/* * Copyright (C) 2013-2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "msm8974_platform" /*#define LOG_NDEBUG 0*/ #define LOG_NDDEBUG 0 #include <stdlib.h> #include <dlfcn.h> #include <pthread.h> #include <unistd.h> #include <log/log.h> #include <cutils/str_parms.h> #include <cutils/properties.h> #include <audio_hw.h> #include <platform_api.h> #include "acdb.h" #include "platform.h" #include "audio_extn.h" #include <linux/msm_audio.h> #if defined (PLATFORM_MSM8996) || (PLATFORM_MSM8998) || (PLATFORM_SDM845) #include <sound/devdep_params.h> #endif #include "maxxaudio.h" #include <resolv.h> #define MIXER_XML_DEFAULT_PATH "mixer_paths.xml" #define MIXER_XML_BASE_STRING "mixer_paths" #define TOMTOM_8226_SND_CARD_NAME "msm8226-tomtom-snd-card" #define TOMTOM_MIXER_FILE_SUFFIX "wcd9330" #define LIB_ACDB_LOADER "libacdbloader.so" #define AUDIO_DATA_BLOCK_MIXER_CTL "HDMI EDID" #define CVD_VERSION_MIXER_CTL "CVD Version" #define min(a, b) ((a) < (b) ? (a) : (b)) /* * This file will have a maximum of 38 bytes: * * 4 bytes: number of audio blocks * 4 bytes: total length of Short Audio Descriptor (SAD) blocks * Maximum 10 * 3 bytes: SAD blocks */ #define MAX_SAD_BLOCKS 10 #define SAD_BLOCK_SIZE 3 #define MAX_CVD_VERSION_STRING_SIZE 100 /* EDID format ID for LPCM audio */ #define EDID_FORMAT_LPCM 1 #define MAX_SND_CARD_NAME_LEN 31 #define DEFAULT_APP_TYPE_RX_PATH 69936 #define DEFAULT_APP_TYPE_TX_PATH 69938 #define DEFAULT_RX_BACKEND "SLIMBUS_0_RX" #define TOSTRING_(x) #x #define TOSTRING(x) TOSTRING_(x) struct audio_block_header { int reserved; int length; }; enum { CAL_MODE_SEND = 0x1, CAL_MODE_PERSIST = 0x2, CAL_MODE_RTAC = 0x4 }; #define PLATFORM_CONFIG_KEY_OPERATOR_INFO "operator_info" struct operator_info { struct listnode list; char *name; char *mccmnc; }; struct operator_specific_device { struct listnode list; char *operator; char *mixer_path; int acdb_id; }; #define BE_DAI_NAME_MAX_LENGTH 24 struct be_dai_name_struct { unsigned int be_id; char be_name[BE_DAI_NAME_MAX_LENGTH]; }; struct snd_device_to_mic_map { struct mic_info microphones[AUDIO_MICROPHONE_MAX_COUNT]; size_t mic_count; }; static struct listnode operator_info_list; static struct listnode *operator_specific_device_table[SND_DEVICE_MAX]; #define AUDIO_PARAMETER_KEY_AUD_CALDATA "cal_data" typedef struct acdb_audio_cal_cfg { uint32_t persist; uint32_t snd_dev_id; audio_devices_t dev_id; int32_t acdb_dev_id; uint32_t app_type; uint32_t topo_id; uint32_t sampling_rate; uint32_t cal_type; uint32_t module_id; uint32_t param_id; } acdb_audio_cal_cfg_t; /* Audio calibration related functions */ typedef void (*acdb_send_audio_cal_v3_t)(int, int, int, int, int); struct platform_data { struct audio_device *adev; bool fluence_in_spkr_mode; bool fluence_in_voice_call; bool