x70, 0x9E, 0x14, 0x50, 0x81, 0xB6, 0xBA, 0x52, 0x75, 0xC0, 0x76, 0xC2, 0xD3, 0x46, 0x31, 0x9B, 0xDA, 0x67, 0xDF, 0x71, 0x27, 0x19, 0x17, 0xAB, 0xF4, 0xBC, 0x3A, 0xFF, 0x6F, 0x0B, 0x2F, 0x0F, 0xAE, 0x25, 0x20, 0xB2, 0xA1, 0x76, 0x52, 0xCE, 0xC7, 0x9D, 0x62, 0x79, 0x6D, 0xAC, 0x2D, 0x99, 0x7C, 0x0E, 0x3D, 0x19, 0xE9, 0x1B, 0xFC, 0x60, 0x92, 0x7C, 0x58, 0xB7, 0xD8, 0x9A, 0xC7, 0x63, 0x56, 0x62, 0x18, 0xC7, 0xAE, 0xD9, 0x97, 0x1F, 0xB9, 0x02, 0x81, 0x81, 0x00, 0x91, 0x40, 0xC4, 0x1E, 0x82, 0xAD, 0x0F, 0x6D, 0x8E, 0xD2, 0x51, 0x2E, 0xD1, 0x84, 0x30, 0x85, 0x68, 0xC1, 0x23, 0x7B, 0xD5, 0xBF, 0xF7, 0xC4, 0x40, 0x51, 0xE2, 0xFF, 0x69, 0x07, 0x8B, 0xA3, 0xBE, 0x1B, 0x17, 0xC8, 0x64, 0x9F, 0x91, 0x71, 0xB5, 0x6D, 0xF5, 0x9B, 0x9C, 0xC6, 0xEC, 0x4A, 0x6E, 0x16, 0x8F, 0x9E, 0xD1, 0x5B, 0xE3, 0x53, 0x42, 0xBC, 0x1E, 0x43, 0x72, 0x4B, 0x4A, 0x37, 0x8B, 0x3A, 0x01, 0xF5, 0x7D, 0x9D, 0x3D, 0x7E, 0x0F, 0x19, 0x73, 0x0E, 0x6B, 0x98, 0xE9, 0xFB, 0xEE, 0x13, 0x8A, 0x3C, 0x11, 0x2E, 0xD5, 0xB0, 0x7D, 0x84, 0x3A, 0x61, 0xA1, 0xAB, 0x71, 0x8F, 0xCE, 0x53, 0x29, 0x45, 0x74, 0x7A, 0x1E, 0xAA, 0x93, 0x19, 0x3A, 0x8D, 0xC9, 0x4E, 0xCB, 0x0E, 0x46, 0x53, 0x84, 0xCC, 0xCF, 0xBA, 0x4D, 0x28, 0x71, 0x1D, 0xDF, 0x41, 0xCB, 0xF8, 0x2D, 0xA9, 0x02, 0x81, 0x80, 0x04, 0x8B, 0x4A, 0xEA, 0xBD, 0x39, 0x0B, 0x96, 0xC5, 0x1D, 0xA4, 0x47, 0xFD, 0x46, 0xD2, 0x8A, 0xEA, 0x2A, 0xF3, 0x9D, 0x3A, 0x7E, 0x16, 0x74, 0xFC, 0x13, 0xDE, 0x4D, 0xA9, 0x85, 0x42, 0x33, 0x02, 0x92, 0x0B, 0xB6, 0xDB, 0x7E, 0xEA, 0x85, 0xC2, 0x94, 0x43, 0x52, 0x37, 0x5A, 0x77, 0xAB, 0xCB, 0x61, 0x88, 0xDE, 0xF8, 0xFA, 0xDB, 0xE8, 0x0B, 0x95, 0x7D, 0x39, 0x19, 0xA2, 0x89, 0xB9, 0x32, 0xB2, 0x50, 0x38, 0xF7, 0x88, 0x69, 0xFD, 0xA4, 0x63, 0x1F, 0x9B, 0x03, 0xD8, 0xA6, 0x7A, 0x05, 0x76, 0x02, 0x28, 0x93, 0x82, 0x73, 0x7F, 0x14, 0xCC, 0xBE, 0x29, 0x10, 0xAD, 0x8A, 0x2E, 0xAC, 0xED, 0x11, 0xA7, 0x72, 0x7C, 0x60, 0x78, 0x72, 0xFB, 0x78, 0x20, 0x18, 0xC9, 0x7E, 0x63, 0xAD, 0x55, 0x54, 0x51, 0xDB, 0x9F, 0x7B, 0xD4, 0x8F, 0xB2, 0xDE, 0x3B, 0xF1, 0x70, 0x23, 0xE5, }; /* * DER-encoded PKCS#8 format EC key. Generated using: * * openssl ecparam -name prime256v1 -genkey -noout | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1 */ static uint8_t TEST_EC_KEY_1[] = { 0x30, 0x81, 0x87, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07, 0x04, 0x6D, 0x30, 0x6B, 0x02, 0x01, 0x01, 0x04, 0x20, 0x25, 0xAC, 0x77, 0x2B, 0x04, 0x33, 0xC8, 0x16, 0x59, 0xA3, 0xC7, 0xE7, 0x11, 0x42, 0xD0, 0x11, 0x71, 0x30, 0x7B, 0xB8, 0xD2, 0x67, 0xFF, 0x9C, 0x5F, 0x50, 0x2E, 0xAB, 0x67, 0xD4, 0x17, 0x51, 0xA1, 0x44, 0x03, 0x42, 0x00, 0x04, 0xCF, 0xCE, 0xB8, 0x7F, 0x88, 0x36, 0xC4, 0xF8, 0x51, 0x29, 0xE2, 0xA7, 0x21, 0xC3, 0x3B, 0xFF, 0x88, 0xE3, 0x87, 0x98, 0xD1, 0xA6, 0x4B, 0xB3, 0x4B, 0xD5, 0x44, 0xF8, 0xE0, 0x43, 0x6B, 0x50, 0x74, 0xFB, 0xB0, 0xAD, 0x41, 0x1C, 0x11, 0x9D, 0xC6, 0x1E, 0x83, 0x8C, 0x49, 0xCA, 0xBE, 0xC6, 0xCE, 0xB6, 0xC9, 0xA1, 0xBF, 0x69, 0xA9, 0xA0, 0xA3, 0x80, 0x14, 0x39, 0x57, 0x94, 0xDA, 0x5D }; /* * Generated using keys on the keyboard and lack of imagination. */ static unsigned char BOGUS_KEY_1[] = { 0xFF, 0xFF, 0xFF, 0xFF }; class KeymasterBaseTest : public ::testing::Test { public: static void SetUpTestCase() { const hw_module_t* mod; ASSERT_EQ(0, hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod)) << "Should be able to find a keymaster hardware module"; std::cout << "Using keymaster module: " << mod->name << std::endl; ASSERT_EQ(0, keymaster0_open(mod, &sDevice)) << "Should be able to open the keymaster device"; ASSERT_EQ(KEYMASTER_MODULE_API_VERSION_0_2, mod->module_api_version) << "Keymaster should implement API version 2"; ASSERT_TRUE(sDevice->generate_keypair != NULL) << "Should implement generate_keypair"; ASSERT_TRUE(sDevice->import_keypair != NULL) << "Should implement import_keypair"; ASSERT_TRUE(sDevice->get_keypair_public != NULL) << "Should implement get_keypair_public"; ASSERT_TRUE(sDevice->sign_data != NULL) << "Should implement sign_data"; ASSERT_TRUE(sDevice->verify_data != NULL) << "Should implement verify_data"; } static void TearDownTestCase() { ASSERT_EQ(0, keymaster0_close(sDevice)); } protected: static keymaster0_device_t* sDevice; }; keymaster0_device_t* KeymasterBaseTest::sDevice = NULL; class KeymasterTest : public KeymasterBaseTest { }; class KeymasterAllTypesTest : public KeymasterBaseTest, public ::testing::WithParamInterface<keymaster_keypair_t> { }; class KeymasterGenerateRSATest : public KeymasterBaseTest, public ::testing::WithParamInterface<uint32_t> { }; class KeymasterGenerateDSATest : public KeymasterBaseTest, public ::testing::WithParamInterface<uint32_t> { }; class KeymasterGenerateECTest : public KeymasterBaseTest, public ::testing::WithParamInterface<uint32_t> { }; TEST_P(KeymasterGenerateRSATest, GenerateKeyPair_RSA_Success) { keymaster_keypair_t key_type = TYPE_RSA; keymaster_rsa_keygen_params_t params = { .modulus_size = GetParam(), .public_exponent = RSA_F4, }; uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(0, sDevice->generate_keypair(sDevice, key_type, ¶ms, &key_blob, &key_blob_length)) << "Should generate an RSA key with " << GetParam() << " bit modulus size"; UniqueKey key(&sDevice, key_blob, key_blob_length); uint8_t* x509_data = NULL; size_t x509_data_length; ASSERT_EQ(0, sDevice->get_keypair_public(sDevice, key_blob, key_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve RSA public key successfully"; UniqueBlob x509_blob(x509_data, x509_data_length); ASSERT_FALSE(x509_blob.get() == NULL) << "X509 data should be allocated"; const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get()); Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp, static_cast<long>(x509_blob.length()))); ASSERT_EQ(EVP_PKEY_RSA, EVP_PKEY_type(actual.get()->type)) << "Generated key type should be of type RSA"; Unique_RSA rsa(EVP_PKEY_get1_RSA(actual.get())); ASSERT_FALSE(rsa.get() == NULL) << "Should be able to extract RSA key from EVP_PKEY"; ASSERT_EQ(static_cast<unsigned long>(RSA_F4), BN_get_word(rsa.get()->e)) << "Exponent should be RSA_F4"; ASSERT_EQ((GetParam() + 7) / 8, static_cast<uint32_t>(RSA_size(rsa.get()))) << "Modulus size should be the specified parameter"; } INSTANTIATE_TEST_CASE_P(RSA, KeymasterGenerateRSATest, ::testing::Values(512U, 1024U, 2048U, 3072U, 4096U)); TEST_P(KeymasterGenerateECTest, GenerateKeyPair_EC_Success) { keymaster_keypair_t key_type = TYPE_EC; keymaster_ec_keygen_params_t params = { .field_size = GetParam(), }; uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(0, sDevice->generate_keypair(sDevice, key_type, ¶ms, &key_blob, &key_blob_length)) << "Should generate an EC key with " << GetParam() << " field size"; UniqueKey key(&sDevice, key_blob, key_blob_length); uint8_t* x509_data = NULL; size_t