/* * Copyright (C) 2013-2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "a2dp_offload" /*#define LOG_NDEBUG 0*/ #define LOG_NDDEBUG 0 #include <dlfcn.h> #include <errno.h> #include <pthread.h> #include <stdlib.h> #include <cutils/log.h> #include <cutils/str_parms.h> #include <cutils/properties.h> #include <hardware/audio.h> #include "audio_hw.h" #include "audio_extn.h" #include "platform_api.h" #ifdef A2DP_OFFLOAD_ENABLED #define BT_IPC_LIB_NAME "libbthost_if.so" // Media format definitions #define ENC_MEDIA_FMT_AAC 0x00010DA6 #define ENC_MEDIA_FMT_APTX 0x000131ff #define ENC_MEDIA_FMT_APTX_HD 0x00013200 #define ENC_MEDIA_FMT_LDAC 0x00013224 #define ENC_MEDIA_FMT_SBC 0x00010BF2 #define ENC_MEDIA_FMT_NONE 0 #define MEDIA_FMT_SBC_ALLOCATION_METHOD_LOUDNESS 0 #define MEDIA_FMT_SBC_ALLOCATION_METHOD_SNR 1 #define MEDIA_FMT_AAC_AOT_LC 2 #define MEDIA_FMT_AAC_AOT_SBR 5 #define MEDIA_FMT_AAC_AOT_PS 29 #define MEDIA_FMT_SBC_CHANNEL_MODE_MONO 1 #define MEDIA_FMT_SBC_CHANNEL_MODE_STEREO 2 #define MEDIA_FMT_SBC_CHANNEL_MODE_DUAL_MONO 8 #define MEDIA_FMT_SBC_CHANNEL_MODE_JOINT_STEREO 9 // PCM channels #define PCM_CHANNEL_L 1 #define PCM_CHANNEL_R 2 #define PCM_CHANNEL_C 3 // Mixer controls sent to ALSA #define MIXER_ENC_CONFIG_BLOCK "SLIM_7_RX Encoder Config" #define MIXER_DEC_CONFIG_BLOCK "SLIM_7_TX Decoder Config" #define MIXER_ENC_BIT_FORMAT "AFE Input Bit Format" #define MIXER_SCRAMBLER_MODE "AFE Scrambler Mode" #define MIXER_SAMPLE_RATE_RX "BT SampleRate RX" #define MIXER_SAMPLE_RATE_TX "BT SampleRate TX" #define MIXER_AFE_IN_CHANNELS "AFE Input Channels" #define MIXER_ABR_TX_FEEDBACK_PATH "A2DP_SLIM7_UL_HL Switch" #define MIXER_SET_FEEDBACK_CHANNEL "BT set feedback channel" // Encoder format strings #define ENC_FMT_AAC "aac" #define ENC_FMT_APTX "aptx" #define ENC_FMT_APTXHD "aptxhd" #define ENC_FMT_LDAC "ldac" #define ENC_FMT_SBC "sbc" // System properties used for A2DP Offload #define SYSPROP_A2DP_OFFLOAD_SUPPORTED "ro.bluetooth.a2dp_offload.supported" #define SYSPROP_A2DP_OFFLOAD_DISABLED "persist.bluetooth.a2dp_offload.disabled" #define SYSPROP_A2DP_CODEC_LATENCIES "vendor.audio.a2dp.codec.latency" // Default encoder bit width #define DEFAULT_ENCODER_BIT_FORMAT 16 // Default encoder latency #define DEFAULT_ENCODER_LATENCY 200 // Encoder latency offset for codecs supported #define ENCODER_LATENCY_AAC 70 #define ENCODER_LATENCY_APTX 40 #define ENCODER_LATENCY_APTX_HD 20 #define ENCODER_LATENCY_LDAC 40 #define ENCODER_LATENCY_SBC 10 #define ENCODER_LATENCY_PCM 50 // Default A2DP sink latency offset #define DEFAULT_SINK_LATENCY_AAC 180 #define DEFAULT_SINK_LATENCY_APTX 160 #define DEFAULT_SINK_LATENCY_APTX_HD 180 #define DEFAULT_SINK_LATENCY_LDAC 180 #define DEFAULT_SINK_LATENCY_SBC 140 #define DEFAULT_SINK_LATENCY_PCM 140 // Slimbus Tx sample rate for ABR feedback channel #define ABR_TX_SAMPLE_RATE "KHZ_8" // Purpose ID for Inter Module Communication (IMC) in AFE #define IMC_PURPOSE_ID_BT_INFO 0x000132E2 // Maximum quality levels for ABR #define MAX_ABR_QUALITY_LEVELS 5 // Instance identifier for A2DP #define MAX_INSTANCE_ID (UINT32_MAX / 2) /* * Below enum values are extended from audio-base.h to * keep encoder codec type local to bthost_ipc * and audio_hal as these are intended only for handshake * between IPC lib and Audio HAL. */ typedef enum { ENC_CODEC_TYPE_INVALID = AUDIO_FORMAT_INVALID, // 0xFFFFFFFFUL ENC_CODEC_TYPE_AAC = AUDIO_FORMAT_AAC, // 0x04000000UL ENC_CODEC_TYPE_SBC = AUDIO_FORMAT_SBC, // 0x1F000000UL ENC_CODEC_TYPE_APTX = AUDIO_FORMAT_APTX, // 0x20000000UL ENC_CODEC_TYPE_APTX_HD = AUDIO_FORMAT_APTX_HD, // 0x21000000UL ENC_CODEC_TYPE_LDAC = AUDIO_FORMAT_LDAC, // 0x23000000UL ENC_CODEC_TYPE_PCM = AUDIO_FORMAT_PCM_16_BIT, // 0x1u } enc_codec_t; typedef int (*audio_stream_open_t)(void); typedef int (*audio_stream_close_t)(void); typedef int (*audio_stream_start_t)(void); typedef int (*audio_stream_stop_t)(void); typedef int (*audio_stream_suspend_t)(void); typedef void (*audio_handoff_triggered_t)(void); typedef void (*clear_a2dp_suspend_flag_t)(void); typedef void * (*audio_get_codec_config_t)(uint8_t *multicast_status, uint8_t *num_dev, enc_codec_t *codec_type); typedef int (*audio_check_a2dp_ready_t)(void); typedef int (*audio_is_scrambling_enabled_t)(void); enum A2DP_STATE { A2DP_STATE_CONNECTED, A2DP_STATE_STARTED, A2DP_STATE_STOPPED, A2DP_STATE_DISCONNECTED, }; typedef enum { IMC_TRANSMIT, IMC_RECEIVE, } imc_direction_t; typedef enum { IMC_DISABLE, IMC_ENABLE, } imc_status_t; /* PCM config for ABR Feedback hostless front end */ static struct pcm_config pcm_config_abr = { .channels = 1, .rate = 8000, .period_size = 240, .period_count = 2, .format = PCM_FORMAT_S16_LE, .start_threshold = 0, .stop_threshold = INT_MAX, .avail_min = 0, }; /* Adaptive bitrate config for A2DP codecs */ struct a2dp_abr_config { /* Flag to denote whether Adaptive bitrate is enabled for codec */ bool is_abr_enabled; /* Flag to denote whether front end has been opened for ABR */ bool abr_started; /* ABR Tx path pcm handle */ struct pcm *abr_tx_handle; /* ABR Inter Module Communication (IMC) instance ID */ uint32_t imc_instance; }; static uint32_t instance_id = MAX_INSTANCE_ID; /* Data structure used to: * - Update the A2DP state machine * - Communicate with the libbthost_if.so IPC library * - Store DSP encoder configuration information */ struct a2dp_data { /* Audio device handle */ struct audio_device *adev; /* Bluetooth IPC library handle */ void *bt_lib_handle; /* Open A2DP audio stream. Initialize audio datapath */ audio_stream_open_t audio_stream_open; /* Close A2DP audio stream */ audio_stream_close_t audio_stream_close; /* Start A2DP audio stream. Start audio datapath */ audio_stream_start_t audio_stream_start; /* Stop A2DP audio stream */ audio_stream_stop_t audio_stream_stop; /* Suspend A2DP audio stream */ audio_stream_suspend_t audio_stream_suspend; /* Notify Bluetooth IPC library of handoff being triggered */ audio_handoff_triggered_t audio_handoff_triggered; /* Clear A2DP suspend flag in Bluetooth IPC library */ clear_a2dp_suspend_flag_t clear_a2dp_suspend_flag; /* Get codec configuration from Bluetooth stack via * Bluetooth IPC library */ audio_get_codec_config_t audio_get_codec_config; /* Check if A2DP is ready */ audio_check_a2dp_ready_t audio_check_a2dp_ready; /* Check if scrambling