fluence_in_voice_comm; bool fluence_in_voice_rec; /* 0 = no fluence, 1 = fluence, 2 = fluence pro */ int fluence_type; int source_mic_type; bool speaker_lr_swap; void *acdb_handle; #if defined (PLATFORM_MSM8994) || (PLATFORM_MSM8996) || (PLATFORM_MSM8998) || (PLATFORM_SDM845) acdb_init_v2_cvd_t acdb_init; #elif defined (PLATFORM_MSM8084) acdb_init_v2_t acdb_init; #else acdb_init_t acdb_init; #endif acdb_deallocate_t acdb_deallocate; acdb_send_audio_cal_t acdb_send_audio_cal; acdb_send_audio_cal_v3_t acdb_send_audio_cal_v3; acdb_set_audio_cal_t acdb_set_audio_cal; acdb_send_voice_cal_t acdb_send_voice_cal; acdb_reload_vocvoltable_t acdb_reload_vocvoltable; acdb_send_gain_dep_cal_t acdb_send_gain_dep_cal; acdb_send_custom_top_t acdb_send_custom_top; bool acdb_initialized; struct csd_data *csd; char ec_ref_mixer_path[64]; codec_backend_cfg_t current_backend_cfg[MAX_CODEC_BACKENDS]; char *snd_card_name; int max_vol_index; int max_mic_count; void *hw_info; uint32_t declared_mic_count; struct audio_microphone_characteristic_t microphones[AUDIO_MICROPHONE_MAX_COUNT]; struct snd_device_to_mic_map mic_map[SND_DEVICE_MAX]; }; static int pcm_device_table[AUDIO_USECASE_MAX][2] = { [USECASE_AUDIO_PLAYBACK_DEEP_BUFFER] = {DEEP_BUFFER_PCM_DEVICE, DEEP_BUFFER_PCM_DEVICE}, [USECASE_AUDIO_PLAYBACK_LOW_LATENCY] = {LOWLATENCY_PCM_DEVICE, LOWLATENCY_PCM_DEVICE}, [USECASE_AUDIO_PLAYBACK_HIFI] = {MULTIMEDIA2_PCM_DEVICE, MULTIMEDIA2_PCM_DEVICE}, [USECASE_AUDIO_PLAYBACK_OFFLOAD] = {PLAYBACK_OFFLOAD_DEVICE, PLAYBACK_OFFLOAD_DEVICE}, [USECASE_AUDIO_PLAYBACK_TTS] = {MULTIMEDIA2_PCM_DEVICE, MULTIMEDIA2_PCM_DEVICE}, [USECASE_AUDIO_PLAYBACK_ULL] = {MULTIMEDIA3_PCM_DEVICE, MULTIMEDIA3_PCM_DEVICE}, [USECASE_AUDIO_PLAYBACK_MMAP] = {MMAP_PLAYBACK_PCM_DEVICE, MMAP_PLAYBACK_PCM_DEVICE}, [USECASE_AUDIO_RECORD] = {AUDIO_RECORD_PCM_DEVICE, AUDIO_RECORD_PCM_DEVICE}, [USECASE_AUDIO_RECORD_LOW_LATENCY] = {LOWLATENCY_PCM_DEVICE, LOWLATENCY_PCM_DEVICE}, [USECASE_AUDIO_RECORD_MMAP] = {MMAP_RECORD_PCM_DEVICE, MMAP_RECORD_PCM_DEVICE}, [USECASE_AUDIO_RECORD_HIFI] = {MULTIMEDIA2_PCM_DEVICE, MULTIMEDIA2_PCM_DEVICE}, [USECASE_VOICE_CALL] = {VOICE_CALL_PCM_DEVICE, VOICE_CALL_PCM_DEVICE}, [USECASE_VOICE2_CALL] = {VOICE2_CALL_PCM_DEVICE, VOICE2_CALL_PCM_DEVICE}, [USECASE_VOLTE_CALL] = {VOLTE_CALL_PCM_DEVICE, VOLTE_CALL_PCM_DEVICE}, [USECASE_QCHAT_CALL] = {QCHAT_CALL_PCM_DEVICE, QCHAT_CALL_PCM_DEVICE}, [USECASE_VOWLAN_CALL] = {VOWLAN_CALL_PCM_DEVICE, VOWLAN_CALL_PCM_DEVICE}, [USECASE_VOICEMMODE1_CALL] = {VOICEMMODE1_CALL_PCM_DEVICE, VOICEMMODE1_CALL_PCM_DEVICE}, [USECASE_VOICEMMODE2_CALL] = {VOICEMMODE2_CALL_PCM_DEVICE, VOICEMMODE2_CALL_PCM_DEVICE}, [USECASE_INCALL_REC_UPLINK] = {AUDIO_RECORD_PCM_DEVICE, AUDIO_RECORD_PCM_DEVICE}, [USECASE_INCALL_REC_DOWNLINK] = {AUDIO_RECORD_PCM_DEVICE, AUDIO_RECORD_PCM_DEVICE}, [USECASE_INCALL_REC_UPLINK_AND_DOWNLINK] = {AUDIO_RECORD_PCM_DEVICE, AUDIO_RECORD_PCM_DEVICE}, [USECASE_AUDIO_HFP_SCO] = {HFP_PCM_RX, HFP_SCO_RX}, [USECASE_AUDIO_SPKR_CALIB_RX] = {SPKR_PROT_CALIB_RX_PCM_DEVICE, -1}, [USECASE_AUDIO_SPKR_CALIB_TX] = {-1, SPKR_PROT_CALIB_TX_PCM_DEVICE}, [USECASE_AUDIO_PLAYBACK_AFE_PROXY] = {AFE_PROXY_PLAYBACK_PCM_DEVICE, AFE_PROXY_RECORD_PCM_DEVICE}, [USECASE_AUDIO_RECORD_AFE_PROXY] = {AFE_PROXY_PLAYBACK_PCM_DEVICE, AFE_PROXY_RECORD_PCM_DEVICE}, [USECASE_AUDIO_DSM_FEEDBACK] = {QUAT_MI2S_PCM_DEVICE, QUAT_MI2S_PCM_DEVICE}, [USECASE_AUDIO_PLAYBACK_VOIP] = {AUDIO_PLAYBACK_VOIP_PCM_DEVICE, AUDIO_PLAYBACK_VOIP_PCM_DEVICE}, [USECASE_AUDIO_RECORD_VOIP] = {AUDIO_RECORD_VOIP_PCM_DEVICE, AUDIO_RECORD_VOIP_PCM_DEVICE}, [USECASE_INCALL_MUSIC_UPLINK] = {INCALL_MUSIC_UPLINK_PCM_DEVICE, INCALL_MUSIC_UPLINK_PCM_DEVICE}, }; /* Array to store sound devices */ static const char * const device_table[SND_DEVICE_MAX] = { [SND_DEVICE_NONE] = "none", /* Playback sound devices */ [SND_DEVICE_OUT_HANDSET] = "handset", [SND_DEVICE_OUT_SPEAKER] = "speaker", [SND_DEVICE_OUT_SPEAKER_REVERSE] = "speaker-reverse", [SND_DEVICE_OUT_SPEAKER_SAFE] = "speaker-safe", [SND_DEVICE_OUT_HEADPHONES] = "headphones", [SND_DEVICE_OUT_LINE] = "line", [SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES] = "speaker-and-headphones", [SND_DEVICE_OUT_SPEAKER_SAFE_AND_HEADPHONES] = "speaker-safe-and-headphones", [SND_DEVICE_OUT_SPEAKER_AND_LINE] = "speaker-and-line", [SND_DEVICE_OUT_SPEAKER_SAFE_AND_LINE] = "speaker-safe-and-line", [SND_DEVICE_OUT_VOICE_HANDSET] = "voice-handset", [SND_DEVICE_OUT_VOICE_HAC_HANDSET] = "voice-hac-handset", [SND_DEVICE_OUT_VOICE_SPEAKER] = "voice-speaker", [SND_DEVICE_OUT_VOICE_HEADPHONES] = "voice-headphones", [SND_DEVICE_OUT_VOICE_LINE] = "voice-line", [SND_DEVICE_OUT_HDMI] = "hdmi", [SND_DEVICE_OUT_SPEAKER_AND_HDMI] = "speaker-and-hdmi", [SND_DEVICE_OUT_BT_SCO] = "bt-sco-headset", [SND_DEVICE_OUT_BT_SCO_WB] = "bt-sco-headset-wb", [SND_DEVICE_OUT_BT_A2DP] = "bt-a2dp", [SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP] = "speaker-and-bt-a2dp", [SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP] = "speaker-safe-and-bt-a2dp", [SND_DEVICE_OUT_VOICE_HANDSET_TMUS] = "voice-handset-tmus", [SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES] = "voice-tty-full-headphones", [SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES] = "voice-tty-vco-headphones", [SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET] = "voice-tty-hco-handset", [SND_DEVICE_OUT_VOICE_TTY_FULL_USB] = "voice-tty-full-usb", [SND_DEVICE_OUT_VOICE_TTY_VCO_USB] = "voice-tty-vco-usb", [SND_DEVICE_OUT_VOICE_TX] = "voice-tx", [SND_DEVICE_OUT_USB_HEADSET] = "usb-headset", [SND_DEVICE_OUT_VOICE_USB_HEADSET] = "usb-headset