x509_data_length; ASSERT_EQ(0, sDevice->get_keypair_public(sDevice, key_blob, key_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve EC public key successfully"; UniqueBlob x509_blob(x509_data, x509_data_length); ASSERT_FALSE(x509_blob.get() == NULL) << "X509 data should be allocated"; const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get()); Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp, static_cast<long>(x509_blob.length()))); ASSERT_EQ(EVP_PKEY_EC, EVP_PKEY_type(actual.get()->type)) << "Generated key type should be of type EC"; Unique_EC_KEY ecKey(EVP_PKEY_get1_EC_KEY(actual.get())); ASSERT_FALSE(ecKey.get() == NULL) << "Should be able to extract EC key from EVP_PKEY"; ASSERT_FALSE(EC_KEY_get0_group(ecKey.get()) == NULL) << "EC key should have a EC_GROUP"; ASSERT_TRUE(EC_KEY_check_key(ecKey.get())) << "EC key should check correctly"; } INSTANTIATE_TEST_CASE_P(EC, KeymasterGenerateECTest, ::testing::Values(192U, 224U, 256U, 384U, 521U)); TEST_P(KeymasterAllTypesTest, GenerateKeyPair_NullParams_Failure) { keymaster_keypair_t key_type = GetParam(); uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(-1, sDevice->generate_keypair(sDevice, key_type, NULL, &key_blob, &key_blob_length)) << "Should not be able to generate a key with null params"; } INSTANTIATE_TEST_CASE_P(Types, KeymasterAllTypesTest, ::testing::Values(TYPE_RSA, TYPE_DSA, TYPE_EC)); TEST_F(KeymasterTest, GenerateKeyPair_UnknownType_Failure) { keymaster_keypair_t key_type = static_cast<keymaster_keypair_t>(0xFFFF); uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(-1, sDevice->generate_keypair(sDevice, key_type, NULL, &key_blob, &key_blob_length)) << "Should not generate an unknown key type"; } TEST_F(KeymasterTest, ImportKeyPair_RSA_Success) { uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(0, sDevice->import_keypair(sDevice, TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); uint8_t* x509_data; size_t x509_data_length; ASSERT_EQ(0, sDevice->get_keypair_public(sDevice, key_blob, key_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve RSA public key successfully"; UniqueBlob x509_blob(x509_data, x509_data_length); const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get()); Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp, static_cast<long>(x509_blob.length()))); ASSERT_EQ(EVP_PKEY_type(actual.get()->type), EVP_PKEY_RSA) << "Generated key type should be of type RSA"; const unsigned char *expectedTmp = static_cast<const unsigned char*>(TEST_RSA_KEY_1); Unique_PKCS8_PRIV_KEY_INFO expectedPkcs8( d2i_PKCS8_PRIV_KEY_INFO((PKCS8_PRIV_KEY_INFO**) NULL, &expectedTmp, sizeof(TEST_RSA_KEY_1))); Unique_EVP_PKEY expected(EVP_PKCS82PKEY(expectedPkcs8.get())); ASSERT_EQ(1, EVP_PKEY_cmp(expected.get(), actual.get())) << "Expected and actual keys should match"; } TEST_F(KeymasterTest, ImportKeyPair_EC_Success) { uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(0, sDevice->import_keypair(sDevice, TEST_EC_KEY_1, sizeof(TEST_EC_KEY_1), &key_blob, &key_blob_length)) << "Should successfully import an EC key"; UniqueKey key(&sDevice, key_blob, key_blob_length); uint8_t* x509_data; size_t x509_data_length; ASSERT_EQ(0, sDevice->get_keypair_public(sDevice, key_blob, key_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve EC public key successfully"; UniqueBlob x509_blob(x509_data, x509_data_length); const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get()); Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp, static_cast<long>(x509_blob.length()))); ASSERT_EQ(EVP_PKEY_type(actual.get()->type), EVP_PKEY_EC) << "Generated