is enabled on BTSoC */ audio_is_scrambling_enabled_t audio_is_scrambling_enabled; /* Internal A2DP state identifier */ enum A2DP_STATE bt_state; /* A2DP codec type configured */ enc_codec_t bt_encoder_format; /* Sampling rate configured with A2DP encoder on DSP */ uint32_t enc_sampling_rate; /* Channel configuration of A2DP on DSP */ uint32_t enc_channels; /* Flag to denote whether A2DP audio datapath has started */ bool a2dp_started; /* Flag to denote whether A2DP audio datapath is suspended */ bool a2dp_suspended; /* Number of active sessions on A2DP output */ int a2dp_total_active_session_request; /* Flag to denote whether A2DP offload is enabled */ bool is_a2dp_offload_enabled; /* Flag to denote whether codec reconfiguration/soft handoff is in progress */ bool is_handoff_in_progress; /* Flag to denote whether APTX Dual Mono encoder is supported */ bool is_aptx_dual_mono_supported; /* Adaptive bitrate config for A2DP codecs */ struct a2dp_abr_config abr_config; }; struct a2dp_data a2dp; /* Adaptive bitrate (ABR) is supported by certain Bluetooth codecs. * Structures sent to configure DSP for ABR are defined below. * This data helps DSP configure feedback path (BTSoC to LPASS) * for link quality levels and mapping quality levels to codec * specific bitrate. */ /* Key value pair for link quality level to bitrate mapping. */ struct bit_rate_level_map_t { uint32_t link_quality_level; uint32_t bitrate; }; /* Link quality level to bitrate mapping info sent to DSP. */ struct quality_level_to_bitrate_info { /* Number of quality levels being mapped. * This will be equal to the size of mapping table. */ uint32_t num_levels; /* Quality level to bitrate mapping table */ struct bit_rate_level_map_t bit_rate_level_map[MAX_ABR_QUALITY_LEVELS]; }; /* Structure to set up Inter Module Communication (IMC) between * AFE Decoder and Encoder. */ struct imc_dec_enc_info { /* Decoder to encoder communication direction. * Transmit = 0 / Receive = 1 */ uint32_t direction; /* Enable / disable IMC between decoder and encoder */ uint32_t enable; /* Purpose of IMC being set up between decoder and encoder. * IMC_PURPOSE_ID_BT_INFO defined for link quality feedback * is the default value to be sent as purpose. */ uint32_t purpose; /* Unique communication instance ID. * purpose and comm_instance together form the actual key * used in IMC registration, which must be the same for * encoder and decoder for which IMC is being set up. */ uint32_t comm_instance; }; /* Structure used for ABR config of AFE encoder and decoder. */ struct abr_enc_cfg_t { /* Link quality level to bitrate mapping info sent to DSP. */ struct quality_level_to_bitrate_info mapping_info; /* Information to set up IMC between decoder and encoder */ struct imc_dec_enc_info imc_info; } __attribute__ ((packed)); /* Structure to send configuration for decoder introduced * on AFE Tx path for ABR link quality feedback to BT encoder. */ struct abr_dec_cfg_t { /* Decoder media format */ uint32_t dec_format; /* Information to set up IMC between decoder and encoder */ struct imc_dec_enc_info imc_info; } __attribute__ ((packed)); /* START of DSP configurable structures * These values should match with DSP interface defintion */ /* AAC encoder configuration structure. */ typedef struct aac_enc_cfg_t aac_enc_cfg_t; struct aac_enc_cfg_t { /* Encoder media format for AAC */ uint32_t enc_format; /* Encoding rate in bits per second */ uint32_t bit_rate; /* supported enc_mode are AAC_LC, AAC_SBR, AAC_PS */ uint32_t enc_mode; /* supported aac_fmt_flag are ADTS/RAW */ uint16_t aac_fmt_flag; /* supported channel_cfg are Native mode, Mono , Stereo */ uint16_t channel_cfg; /* Number of samples per second */ uint32_t sample_rate; } __attribute__ ((packed)); /* SBC encoder configuration structure. */ typedef struct sbc_enc_cfg_t sbc_enc_cfg_t; struct sbc_enc_cfg_t { /* Encoder media format for SBC */ uint32_t enc_format; /* supported num_subbands are 4/8 */ uint32_t num_subbands; /* supported blk_len are 4, 8, 12, 16 */ uint32_t blk_len; /* supported channel_mode are MONO, STEREO, DUAL_MONO, JOINT_STEREO */ uint32_t channel_mode; /* supported alloc_method are LOUNDNESS/SNR */ uint32_t alloc_method; /* supported bit_rate for mono channel is max 320kbps * supported bit rate for stereo channel is max 512 kbps */ uint32_t bit_rate; /* Number of samples per second */ uint32_t sample_rate; } __attribute__ ((packed)); struct custom_enc_cfg_t { /* Custom encoder media format */ uint32_t enc_format; /* Number of samples per second */ uint32_t sample_rate; /* supported num_channels are Mono/Stereo */ uint16_t num_channels; /* Reserved for future enhancement */ uint16_t reserved; /* supported channel_mapping for mono is CHANNEL_C * supported channel mapping for stereo is CHANNEL_L and CHANNEL_R */ uint8_t channel_mapping[8]; /* Reserved for future enhancement */ uint32_t custom_size; } __attribute__ ((packed)); struct aptx_v2_enc_cfg_ext_t { /* sync_mode introduced with APTX V2 libraries * sync mode: 0x0 = stereo sync mode * 0x01 = dual mono sync mode * 0x02 = dual mono with no sync on either L or R codewords */ uint32_t sync_mode; } __attribute__ ((packed)); /* APTX struct for combining custom enc and V2 members */ struct aptx_enc_cfg_t { struct custom_enc_cfg_t custom_cfg; struct aptx_v2_enc_cfg_ext_t aptx_v2_cfg; } __attribute__ ((packed)); struct ldac_specific_enc_cfg_t { /* * This is used to calculate the encoder output * bytes per frame (i.e. bytes per packet). * Bit rate also configures the EQMID. * The min bit rate 303000 bps is calculated for * 44.1 kHz and 88.2 KHz sampling frequencies with * Mobile use Quality. * The max bit rate of 990000 bps is calculated for * 96kHz and 48 KHz with High Quality * @Range(in bits per second) * 303000 for Mobile use Quality * 606000 for standard Quality * 909000 for High Quality */ uint32_t bit_rate; /* * The channel setting information for LDAC specification * of Bluetooth A2DP which is determined by SRC and SNK * devices in Bluetooth transmission. * @Range: * 0 for native mode * 4 for mono * 2 for dual channel * 1 for stereo */ uint16_t channel_mode; /* * Maximum Transmission Unit (MTU). * The minimum MTU that a L2CAP implementation for LDAC shall * support is 679 bytes, because LDAC is optimized with 2-DH5 * packet as its target. * @Range : 