key type should be of type EC"; const unsigned char *expectedTmp = static_cast<const unsigned char*>(TEST_EC_KEY_1); Unique_PKCS8_PRIV_KEY_INFO expectedPkcs8( d2i_PKCS8_PRIV_KEY_INFO((PKCS8_PRIV_KEY_INFO**) NULL, &expectedTmp, sizeof(TEST_EC_KEY_1))); Unique_EVP_PKEY expected(EVP_PKCS82PKEY(expectedPkcs8.get())); ASSERT_EQ(1, EVP_PKEY_cmp(expected.get(), actual.get())) << "Expected and actual keys should match"; } TEST_F(KeymasterTest, ImportKeyPair_BogusKey_Failure) { uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(-1, sDevice->import_keypair(sDevice, BOGUS_KEY_1, sizeof(BOGUS_KEY_1), &key_blob, &key_blob_length)) << "Should not import an unknown key type"; } TEST_F(KeymasterTest, ImportKeyPair_NullKey_Failure) { uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(-1, sDevice->import_keypair(sDevice, NULL, 0, &key_blob, &key_blob_length)) << "Should not import a null key"; } TEST_F(KeymasterTest, GetKeypairPublic_RSA_Success) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); uint8_t* x509_data; size_t x509_data_length; ASSERT_EQ(0, sDevice->get_keypair_public(sDevice, key_blob, key_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve RSA public key successfully"; UniqueBlob x509_blob(x509_data, x509_data_length); } TEST_F(KeymasterTest, GetKeypairPublic_EC_Success) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_EC_KEY_1, sizeof(TEST_EC_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an EC key"; UniqueKey key(&sDevice, key_blob, key_blob_length); uint8_t* x509_data; size_t x509_data_length; ASSERT_EQ(0, sDevice->get_keypair_public(sDevice, key_blob, key_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve EC public key successfully"; UniqueBlob x509_blob(x509_data, x509_data_length); } TEST_F(KeymasterTest, GetKeypairPublic_NullKey_Failure) { uint8_t* x509_data = NULL; size_t x509_data_length; ASSERT_EQ(-1, sDevice->get_keypair_public(sDevice, NULL, 0, &x509_data, &x509_data_length)) << "Should not be able to retrieve public key from null key"; UniqueBlob x509_blob(x509_data, x509_data_length); } TEST_F(KeymasterTest, GetKeypairPublic_RSA_NullDestination_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); ASSERT_EQ(-1, sDevice->get_keypair_public(sDevice, key.get(), key.length(), NULL, NULL)) << "Should not be able to succeed with NULL destination blob"; } TEST_F(KeymasterTest, GetKeypairPublic_EC_NullDestination_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_EC_KEY_1, sizeof(TEST_EC_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); ASSERT_EQ(-1, sDevice->get_keypair_public(sDevice, key.get(), key.length(), NULL, NULL)) << "Should not be able to succeed with NULL destination blob"; } TEST_F(KeymasterTest, DeleteKeyPair_RSA_Success) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); } TEST_F(KeymasterTest, DeleteKeyPair_RSA_DoubleDelete_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); /* * This is only run if the module indicates it implements key deletion * by implementing delete_keypair. */ if (sDevice->delete_keypair != NULL) { ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueBlob blob(key_blob, key_blob_length); ASSERT_EQ(0, sDevice->delete_keypair(sDevice, key_blob, key_blob_length)) << "Should delete key after import"; ASSERT_EQ(-1, sDevice->delete_keypair(sDevice, key_blob, key_blob_length)) << "Should not be able to delete key twice"; } } TEST_F(KeymasterTest, DeleteKeyPair_RSA_NullKey_Failure) { /* * This is only run if the module indicates it implements key deletion * by implementing delete_keypair. */ if (sDevice->delete_keypair != NULL) { ASSERT_EQ(-1, sDevice->delete_keypair(sDevice, NULL, 0)) << "Should not be able to delete null key"; } } /* * DER-encoded PKCS#8 format RSA key. Generated using: * * openssl genrsa 512 | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1 */ static uint8_t TEST_SIGN_RSA_KEY_1[] = { 0x30, 0x82, 0x01, 0x56, 0x02, 0x01, 0x00, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, 0x01, 0x40, 0x30, 0x82, 0x01, 0x3C, 0x02, 0x01, 0x00, 0x02, 0x41, 0x00, 0xBD, 0xC0, 0x7F, 0xEF, 0x75, 0x1D, 0x63, 0x2A, 0xD0, 0x9A, 0x26, 0xE5, 0x5B, 0xB9, 0x84, 0x7C, 0xE5, 0xC7, 0xE7, 0xDE, 0xFE, 0xB6, 0x54, 0xD9, 0xF0, 0x9B, 0xC2, 0xCF, 0x36, 0xDA, 0xE5, 0x4D, 0xC5, 0xD9, 0x25, 0x78, 0xBD, 0x55, 0x05, 0xBD, 0x86, 0xFB, 0x37, 0x15, 0x33, 0x42, 0x52, 0xED, 0xE5, 0xCD, 0xCB, 0xB7, 0xA2, 0x51, 0xFA, 0x36, 0xE9, 0x9C, 0x2E, 0x5D, 0xE3, 0xA5, 0x1F, 0x01, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x41, 0x00, 0x96, 0x71, 0xDE, 0xBD, 0x83, 0x94, 0x96, 0x40, 0xA6, 0xFD, 0xE1, 0xA2, 0xED, 0xD3, 0xAC, 0x28, 0xBE, 0xA2, 0x7D, 0xC3, 0xFF, 0x1D, 0x9F, 0x2E, 0xE0, 0xA7, 0x0E, 0x90, 0xEE, 0x44, 0x25, 0x92, 0xE3, 0x54, 0xDD, 0x55, 0xA3, 0xEF, 0x42, 0xF5, 0x52, 0x55, 0x41, 0x47, 0x5E, 0x00, 0xFB, 0x8B, 0x47, 0x5E, 0x45, 0x49, 0xEA, 0x3D, 0x2C, 0xFD, 0x9F, 0xEC, 0xC8, 0x4E, 0x4E, 0x86, 0x90, 0x31, 0x02, 0x21, 0x00, 0xE6, 0xA5, 0x55, 0xB3, 0x64, 0xAB, 0x90, 0x5E, 0xA2, 0xF5, 0x6B, 0x21, 0x4B, 0x15, 0xD6, 0x4A, 0xB6, 0x60, 0x24, 0x95, 0x65, 0xA2, 0xBE, 0xBA, 0x2A, 0x73, 0xFB, 0xFF, 0x2C, 0x61, 0x88, 0x9D, 0x02, 0x21, 0x00, 0xD2, 0x9C, 0x5B, 0xFE, 0x82, 0xA5, 0xFC, 0x52, 0x6A, 0x29, 0x38, 0xDB, 0x22, 0x3B, 0xEB, 0x74, 0x3B, 0xCA, 0xB4, 0xDD, 0x1D, 0xE4, 0x48, 0x60, 0x70, 0x19, 0x9B, 0x81, 0xC1, 0x83, 0x28, 0xB5, 0x02, 0x21, 0x00, 0x89, 0x2D, 0xFE, 0xF9, 0xF2, 0xBF, 0x43, 0xDF, 0xB5, 0xA6, 0xA8, 0x30, 0x26, 0x1B, 0x77, 0xD7, 0xF9, 0xFE, 0xD6, 0xE3, 0x70, 0x8E, 0xCA, 0x47, 0xA9, 0xA6, 0x50, 0x54, 0x25, 0xCE, 0x60, 0xD5, 0x02, 0x21, 0x00, 0xBE, 0x5A, 0xF8, 0x82, 0xE6, 0xCE, 0xE3, 0x6A, 0x11, 0xED, 0xC4, 0x27, 0xBB, 0x9F, 0x70, 0xC6, 0x93, 0xAC, 0x39, 0x20, 0x89, 0x7D, 0xE5, 0x34, 0xD4, 0xDD, 0x30, 0x42, 0x6D, 0x07, 0x00, 0xE9, 0x02, 0x20, 0x05, 0x91, 0xEF, 0x12, 0xD2, 0xD3, 0x6A, 0xD2, 0x96, 0x6B, 0x10, 0x62, 0xF9, 0xBA, 0xA4, 0x91, 0x48, 0x84, 0x40, 0x61, 0x67, 0x80, 0x68, 0x68, 0xC8, 0x60, 0xB3, 0x66, 0xC8, 0xF9, 0x08, 0x9A, }; /* * DER-encoded PKCS#8 format EC key. Generated using: * * openssl ecparam -name prime256v1 -genkey -noout | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1 */ static uint8_t TEST_SIGN_EC_KEY_1[] = { 0x30, 0x81, 0x87, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07, 0x04, 0x6D, 0x30, 0x6B, 0x02, 0x01, 0x01, 0x04, 0x20, 0x9E, 0x66, 0x11, 0x6A, 0x89, 0xF5, 0x78, 0x57, 0xF3, 0x35, 0xA2, 0x46, 0x09, 0x06, 0x4B, 0x4D, 0x81, 0xEC, 0xD3, 0x9B, 0x0A, 0xC4, 0x68, 0x06, 0xB8, 0x42, 0x24, 0x5E, 0x74, 0x2C, 0x62, 0x79, 0xA1, 0x44, 0x03, 0x42, 0x00, 0x04, 0x35, 0xB5, 0x9A, 0x5C, 0xE5, 0x52, 0x35, 0xF2, 0x10, 0x6C, 0xD9, 0x98, 0x67, 0xED, 0x5E, 0xCB, 0x6B, 0xB8, 0x96, 0x5E, 0x54, 0x7C, 0x34, 0x2A, 0xA3, 0x3B, 0xF3, 0xD1, 0x39, 0x48, 0x36, 