679 * @Default: 679 for LDACBT_MTU_2DH5 */ uint16_t mtu; } __attribute__ ((packed)); /* LDAC struct for combining custom enc and standard members */ struct ldac_enc_cfg_t { struct custom_enc_cfg_t custom_cfg; struct ldac_specific_enc_cfg_t ldac_cfg; struct abr_enc_cfg_t abr_cfg; } __attribute__ ((packed)); /* Information about Bluetooth SBC encoder configuration * This data is used between audio HAL module and * Bluetooth IPC library to configure DSP encoder */ typedef struct { uint32_t subband; /* 4, 8 */ uint32_t blk_len; /* 4, 8, 12, 16 */ uint16_t sampling_rate; /* 44.1khz, 48khz */ uint8_t channels; /* 0(Mono), 1(Dual_mono), 2(Stereo), 3(JS) */ uint8_t alloc; /* 0(Loudness), 1(SNR) */ uint8_t min_bitpool; /* 2 */ uint8_t max_bitpool; /* 53(44.1khz), 51 (48khz) */ uint32_t bitrate; /* 320kbps to 512kbps */ uint32_t bits_per_sample; /* 16 bit */ } audio_sbc_encoder_config; /* Information about Bluetooth APTX encoder configuration * This data is used between audio HAL module and * Bluetooth IPC library to configure DSP encoder */ typedef struct { uint16_t sampling_rate; uint8_t channels; uint32_t bitrate; uint32_t bits_per_sample; } audio_aptx_default_config; typedef struct { uint16_t sampling_rate; uint8_t channels; uint32_t bitrate; uint32_t sync_mode; } audio_aptx_dual_mono_config; typedef union { audio_aptx_default_config *default_cfg; audio_aptx_dual_mono_config *dual_mono_cfg; } audio_aptx_encoder_config; /* Information about Bluetooth AAC encoder configuration * This data is used between audio HAL module and * Bluetooth IPC library to configure DSP encoder */ typedef struct { uint32_t enc_mode; /* LC, SBR, PS */ uint16_t format_flag; /* RAW, ADTS */ uint16_t channels; /* 1-Mono, 2-Stereo */ uint32_t sampling_rate; uint32_t bitrate; uint32_t bits_per_sample; } audio_aac_encoder_config; /* Information about Bluetooth LDAC encoder configuration * This data is used between audio HAL module and * Bluetooth IPC library to configure DSP encoder */ typedef struct { uint32_t sampling_rate; /* 44100, 48000, 88200, 96000 */ uint32_t bit_rate; /* 303000, 606000, 909000 (in bits per second) */ uint16_t channel_mode; /* 0, 4, 2, 1 */ uint16_t mtu; uint32_t bits_per_sample; /* 16, 24, 32 (bits) */ bool is_abr_enabled; struct quality_level_to_bitrate_info level_to_bitrate_map; } audio_ldac_encoder_config; /*********** END of DSP configurable structures ********************/ static void a2dp_common_init() { a2dp.a2dp_started = false; a2dp.a2dp_total_active_session_request = 0; a2dp.a2dp_suspended = false; a2dp.bt_encoder_format = ENC_CODEC_TYPE_INVALID; a2dp.bt_state = A2DP_STATE_DISCONNECTED; a2dp.abr_config.is_abr_enabled = false; a2dp.abr_config.abr_started = false; a2dp.abr_config.imc_instance = 0; a2dp.abr_config.abr_tx_handle = NULL; } static void update_offload_codec_support() { a2dp.is_a2dp_offload_enabled = property_get_bool(SYSPROP_A2DP_OFFLOAD_SUPPORTED, false) && !property_get_bool(SYSPROP_A2DP_OFFLOAD_DISABLED, false); ALOGD("%s: A2DP offload enabled = %d", __func__, a2dp.is_a2dp_offload_enabled); } static int stop_abr() { struct mixer_ctl *ctl_abr_tx_path = NULL; struct mixer_ctl *ctl_set_bt_feedback_channel = NULL; /* This function can be used if !abr_started for clean up */ ALOGV("%s: enter", __func__); // Close hostless front end if (a2dp.abr_config.abr_tx_handle != NULL) { pcm_close(a2dp.abr_config.abr_tx_handle); a2dp.abr_config.abr_tx_handle = NULL; } a2dp.abr_config.abr_started = false; a2dp.abr_config.imc_instance = 0; // Reset BT driver mixer control for ABR usecase ctl_set_bt_feedback_channel = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SET_FEEDBACK_CHANNEL); if (!ctl_set_bt_feedback_channel) { ALOGE("%s: ERROR Set usecase mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_value(ctl_set_bt_feedback_channel, 0, 0) != 0) { ALOGE("%s: Failed to set BT usecase", __func__); return -ENOSYS; } // Reset ABR Tx feedback path ALOGV("%s: Disable ABR Tx feedback path", __func__); ctl_abr_tx_path = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ABR_TX_FEEDBACK_PATH); if (!ctl_abr_tx_path) { ALOGE("%s: ERROR ABR Tx feedback path mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_value(ctl_abr_tx_path, 0, 0) != 0) { ALOGE("%s: Failed to set ABR Tx feedback path", __func__); return -ENOSYS; } return 0; } static int start_abr() { struct mixer_ctl *ctl_abr_tx_path = NULL; struct mixer_ctl *ctl_set_bt_feedback_channel = NULL; int abr_device_id; int ret = 0; if (!a2dp.abr_config.is_abr_enabled) { ALOGE("%s: Cannot start if ABR is not enabled", __func__); return -ENOSYS; } if (a2dp.abr_config.abr_started) { ALOGI("%s: ABR has already started", __func__); return ret; } // Enable Slimbus 7 Tx feedback path ALOGV("%s: Enable ABR Tx feedback path", __func__); ctl_abr_tx_path = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ABR_TX_FEEDBACK_PATH); if (!ctl_abr_tx_path) { ALOGE("%s: ERROR ABR Tx feedback path mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_value(ctl_abr_tx_path, 0, 1) != 0) { ALOGE("%s: Failed to set ABR Tx feedback path", __func__); return -ENOSYS; } // Notify ABR usecase information to BT driver to distinguish // between SCO and feedback usecase ctl_set_bt_feedback_channel = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SET_FEEDBACK_CHANNEL); if (!ctl_set_bt_feedback_channel) { ALOGE("%s: ERROR Set usecase mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_value(ctl_set_bt_feedback_channel, 0, 1) != 0) { ALOGE("%s: Failed to set BT usecase", __func__); return -ENOSYS; } // Open hostless front end and prepare ABR Tx path abr_device_id = platform_get_pcm_device_id(USECASE_AUDIO_A2DP_ABR_FEEDBACK, PCM_CAPTURE); if (!a2dp.abr_config.abr_tx_handle) { a2dp.abr_config.abr_tx_handle = pcm_open(a2dp.adev->snd_card, abr_device_id, PCM_IN, &pcm_config_abr); if (a2dp.abr_config.abr_tx_handle == NULL || !pcm_is_ready(a2dp.abr_config.abr_tx_handle)) goto fail; } ret = pcm_start(a2dp.abr_config.abr_tx_handle); if (ret < 0) goto fail; a2dp.abr_config.abr_started = true; return ret; fail: ALOGE("%s: %s", __func__, pcm_get_error(a2dp.abr_config.abr_tx_handle)); stop_abr(); return -ENOSYS; } /* API to open Bluetooth IPC library to start IPC communication */ static int open_a2dp_output() { int ret = 0; ALOGD("%s: Open A2DP output start", __func__); if (a2dp.bt_state != A2DP_STATE_DISCONNECTED) { ALOGD("%s: Called A2DP open with improper state, Ignoring request state %d", __func__, a2dp.bt_state); return -ENOSYS; } if (a2dp.bt_lib_handle == NULL) { ALOGD("%s: Requesting for Bluetooth IPC lib handle", __func__); a2dp.bt_lib_handle = dlopen(BT_IPC_LIB_NAME, RTLD_NOW); if (a2dp.bt_lib_handle == NULL) { ret = -errno; ALOGE("%s: DLOPEN failed for %s errno %d strerror %s", __func__, BT_IPC_LIB_NAME, errno, strerror(errno)); a2dp.bt_state = A2DP_STATE_DISCONNECTED; return ret; } else { a2dp.audio_stream_open = (audio_stream_open_t) dlsym(a2dp.bt_lib_handle, "audio_stream_open"); a2dp.audio_stream_start = (audio_stream_start_t) dlsym(a2dp.bt_lib_handle, "audio_stream_start"); a2dp.audio_get_codec_config = (audio_get_codec_config_t) dlsym(a2dp.bt_lib_handle, "audio_get_codec_config"); a2dp.audio_stream_suspend = (audio_stream_suspend_t) dlsym(a2dp.bt_lib_handle, "audio_stream_suspend"); a2dp.audio_handoff_triggered = (audio_handoff_triggered_t) dlsym(a2dp.bt_lib_handle, "audio_handoff_triggered"); a2dp.clear_a2dp_suspend_flag = (clear_a2dp_suspend_flag_t) dlsym(a2dp.bt_lib_handle, "clear_a2dp_suspend_flag"); a2dp.audio_stream_stop = (audio_stream_stop_t) dlsym(a2dp.bt_lib_handle, "audio_stream_stop"); a2dp.audio_stream_close = (audio_stream_close_t) dlsym(a2dp.bt_lib_handle, "audio_stream_close"); a2dp.audio_check_a2dp_ready = (audio_check_a2dp_ready_t) dlsym(a2dp.bt_lib_handle,"audio_check_a2dp_ready"); a2dp.audio_is_scrambling_enabled = (audio_is_scrambling_enabled_t) dlsym(a2dp.bt_lib_handle,"audio_is_scrambling_enabled"); } } if (a2dp.bt_lib_handle && a2dp.audio_stream_open) { ALOGD("%s: calling Bluetooth stream open", __func__); ret = a2dp.audio_stream_open(); if (ret != 0) { ALOGE("%s: Failed to open output stream for A2DP: status %d", __func__, ret); dlclose(a2dp.bt_lib_handle); a2dp.bt_lib_handle = NULL; a2dp.bt_state = A2DP_STATE_DISCONNECTED; return ret; } a2dp.bt_state = A2DP_STATE_CONNECTED; } else { ALOGE("%s: A2DP handle is not identified, Ignoring open request", __func__); a2dp.bt_state = A2DP_STATE_DISCONNECTED; return -ENOSYS; } return ret; } static int close_a2dp_output() { ALOGV("%s\n",__func__); if (!(a2dp.bt_lib_handle && a2dp.audio_stream_close)) { ALOGE("%s: A2DP handle is not identified, Ignoring close request", __func__); return -ENOSYS; } if (a2dp.bt_state != A2DP_STATE_DISCONNECTED) { ALOGD("%s: calling Bluetooth stream close", __func__); if (a2dp.audio_stream_close() == false) ALOGE("%s: failed close A2DP control path from Bluetooth IPC library", __func__); } if (a2dp.abr_config.is_abr_enabled && a2dp.abr_config.abr_started) stop_abr(); a2dp_common_init(); a2dp.enc_sampling_rate = 0; a2dp.enc_channels = 0; return 0; } static int a2dp_check_and_set_scrambler() { bool scrambler_mode = false; struct mixer_ctl *ctrl_scrambler_mode = NULL; int ret = 0; if (a2dp.audio_is_scrambling_enabled && (a2dp.bt_state != A2DP_STATE_DISCONNECTED)) scrambler_mode = a2dp.audio_is_scrambling_enabled(); // Scrambling needs to be enabled in DSP if scrambler mode is set // disable scrambling not required if (scrambler_mode) { // enable scrambler in dsp ctrl_scrambler_mode = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SCRAMBLER_MODE); if (!ctrl_scrambler_mode) { ALOGE("%s: ERROR scrambler mode mixer control not identifed", __func__); return -ENOSYS; } else { ret = mixer_ctl_set_value(ctrl_scrambler_mode, 0, true); if (ret != 0) { ALOGE("%s: Could not set scrambler mode", __func__); return ret; } } } return 0; } static int a2dp_set_backend_cfg() { const char *rate_str = NULL, *in_channels = NULL; uint32_t sampling_rate_rx = a2dp.enc_sampling_rate; struct mixer_ctl *ctl_sample_rate = NULL, *ctrl_in_channels = NULL; // For LDAC encoder open slimbus port at 96Khz for 48Khz input // and 88.2Khz for 44.1Khz input. if ((a2dp.bt_encoder_format == ENC_CODEC_TYPE_LDAC) && (sampling_rate_rx == 48000 || sampling_rate_rx == 44100 )) { sampling_rate_rx *= 2; } // No need to configure backend for PCM format. if (a2dp.bt_encoder_format == ENC_CODEC_TYPE_PCM) { return 0; } // Set Rx backend sample rate switch (sampling_rate_rx) { case 44100: rate_str = "KHZ_44P1"; break; case 88200: rate_str = "KHZ_88P2"; break; case 96000: rate_str = "KHZ_96"; break; case 48000: default: rate_str = "KHZ_48"; break; } ALOGV("%s: set backend rx sample rate = %s", __func__, rate_str); ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SAMPLE_RATE_RX); if (!ctl_sample_rate) { ALOGE("%s: ERROR backend sample rate mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) { ALOGE("%s: Failed to set backend sample rate = %s", __func__, rate_str); return -ENOSYS; } // Set Tx backend sample rate if (a2dp.abr_config.is_abr_enabled) rate_str = ABR_TX_SAMPLE_RATE; ALOGV("%s: set backend tx sample rate = %s", __func__, rate_str); ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SAMPLE_RATE_TX); if (!ctl_sample_rate) { ALOGE("%s: ERROR backend sample rate mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) { ALOGE("%s: Failed to set backend sample rate = %s", __func__, rate_str); return -ENOSYS; } // Configure AFE input channels switch (a2dp.enc_channels) { case 1: in_channels = "One"; break; case 2: default: in_channels = "Two"; break; } ALOGV("%s: set AFE input channels = %d", __func__, a2dp.enc_channels); ctrl_in_channels = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_AFE_IN_CHANNELS); if (!ctrl_in_channels) { ALOGE("%s: ERROR AFE input channels mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_enum_by_string(ctrl_in_channels, in_channels) != 0) { ALOGE("%s: Failed to set AFE in channels = %d", __func__, a2dp.enc_channels); return -ENOSYS; } return 0; } static int a2dp_set_bit_format(uint32_t enc_bit_format) { const char *bit_format = NULL; struct mixer_ctl *ctrl_bit_format = NULL; // Configure AFE Input Bit Format switch (enc_bit_format) { case 32: bit_format = "S32_LE"; break; case 24: bit_format = "S24_LE"; break; case 16: default: bit_format = "S16_LE"; break; } ALOGD("%s: set AFE input bit format = %d", __func__, enc_bit_format); ctrl_bit_format = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_BIT_FORMAT); if (!ctrl_bit_format) { ALOGE("%s: ERROR AFE input bit format mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_enum_by_string(ctrl_bit_format, bit_format) != 0) { ALOGE("%s: Failed to set AFE input bit format = %d", __func__, enc_bit_format); return -ENOSYS; } return 0; } static int a2dp_reset_backend_cfg() { const char *rate_str = "KHZ_8", *in_channels = "Zero"; struct mixer_ctl *ctl_sample_rate_rx = NULL, *ctl_sample_rate_tx = NULL; struct mixer_ctl *ctrl_in_channels = NULL; // Reset backend sampling rate ALOGV("%s: reset backend sample rate = %s", __func__, rate_str); ctl_sample_rate_rx = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SAMPLE_RATE_RX); if (!ctl_sample_rate_rx) { ALOGE("%s: ERROR Rx backend sample rate mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_enum_by_string(ctl_sample_rate_rx, rate_str) != 0) { ALOGE("%s: Failed to reset Rx backend sample rate = %s", __func__, rate_str); return -ENOSYS; } ctl_sample_rate_tx = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_SAMPLE_RATE_TX); if (!ctl_sample_rate_tx) { ALOGE("%s: ERROR Tx backend sample rate mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_enum_by_string(ctl_sample_rate_tx, rate_str) != 0) { ALOGE("%s: Failed to reset Tx backend sample rate = %s", __func__, rate_str); return -ENOSYS; } // Reset AFE input channels ALOGV("%s: reset AFE input channels = %s", __func__, in_channels); ctrl_in_channels = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_AFE_IN_CHANNELS); if (!ctrl_in_channels) { ALOGE("%s: ERROR AFE input channels mixer control not identifed", __func__); return -ENOSYS; } if (mixer_ctl_set_enum_by_string(ctrl_in_channels, in_channels) != 0) { ALOGE("%s: Failed to reset AFE in channels = %d", __func__, a2dp.enc_channels); return -ENOSYS; } return 0; } /* API to configure AFE decoder in DSP */ static bool configure_a2dp_decoder_format(int dec_format) { struct mixer_ctl *ctl_dec_data = NULL; struct abr_dec_cfg_t dec_cfg; int ret = 0; if (a2dp.abr_config.is_abr_enabled) { ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_DEC_CONFIG_BLOCK); if (!ctl_dec_data) { ALOGE("%s: ERROR A2DP codec config data mixer control not identifed", __func__); return false; } memset(&dec_cfg, 0x0, sizeof(dec_cfg)); dec_cfg.dec_format = dec_format; dec_cfg.imc_info.direction = IMC_TRANSMIT; dec_cfg.imc_info.enable = IMC_ENABLE; dec_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO; dec_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance; ret = mixer_ctl_set_array(ctl_dec_data, (void *)&dec_cfg, sizeof(dec_cfg)); if (ret != 0) { ALOGE("%s: Failed to set decoder config", __func__); return false; } } return true; } /* API to configure SBC DSP encoder */ static bool configure_sbc_enc_format(audio_sbc_encoder_config *sbc_bt_cfg) { struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL; struct sbc_enc_cfg_t sbc_dsp_cfg; bool is_configured = false; int ret = 0; if (sbc_bt_cfg == NULL) { ALOGE("%s: Failed to get SBC encoder config from BT", __func__); return false; } ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK); if (!ctl_enc_data) { ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__); is_configured = false; goto exit; } memset(&sbc_dsp_cfg, 0x0, sizeof(sbc_dsp_cfg)); sbc_dsp_cfg.enc_format = ENC_MEDIA_FMT_SBC; sbc_dsp_cfg.num_subbands = sbc_bt_cfg->subband; sbc_dsp_cfg.blk_len = sbc_bt_cfg->blk_len; switch (sbc_bt_cfg->channels) { case 0: sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_MONO; break; case 1: sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_DUAL_MONO; break; case 3: sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_JOINT_STEREO; break; case 2: default: sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_STEREO; break; } if (sbc_bt_cfg->alloc) sbc_dsp_cfg.alloc_method = MEDIA_FMT_SBC_ALLOCATION_METHOD_LOUDNESS; else sbc_dsp_cfg.alloc_method = MEDIA_FMT_SBC_ALLOCATION_METHOD_SNR; sbc_dsp_cfg.bit_rate = sbc_bt_cfg->bitrate; sbc_dsp_cfg.sample_rate = sbc_bt_cfg->sampling_rate; ret = mixer_ctl_set_array(ctl_enc_data, (void *)&sbc_dsp_cfg, sizeof(sbc_dsp_cfg)); if (ret != 0) { ALOGE("%s: failed to set SBC encoder config", __func__); is_configured = false; goto exit; } ret = a2dp_set_bit_format(sbc_bt_cfg->bits_per_sample); if (ret != 0) { is_configured = false; goto exit; } is_configured = true; a2dp.bt_encoder_format = ENC_CODEC_TYPE_SBC; a2dp.enc_sampling_rate = sbc_bt_cfg->sampling_rate; if (sbc_dsp_cfg.channel_mode == MEDIA_FMT_SBC_CHANNEL_MODE_MONO) a2dp.enc_channels = 1; else a2dp.enc_channels = 2; ALOGV("%s: Successfully updated SBC enc format with sampling rate: %d channel mode:%d", __func__, sbc_dsp_cfg.sample_rate, sbc_dsp_cfg.channel_mode); exit: return is_configured; } /* API to configure APTX DSP encoder */ static bool configure_aptx_enc_format(audio_aptx_encoder_config *aptx_bt_cfg) { struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL; int mixer_size; bool is_configured = false; int ret = 0; struct aptx_enc_cfg_t aptx_dsp_cfg; mixer_size = sizeof(aptx_dsp_cfg); if (aptx_bt_cfg == NULL) { ALOGE("%s: Failed to get APTX encoder config from BT", __func__); return false; } ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK); if (!ctl_enc_data) { ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__); is_configured = false; goto exit; } memset(&aptx_dsp_cfg, 0x0, sizeof(aptx_dsp_cfg)); aptx_dsp_cfg.custom_cfg.enc_format = ENC_MEDIA_FMT_APTX; if (!a2dp.is_aptx_dual_mono_supported) { aptx_dsp_cfg.custom_cfg.sample_rate = aptx_bt_cfg->default_cfg->sampling_rate; aptx_dsp_cfg.custom_cfg.num_channels = aptx_bt_cfg->default_cfg->channels; } else { aptx_dsp_cfg.custom_cfg.sample_rate = aptx_bt_cfg->dual_mono_cfg->sampling_rate; aptx_dsp_cfg.custom_cfg.num_channels = aptx_bt_cfg->dual_mono_cfg->channels; aptx_dsp_cfg.aptx_v2_cfg.sync_mode = aptx_bt_cfg->dual_mono_cfg->sync_mode; } switch (aptx_dsp_cfg.custom_cfg.num_channels) { case 1: aptx_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_C; break; case 2: default: aptx_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_L; aptx_dsp_cfg.custom_cfg.channel_mapping[1] = PCM_CHANNEL_R; break; } ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg, mixer_size); if (ret != 0) { ALOGE("%s: Failed to set APTX encoder config", __func__); is_configured = false; goto exit; } ret = a2dp_set_bit_format(aptx_bt_cfg->default_cfg->bits_per_sample); if (ret != 0) { is_configured = false; goto exit; } is_configured = true; a2dp.bt_encoder_format = ENC_CODEC_TYPE_APTX; a2dp.enc_channels = aptx_dsp_cfg.custom_cfg.num_channels; if (!a2dp.is_aptx_dual_mono_supported) { a2dp.enc_sampling_rate = aptx_bt_cfg->default_cfg->sampling_rate; ALOGV("%s: Successfully updated APTX enc format with sampling rate: %d \ channels:%d", __func__, aptx_dsp_cfg.custom_cfg.sample_rate, aptx_dsp_cfg.custom_cfg.num_channels); } else { a2dp.enc_sampling_rate = aptx_bt_cfg->dual_mono_cfg->sampling_rate; ALOGV("%s: Successfully updated APTX dual mono enc format with \ sampling rate: %d channels:%d sync mode %d", __func__, aptx_dsp_cfg.custom_cfg.sample_rate, aptx_dsp_cfg.custom_cfg.num_channels, aptx_dsp_cfg.aptx_v2_cfg.sync_mode); } exit: return is_configured; } /* API to configure APTX HD DSP encoder */ static bool configure_aptx_hd_enc_format(audio_aptx_default_config *aptx_bt_cfg) { struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL; struct custom_enc_cfg_t aptx_dsp_cfg; bool is_configured = false; int ret = 0; if (aptx_bt_cfg == NULL) { ALOGE("%s: Failed to get APTX HD encoder config from BT", __func__); return false; } ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK); if (!ctl_enc_data) { ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__); is_configured = false; goto exit; } memset(&aptx_dsp_cfg, 0x0, sizeof(aptx_dsp_cfg)); aptx_dsp_cfg.enc_format = ENC_MEDIA_FMT_APTX_HD; aptx_dsp_cfg.sample_rate = aptx_bt_cfg->sampling_rate; aptx_dsp_cfg.num_channels = aptx_bt_cfg->channels; switch (aptx_dsp_cfg.num_channels) { case 1: aptx_dsp_cfg.channel_mapping[0] = PCM_CHANNEL_C; break; case 2: default: aptx_dsp_cfg.channel_mapping[0] = PCM_CHANNEL_L; aptx_dsp_cfg.channel_mapping[1] = PCM_CHANNEL_R; break; } ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg, sizeof(aptx_dsp_cfg)); if (ret != 0) { ALOGE("%s: Failed to set APTX HD encoder config", __func__); is_configured = false; goto exit; } ret = a2dp_set_bit_format(aptx_bt_cfg->bits_per_sample); if (ret != 0) { is_configured = false; goto exit; } is_configured = true; a2dp.bt_encoder_format = ENC_CODEC_TYPE_APTX_HD; a2dp.enc_sampling_rate = aptx_bt_cfg->sampling_rate; a2dp.enc_channels = aptx_bt_cfg->channels; ALOGV("%s: Successfully updated APTX HD encformat with sampling rate: %d channels:%d", __func__, aptx_dsp_cfg.sample_rate, aptx_dsp_cfg.num_channels); exit: return is_configured; } /* API to configure AAC DSP encoder */ static bool configure_aac_enc_format(audio_aac_encoder_config *aac_bt_cfg) { struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL; struct aac_enc_cfg_t aac_dsp_cfg; bool is_configured = false; int ret = 0; if (aac_bt_cfg == NULL) { ALOGE("%s: Failed to get AAC encoder config from BT", __func__); return false; } ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK); if (!ctl_enc_data) { ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__); is_configured = false; goto exit; } memset(&aac_dsp_cfg, 0x0, sizeof(aac_dsp_cfg)); aac_dsp_cfg.enc_format = ENC_MEDIA_FMT_AAC; aac_dsp_cfg.bit_rate = aac_bt_cfg->bitrate; aac_dsp_cfg.sample_rate = aac_bt_cfg->sampling_rate; switch (aac_bt_cfg->enc_mode) { case 0: aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_LC; break; case 2: aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_PS; break; case 1: default: aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_SBR; break; } aac_dsp_cfg.aac_fmt_flag = aac_bt_cfg->format_flag; aac_dsp_cfg.channel_cfg = aac_bt_cfg->channels; ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aac_dsp_cfg, sizeof(aac_dsp_cfg)); if (ret != 0) { ALOGE("%s: failed to set AAC encoder config", __func__); is_configured = false; goto exit; } ret = a2dp_set_bit_format(aac_bt_cfg->bits_per_sample); if (ret != 0) { is_configured = false; goto exit; } is_configured = true; a2dp.bt_encoder_format = ENC_CODEC_TYPE_AAC; a2dp.enc_sampling_rate = aac_bt_cfg->sampling_rate; a2dp.enc_channels = aac_bt_cfg->channels; ALOGV("%s: Successfully updated AAC enc format with sampling rate: %d channels:%d", __func__, aac_dsp_cfg.sample_rate, aac_dsp_cfg.channel_cfg); exit: return is_configured; } static bool configure_ldac_enc_format(audio_ldac_encoder_config *ldac_bt_cfg) { struct mixer_ctl *ldac_enc_data = NULL, *ctrl_bit_format = NULL; struct ldac_enc_cfg_t ldac_dsp_cfg; bool is_configured = false; int ret = 0; if (ldac_bt_cfg == NULL) { ALOGE("%s: Failed to get LDAC encoder config from BT", __func__); return false; } ldac_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK); if (!ldac_enc_data) { ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__); is_configured = false; goto exit; } memset(&ldac_dsp_cfg, 0x0, sizeof(ldac_dsp_cfg)); ldac_dsp_cfg.custom_cfg.enc_format = ENC_MEDIA_FMT_LDAC; ldac_dsp_cfg.custom_cfg.sample_rate = ldac_bt_cfg->sampling_rate; ldac_dsp_cfg.ldac_cfg.channel_mode = ldac_bt_cfg->channel_mode; switch (ldac_dsp_cfg.ldac_cfg.channel_mode) { case 4: ldac_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_C; ldac_dsp_cfg.custom_cfg.num_channels = 1; break; case 2: case 1: default: ldac_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_L; ldac_dsp_cfg.custom_cfg.channel_mapping[1] = PCM_CHANNEL_R; ldac_dsp_cfg.custom_cfg.num_channels = 2; break; } ldac_dsp_cfg.custom_cfg.custom_size = sizeof(ldac_dsp_cfg); ldac_dsp_cfg.ldac_cfg.mtu = ldac_bt_cfg->mtu; ldac_dsp_cfg.ldac_cfg.bit_rate = ldac_bt_cfg->bit_rate; if (ldac_bt_cfg->is_abr_enabled) { ldac_dsp_cfg.abr_cfg.mapping_info = ldac_bt_cfg->level_to_bitrate_map; ldac_dsp_cfg.abr_cfg.imc_info.direction = IMC_RECEIVE; ldac_dsp_cfg.abr_cfg.imc_info.enable = IMC_ENABLE; ldac_dsp_cfg.abr_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO; ldac_dsp_cfg.abr_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance; } ret = mixer_ctl_set_array(ldac_enc_data, (void *)&ldac_dsp_cfg, sizeof(ldac_dsp_cfg)); if (ret != 0) { ALOGE("%s: Failed to set LDAC encoder config", __func__); is_configured = false; goto exit; } ret = a2dp_set_bit_format(ldac_bt_cfg->bits_per_sample); if (ret != 0) { is_configured = false; goto exit; } is_configured = true; a2dp.bt_encoder_format = ENC_CODEC_TYPE_LDAC; a2dp.enc_sampling_rate = ldac_bt_cfg->sampling_rate; a2dp.enc_channels = ldac_dsp_cfg.custom_cfg.num_channels; a2dp.abr_config.is_abr_enabled = ldac_bt_cfg->is_abr_enabled; ALOGV("%s: Successfully updated LDAC encformat with sampling rate: %d