0x7A, 0xEA, 0xD8, 0xCA, 0xDD, 0x40, 0x8F, 0xE9, 0xE0, 0x95, 0x2E, 0x3F, 0x95, 0x0F, 0x14, 0xD6, 0x14, 0x78, 0xB5, 0xAD, 0x17, 0xD2, 0x5A, 0x41, 0x96, 0x99, 0x20, 0xC7, 0x5B, 0x0F, 0x60, 0xFD, 0xBA }; /* * PKCS#1 v1.5 padded raw "Hello, world" Can be generated be generated by verifying * the signature below in no padding mode: * * openssl rsautl -keyform der -inkey rsa.der -raw -verify -in test.sig */ static uint8_t TEST_SIGN_DATA_1[] = { 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x2C, 0x20, 0x77, 0x6F, 0x72, 0x6C, 0x64, }; /* * Signature of TEST_SIGN_DATA_1 using TEST_SIGN_RSA_KEY_1. Generated using: * * echo 'Hello, world' | openssl rsautl -keyform der -inkey rsa.der -sign | recode ../x1 */ static uint8_t TEST_SIGN_RSA_SIGNATURE_1[] = { 0xA4, 0xBB, 0x76, 0x87, 0xFE, 0x61, 0x0C, 0x9D, 0xD6, 0xFF, 0x4B, 0x76, 0x96, 0x08, 0x36, 0x23, 0x11, 0xC6, 0x44, 0x3F, 0x88, 0x77, 0x97, 0xB2, 0xA8, 0x3B, 0xFB, 0x9C, 0x3C, 0xD3, 0x20, 0x65, 0xFD, 0x26, 0x3B, 0x2A, 0xB8, 0xB6, 0xD4, 0xDC, 0x91, 0xF7, 0xE2, 0xDE, 0x4D, 0xF7, 0x0E, 0xB9, 0x72, 0xA7, 0x29, 0x72, 0x82, 0x12, 0x7C, 0x53, 0x23, 0x21, 0xC4, 0xFF, 0x79, 0xE4, 0x91, 0x40, }; /* * Identical to TEST_SIGN_RSA_SIGNATURE_1 except the last octet is '1' instead of '0' * This should fail any test. */ static uint8_t TEST_SIGN_SIGNATURE_BOGUS_1[] = { 0xA4, 0xBB, 0x76, 0x87, 0xFE, 0x61, 0x0C, 0x9D, 0xD6, 0xFF, 0x4B, 0x76, 0x96, 0x08, 0x36, 0x23, 0x11, 0xC6, 0x44, 0x3F, 0x88, 0x77, 0x97, 0xB2, 0xA8, 0x3B, 0xFB, 0x9C, 0x3C, 0xD3, 0x20, 0x65, 0xFD, 0x26, 0x3B, 0x2A, 0xB8, 0xB6, 0xD4, 0xDC, 0x91, 0xF7, 0xE2, 0xDE, 0x4D, 0xF7, 0x0E, 0xB9, 0x72, 0xA7, 0x29, 0x72, 0x82, 0x12, 0x7C, 0x53, 0x23, 0x21, 0xC4, 0xFF, 0x79, 0xE4, 0x91, 0x41, }; TEST_F(KeymasterTest, SignData_RSA_Raw_Success) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; uint8_t* sig; size_t sig_length; UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1)); ASSERT_TRUE(testData.get() != NULL); ASSERT_EQ(0, sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length, testData.get(), testData.length(), &sig, &sig_length)) << "Should sign data successfully"; UniqueBlob sig_blob(sig, sig_length); UniqueBlob expected_sig(TEST_SIGN_RSA_SIGNATURE_1, sizeof(TEST_SIGN_RSA_SIGNATURE_1)); ASSERT_EQ(expected_sig, sig_blob) << "Generated signature should match expected signature"; // The expected signature is actually stack data, so don't let it try to free. uint8_t* unused __attribute__((unused)) = expected_sig.release(); } TEST_F(KeymasterTest, SignData_EC_Success) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_EC_KEY_1, sizeof(TEST_SIGN_EC_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an EC key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_ec_sign_params_t params = { .digest_type = DIGEST_NONE, }; uint8_t* sig; size_t sig_length; UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1)); ASSERT_TRUE(testData.get() != NULL); ASSERT_EQ(0, sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length, testData.get(), testData.length(), &sig, &sig_length)) << "Should sign data successfully"; UniqueBlob sig_blob(sig, sig_length); uint8_t* x509_data; size_t x509_data_length; ASSERT_EQ(0, sDevice->get_keypair_public(sDevice, key_blob, key_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve RSA public key successfully"; UniqueBlob x509_blob(x509_data, x509_data_length); const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get()); Unique_EVP_PKEY