channels:%d", __func__, ldac_dsp_cfg.custom_cfg.sample_rate, ldac_dsp_cfg.custom_cfg.num_channels); exit: return is_configured; } bool configure_a2dp_encoder_format() { void *codec_info = NULL; uint8_t multi_cast = 0, num_dev = 1; enc_codec_t codec_type = ENC_CODEC_TYPE_INVALID; bool is_configured = false; audio_aptx_encoder_config aptx_encoder_cfg; if (!a2dp.audio_get_codec_config) { ALOGE("%s: A2DP handle is not identified, ignoring A2DP encoder config", __func__); return false; } ALOGD("%s: start", __func__); codec_info = a2dp.audio_get_codec_config(&multi_cast, &num_dev, &codec_type); // ABR disabled by default for all codecs a2dp.abr_config.is_abr_enabled = false; switch (codec_type) { case ENC_CODEC_TYPE_SBC: ALOGD("%s: Received SBC encoder supported Bluetooth device", __func__); is_configured = configure_sbc_enc_format((audio_sbc_encoder_config *)codec_info); break; case ENC_CODEC_TYPE_APTX: ALOGD("%s: Received APTX encoder supported Bluetooth device", __func__); a2dp.is_aptx_dual_mono_supported = false; aptx_encoder_cfg.default_cfg = (audio_aptx_default_config *)codec_info; is_configured = configure_aptx_enc_format(&aptx_encoder_cfg); break; case ENC_CODEC_TYPE_APTX_HD: ALOGD("%s: Received APTX HD encoder supported Bluetooth device", __func__); is_configured = configure_aptx_hd_enc_format((audio_aptx_default_config *)codec_info); break; case ENC_CODEC_TYPE_AAC: ALOGD("%s: Received AAC encoder supported Bluetooth device", __func__); is_configured = configure_aac_enc_format((audio_aac_encoder_config *)codec_info); break; case ENC_CODEC_TYPE_LDAC: ALOGD("%s: Received LDAC encoder supported Bluetooth device", __func__); if (!instance_id || instance_id > MAX_INSTANCE_ID) instance_id = MAX_INSTANCE_ID; a2dp.abr_config.imc_instance = instance_id--; is_configured = (configure_ldac_enc_format((audio_ldac_encoder_config *)codec_info) && configure_a2dp_decoder_format(ENC_CODEC_TYPE_LDAC)); break; case ENC_CODEC_TYPE_PCM: ALOGD("Received PCM format for BT device"); a2dp.bt_encoder_format = ENC_CODEC_TYPE_PCM; is_configured = true; break; default: ALOGD("%s: Received unsupported encoder format", __func__); is_configured = false; break; } return is_configured; } int audio_extn_a2dp_start_playback() { int ret = 0; ALOGD("%s: start", __func__); if (!(a2dp.bt_lib_handle && a2dp.audio_stream_start && a2dp.audio_get_codec_config)) { ALOGE("%s: A2DP handle is not identified, Ignoring start request", __func__); return -ENOSYS; } if (a2dp.a2dp_suspended) { // session will be restarted after suspend completion ALOGD("%s: A2DP start requested during suspend state", __func__); return -ENOSYS; } if (!a2dp.a2dp_started && !a2dp.a2dp_total_active_session_request) { ALOGD("%s: calling Bluetooth module stream start", __func__); /* This call indicates Bluetooth IPC lib to start playback */ ret = a2dp.audio_stream_start(); if (ret != 0 ) { ALOGE("%s: Bluetooth controller start failed", __func__); a2dp.a2dp_started = false; } else { if (configure_a2dp_encoder_format() == true) { a2dp.a2dp_started = true; ret = 0; ALOGD("%s: Start playback successful to Bluetooth IPC library", __func__); } else { ALOGD("%s: unable to configure DSP encoder", __func__); a2dp.a2dp_started = false; ret = -ETIMEDOUT; } } } if (a2dp.a2dp_started) { a2dp.a2dp_total_active_session_request++; a2dp_check_and_set_scrambler(); a2dp_set_backend_cfg(); if (a2dp.abr_config.is_abr_enabled) start_abr(); } ALOGD("%s: start A2DP playback total active sessions :%d", __func__, a2dp.a2dp_total_active_session_request); return ret; } static int reset_a2dp_enc_config_params() { int ret = 0; struct mixer_ctl *ctl_enc_config, *ctrl_bit_format; struct sbc_enc_cfg_t dummy_reset_config; memset(&dummy_reset_config, 0x0, sizeof(dummy_reset_config)); ctl_enc_config = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK); if (!ctl_enc_config) { ALOGE("%s: ERROR A2DP encoder format mixer control not identifed", __func__); } else { ret = mixer_ctl_set_array(ctl_enc_config, (void *)&dummy_reset_config, sizeof(dummy_reset_config)); a2dp.bt_encoder_format = ENC_MEDIA_FMT_NONE; } ret = a2dp_set_bit_format(DEFAULT_ENCODER_BIT_FORMAT); return ret; } static int reset_a2dp_dec_config_params() { struct mixer_ctl *ctl_dec_data = NULL; struct abr_dec_cfg_t dummy_reset_cfg; int ret = 0; if (a2dp.abr_config.is_abr_enabled) { ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_DEC_CONFIG_BLOCK); if (!ctl_dec_data) { ALOGE("%s: ERROR A2DP decoder config mixer control not identifed", __func__); return -EINVAL; } memset(&dummy_reset_cfg, 0x0, sizeof(dummy_reset_cfg)); ret = mixer_ctl_set_array(ctl_dec_data, (void *)&dummy_reset_cfg, sizeof(dummy_reset_cfg)); if (ret != 0) { ALOGE("%s: Failed to set dummy decoder config", __func__); return ret; } } return ret; } int audio_extn_a2dp_stop_playback() { int ret = 0; ALOGV("%s: stop", __func__); if (!(a2dp.bt_lib_handle && a2dp.audio_stream_stop)) { ALOGE("%s: A2DP handle is not identified, Ignoring start request", __func__); return -ENOSYS; } if (a2dp.a2dp_total_active_session_request > 0) a2dp.a2dp_total_active_session_request--; else ALOGE("%s: No active playback session requests on A2DP", __func__); if (a2dp.a2dp_started && !a2dp.a2dp_total_active_session_request) { ALOGV("%s: calling Bluetooth module stream stop", __func__); ret = a2dp.audio_stream_stop(); if (ret < 0) ALOGE("%s: stop stream to Bluetooth IPC lib failed", __func__); else ALOGV("%s: stop steam to Bluetooth IPC lib successful", __func__); reset_a2dp_enc_config_params(); reset_a2dp_dec_config_params(); a2dp_reset_backend_cfg(); if (a2dp.abr_config.is_abr_enabled && a2dp.abr_config.abr_started) stop_abr(); a2dp.abr_config.is_abr_enabled = false; a2dp.a2dp_started = false; } ALOGD("%s: Stop A2DP playback total active sessions :%d", __func__, a2dp.a2dp_total_active_session_request); return 0; } int audio_extn_a2dp_set_parameters(struct str_parms *parms, bool *reconfig) { int ret = 0, val; char value[32] = {0}; struct audio_usecase *uc_info; struct listnode *node; if (a2dp.is_a2dp_offload_enabled == false) { ALOGV("%s: No supported encoders identified,ignoring A2DP setparam", __func__); ret = -EINVAL; goto param_handled; } ret = str_parms_get_str(parms, AUDIO_PARAMETER_DEVICE_CONNECT, value, sizeof(value)); if (ret >= 0) { val = atoi(value); if (audio_is_a2dp_out_device(val)) { ALOGV("%s: Received device connect request for A2DP", __func__); open_a2dp_output(); } goto param_handled; } ret = str_parms_get_str(parms, AUDIO_PARAMETER_DEVICE_DISCONNECT, value, sizeof(value)); if (ret >= 0) { val = atoi(value); if (audio_is_a2dp_out_device(val)) { ALOGV("%s: Received device disconnect request", __func__); reset_a2dp_enc_config_params(); reset_a2dp_dec_config_params(); close_a2dp_output(); } goto param_handled; } ret = str_parms_get_str(parms, "A2dpSuspended", value, sizeof(value)); if (ret >= 0) { if (a2dp.bt_lib_handle && (a2dp.bt_state != A2DP_STATE_DISCONNECTED)) { if (strncmp(value, "true", sizeof(value)) == 0) { if (a2dp.a2dp_suspended) { ALOGD("%s: A2DP is already suspended", __func__); goto param_handled; } ALOGD("%s: Setting A2DP to suspend state", __func__); a2dp.a2dp_suspended = true; list_for_each(node, &a2dp.adev->usecase_list) { uc_info = node_to_item(node, struct audio_usecase, list); if (uc_info->type == PCM_PLAYBACK && (uc_info->stream.out->devices & AUDIO_DEVICE_OUT_ALL_A2DP)) { pthread_mutex_unlock(&a2dp.adev->lock); check_a2dp_restore(a2dp.adev, uc_info->stream.out, false); pthread_mutex_lock(&a2dp.adev->lock); } } reset_a2dp_enc_config_params(); reset_a2dp_dec_config_params(); if (a2dp.audio_stream_suspend) { a2dp.audio_stream_suspend(); } } else { if (!a2dp.a2dp_suspended) { ALOGD("%s: A2DP is already unsuspended", __func__); goto param_handled; } ALOGD("%s: Resetting A2DP suspend state", __func__); struct audio_usecase *uc_info; struct listnode *node; if (a2dp.clear_a2dp_suspend_flag) { a2dp.clear_a2dp_suspend_flag(); } a2dp.a2dp_suspended = false; /* * It is possible that before suspend, A2DP sessions can be active. * For example, during music + voice activation concurrency, * A2DP suspend will be called & Bluetooth will change to SCO mode. * Though music is paused as a part of voice activation, * compress session close happens only after pause timeout(10 secs). * So, if resume request comes before pause timeout, as A2DP session * is already active, IPC start will not be called from APM/audio_hw. * Fix this by calling A2DP start for IPC library post suspend * based on number of active session count. */ if (a2dp.a2dp_total_active_session_request > 0) { ALOGD("%s: Calling Bluetooth IPC lib start post suspend state", __func__); if (a2dp.audio_stream_start) { ret = a2dp.audio_stream_start(); if (ret != 0) { ALOGE("%s: Bluetooth controller start failed", __func__); a2dp.a2dp_started = false; } } } list_for_each(node, &a2dp.adev->usecase_list) { uc_info = node_to_item(node, struct audio_usecase, list); if (uc_info->type == PCM_PLAYBACK && (uc_info->stream.out->devices & AUDIO_DEVICE_OUT_ALL_A2DP)) { pthread_mutex_unlock(&a2dp.adev->lock); check_a2dp_restore(a2dp.adev, uc_info->stream.out, true); pthread_mutex_lock(&a2dp.adev->lock); } } } } goto param_handled; } ret = str_parms_get_str(parms, AUDIO_PARAMETER_RECONFIG_A2DP, value, sizeof(value)); if (ret >= 0) { if (a2dp.is_a2dp_offload_enabled && a2dp.bt_state != A2DP_STATE_DISCONNECTED) { *reconfig = true; } goto param_handled; } param_handled: ALOGV("%s: end of A2DP setparam", __func__); return ret; } void audio_extn_a2dp_set_handoff_mode(bool is_on) { a2dp.is_handoff_in_progress = is_on; } bool audio_extn_a2dp_is_force_device_switch() { // During encoder reconfiguration mode, force A2DP device switch // Or if A2DP device is selected but earlier start failed as A2DP // was suspended, force retry. return a2dp.is_handoff_in_progress || !a2dp.a2dp_started; } void audio_extn_a2dp_get_sample_rate(int *sample_rate) { *sample_rate = a2dp.enc_sampling_rate; } bool audio_extn_a2dp_is_ready() { bool ret = false; if (a2dp.a2dp_suspended) goto exit; if ((a2dp.bt_state != A2DP_STATE_DISCONNECTED) && (a2dp.is_a2dp_offload_enabled) && (a2dp.audio_check_a2dp_ready)) ret = a2dp.audio_check_a2dp_ready(); exit: return ret; } bool audio_extn_a2dp_is_suspended() { return a2dp.a2dp_suspended; } void audio_extn_a2dp_init(void *adev) { a2dp.adev = (struct audio_device*)adev; a2dp.bt_lib_handle = NULL; a2dp_common_init(); a2dp.enc_sampling_rate = 48000; a2dp.is_a2dp_offload_enabled = false; a2dp.is_handoff_in_progress = false; a2dp.is_aptx_dual_mono_supported = false; reset_a2dp_enc_config_params(); reset_a2dp_dec_config_params(); update_offload_codec_support(); } uint32_t audio_extn_a2dp_get_encoder_latency() { uint32_t latency = 0; int avsync_runtime_prop = 0; int sbc_offset = 0, aptx_offset = 0, aptxhd_offset = 0, aac_offset = 0, ldac_offset = 0; char value[PROPERTY_VALUE_MAX]; memset(value, '\0', sizeof(char) * PROPERTY_VALUE_MAX); avsync_runtime_prop = property_get(SYSPROP_A2DP_CODEC_LATENCIES, value, NULL); if (avsync_runtime_prop > 0) { if (sscanf(value, "%d/%d/%d/%d/%d", &sbc_offset, &aptx_offset, &aptxhd_offset, &aac_offset, &ldac_offset) != 5) { ALOGI("%s: Failed to parse avsync offset params from '%s'.", __func__, value); avsync_runtime_prop = 0; } } switch (a2dp.bt_encoder_format) { case ENC_CODEC_TYPE_SBC: latency = (avsync_runtime_prop > 0) ? sbc_offset : ENCODER_LATENCY_SBC; latency += DEFAULT_SINK_LATENCY_SBC; break; case ENC_CODEC_TYPE_APTX: latency = (avsync_runtime_prop > 0) ? aptx_offset : ENCODER_LATENCY_APTX; latency += DEFAULT_SINK_LATENCY_APTX; break; case ENC_CODEC_TYPE_APTX_HD: latency = (avsync_runtime_prop > 0) ? aptxhd_offset : ENCODER_LATENCY_APTX_HD; latency += DEFAULT_SINK_LATENCY_APTX_HD; break; case ENC_CODEC_TYPE_AAC: latency = (avsync_runtime_prop > 0) ? aac_offset : ENCODER_LATENCY_AAC; latency += DEFAULT_SINK_LATENCY_AAC; break; case ENC_CODEC_TYPE_LDAC: latency = (avsync_runtime_prop > 0) ? ldac_offset : ENCODER_LATENCY_LDAC; latency += DEFAULT_SINK_LATENCY_LDAC; break; case ENC_CODEC_TYPE_PCM: latency = ENCODER_LATENCY_PCM; latency += DEFAULT_SINK_LATENCY_PCM; break; default: latency = DEFAULT_ENCODER_LATENCY; break; } return latency; } int audio_extn_a2dp_get_parameters(struct str_parms *query, struct str_parms *reply) { int ret, val = 0; char value[32]={0}; ret = str_parms_get_str(query, AUDIO_PARAMETER_A2DP_RECONFIG_SUPPORTED, value, sizeof(value)); if (ret >= 0) { val = a2dp.is_a2dp_offload_enabled; str_parms_add_int(reply, AUDIO_PARAMETER_A2DP_RECONFIG_SUPPORTED, val); ALOGV("%s: called ... isReconfigA2dpSupported %d", __func__, val); } return 0; } #endif // A2DP_OFFLOAD_ENABLED