expected(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp, static_cast<long>(x509_blob.length()))); Unique_EC_KEY ecKey(EVP_PKEY_get1_EC_KEY(expected.get())); ASSERT_EQ(1, ECDSA_verify(0, testData.get(), testData.length(), sig_blob.get(), sig_blob.length(), ecKey.get())) << "Signature should verify"; } TEST_F(KeymasterTest, SignData_RSA_Raw_InvalidSizeInput_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; uint8_t* sig; size_t sig_length; UniqueReadOnlyBlob testData(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1)); ASSERT_TRUE(testData.get() != NULL); ASSERT_EQ(-1, sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length, testData.get(), testData.length(), &sig, &sig_length)) << "Should not be able to do raw signature on incorrect size data"; } TEST_F(KeymasterTest, SignData_RSA_Raw_NullKey_Failure) { keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; uint8_t* sig; size_t sig_length; UniqueReadOnlyBlob testData(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1)); ASSERT_TRUE(testData.get() != NULL); ASSERT_EQ(-1, sDevice->sign_data(sDevice, ¶ms, NULL, 0, testData.get(), testData.length(), &sig, &sig_length)) << "Should not be able to do raw signature on incorrect size data"; } TEST_F(KeymasterTest, SignData_RSA_Raw_NullInput_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; uint8_t* sig; size_t sig_length; ASSERT_EQ(-1, sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length, NULL, 0, &sig, &sig_length)) << "Should error when input data is null"; } TEST_F(KeymasterTest, SignData_RSA_Raw_NullOutput_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; UniqueReadOnlyBlob testData(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1)); ASSERT_TRUE(testData.get() != NULL); ASSERT_EQ(-1, sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length, testData.get(), testData.length(), NULL, NULL)) << "Should error when output is null"; } TEST_F(KeymasterTest, VerifyData_RSA_Raw_Success) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1)); ASSERT_TRUE(testData.get() != NULL); UniqueReadOnlyBlob testSig(TEST_SIGN_RSA_SIGNATURE_1, sizeof(TEST_SIGN_RSA_SIGNATURE_1)); ASSERT_TRUE(testSig.get() != NULL); ASSERT_EQ(0, sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length, testData.get(), testData.length(), testSig.get(), testSig.length())) << "Should verify data successfully"; } TEST_F(KeymasterTest, VerifyData_EC_Raw_Success) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_EC_KEY_1, sizeof(TEST_SIGN_EC_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_ec_sign_params_t params = { .digest_type = DIGEST_NONE, }; uint8_t* sig; size_t sig_length; UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1)); ASSERT_TRUE(testData.get() != NULL); ASSERT_EQ(0, sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length, testData.get(), testData.length(), &sig, &sig_length)) << "Should sign data successfully"; UniqueBlob sig_blob(sig, sig_length); ASSERT_EQ(0, sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length, testData.get(), testData.length(), sig_blob.get(), sig_blob.length())) << "Should verify data successfully"; } TEST_F(KeymasterTest, VerifyData_RSA_Raw_BadSignature_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; ASSERT_EQ(-1, sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length, TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1), TEST_SIGN_SIGNATURE_BOGUS_1, sizeof(TEST_SIGN_SIGNATURE_BOGUS_1))) << "Should sign data successfully"; } TEST_F(KeymasterTest, VerifyData_EC_Raw_BadSignature_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_EC_KEY_1, sizeof(TEST_SIGN_EC_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_ec_sign_params_t params = { .digest_type = DIGEST_NONE, }; ASSERT_EQ(-1, sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length, TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1), TEST_SIGN_SIGNATURE_BOGUS_1, sizeof(TEST_SIGN_SIGNATURE_BOGUS_1))) << "Should sign data successfully"; } TEST_F(KeymasterTest, VerifyData_RSA_Raw_NullKey_Failure) { keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1)); ASSERT_TRUE(testData.get() != NULL); UniqueReadOnlyBlob testSig(TEST_SIGN_SIGNATURE_BOGUS_1, sizeof(TEST_SIGN_SIGNATURE_BOGUS_1)); ASSERT_TRUE(testSig.get() != NULL); ASSERT_EQ(-1, sDevice->verify_data(sDevice, ¶ms, NULL, 0, testData.get(), testData.length(), testSig.get(), testSig.length())) << "Should fail when key is null"; } TEST_F(KeymasterTest, VerifyData_RSA_NullInput_Failure) { uint8_t* key_blob; size_t key_blob_length; ASSERT_EQ(0, sDevice->import_keypair(sDevice, TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; UniqueReadOnlyBlob testSig(TEST_SIGN_RSA_SIGNATURE_1, sizeof(TEST_SIGN_RSA_SIGNATURE_1)); ASSERT_TRUE(testSig.get() != NULL); ASSERT_EQ(-1, sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length, NULL, 0, testSig.get(), testSig.length())) << "Should fail on null input"; } TEST_F(KeymasterTest, VerifyData_RSA_NullSignature_Failure) { uint8_t* key_blob; size_t key_blob_length; UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key_blob, &key_blob_length)) << "Should successfully import an RSA key"; UniqueKey key(&sDevice, key_blob, key_blob_length); keymaster_rsa_sign_params_t params = { .digest_type = DIGEST_NONE, .padding_type = PADDING_NONE, }; UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1)); ASSERT_TRUE(testData.get() != NULL); ASSERT_EQ(-1, sDevice->verify_data(sDevice, ¶ms, key.get(), key.length(), testData.get(), testData.length(), NULL, 0)) << "Should fail on null signature"; } TEST_F(KeymasterTest, EraseAll_Success) { uint8_t *key1_blob, *key2_blob; size_t key1_blob_length, key2_blob_length; // Only test this if the device says it supports delete_all if (sDevice->delete_all == NULL) { return; } UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey.get(), testKey.length(), &key1_blob, &key1_blob_length)) << "Should successfully import an RSA key"; UniqueKey key1(&sDevice, key1_blob, key1_blob_length); UniqueReadOnlyBlob testKey2(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1)); ASSERT_TRUE(testKey2.get() != NULL); ASSERT_EQ(0, sDevice->import_keypair(sDevice, testKey2.get(), testKey2.length(), &key2_blob, &key2_blob_length)) << "Should successfully import an RSA key"; UniqueKey key2(&sDevice, key2_blob, key2_blob_length); ASSERT_EQ(0, sDevice->delete_all(sDevice)) << "Should erase all keys"; key1.reset(); uint8_t* x509_data; size_t x509_data_length; ASSERT_EQ(-1, sDevice->get_keypair_public(sDevice, key1_blob, key1_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve RSA public key 1 successfully"; ASSERT_EQ(-1, sDevice->get_keypair_public(sDevice, key2_blob, key2_blob_length, &x509_data, &x509_data_length)) << "Should be able to retrieve RSA public key 2 successfully"; } }