", [SND_DEVICE_OUT_USB_HEADPHONES] = "usb-headphones", [SND_DEVICE_OUT_USB_HEADSET_SPEC] = "usb-headset", [SND_DEVICE_OUT_VOICE_USB_HEADPHONES] = "usb-headphones", [SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET] = "speaker-and-usb-headphones", [SND_DEVICE_OUT_SPEAKER_SAFE_AND_USB_HEADSET] = "speaker-safe-and-usb-headphones", [SND_DEVICE_OUT_SPEAKER_PROTECTED] = "speaker-protected", [SND_DEVICE_OUT_VOICE_SPEAKER_PROTECTED] = "voice-speaker-protected", [SND_DEVICE_OUT_VOICE_SPEAKER_HFP] = "voice-speaker-hfp", [SND_DEVICE_OUT_SPEAKER_AND_BT_SCO] = "speaker-and-bt-sco", [SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO] = "speaker-safe-and-bt-sco", [SND_DEVICE_OUT_SPEAKER_AND_BT_SCO_WB] = "speaker-and-bt-sco-wb", [SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO_WB] = "speaker-safe-and-bt-sco-wb", /* Capture sound devices */ [SND_DEVICE_IN_HANDSET_MIC] = "handset-mic", [SND_DEVICE_IN_HANDSET_MIC_AEC] = "handset-mic", [SND_DEVICE_IN_HANDSET_MIC_NS] = "handset-mic", [SND_DEVICE_IN_HANDSET_MIC_AEC_NS] = "handset-mic", [SND_DEVICE_IN_HANDSET_DMIC] = "dmic-endfire", [SND_DEVICE_IN_HANDSET_DMIC_AEC] = "dmic-endfire", [SND_DEVICE_IN_HANDSET_DMIC_NS] = "dmic-endfire", [SND_DEVICE_IN_HANDSET_DMIC_AEC_NS] = "dmic-endfire", [SND_DEVICE_IN_HANDSET_DMIC_STEREO] = "dmic-endfire", [SND_DEVICE_IN_SPEAKER_MIC] = "speaker-mic", [SND_DEVICE_IN_SPEAKER_MIC_AEC] = "speaker-mic", [SND_DEVICE_IN_SPEAKER_MIC_NS] = "speaker-mic", [SND_DEVICE_IN_SPEAKER_MIC_AEC_NS] = "speaker-mic", [SND_DEVICE_IN_SPEAKER_DMIC] = "speaker-dmic-endfire", [SND_DEVICE_IN_SPEAKER_DMIC_AEC] = "speaker-dmic-endfire", [SND_DEVICE_IN_SPEAKER_DMIC_NS] = "speaker-dmic-endfire", [SND_DEVICE_IN_SPEAKER_DMIC_AEC_NS] = "speaker-dmic-endfire", [SND_DEVICE_IN_SPEAKER_DMIC_STEREO] = "speaker-dmic-endfire", [SND_DEVICE_IN_HEADSET_MIC] = "headset-mic", [SND_DEVICE_IN_HEADSET_MIC_AEC] = "headset-mic", [SND_DEVICE_IN_HDMI_MIC] = "hdmi-mic", [SND_DEVICE_IN_BT_SCO_MIC] = "bt-sco-mic", [SND_DEVICE_IN_BT_SCO_MIC_NREC] = "bt-sco-mic", [SND_DEVICE_IN_BT_SCO_MIC_WB] = "bt-sco-mic-wb", [SND_DEVICE_IN_BT_SCO_MIC_WB_NREC] = "bt-sco-mic-wb", [SND_DEVICE_IN_CAMCORDER_MIC] = "camcorder-mic", [SND_DEVICE_IN_VOICE_DMIC] = "voice-dmic-ef", [SND_DEVICE_IN_VOICE_DMIC_TMUS] = "voice-dmic-ef-tmus", [SND_DEVICE_IN_VOICE_SPEAKER_MIC] = "voice-speaker-mic", [SND_DEVICE_IN_VOICE_SPEAKER_DMIC] = "voice-speaker-dmic-ef", [SND_DEVICE_IN_VOICE_SPEAKER_MIC_HFP] = "voice-speaker-mic-hfp", [SND_DEVICE_IN_VOICE_HEADSET_MIC] = "voice-headset-mic", [SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC] = "voice-tty-full-headset-mic", [SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC] = "voice-tty-vco-handset-mic", [SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC] = "voice-tty-hco-headset-mic", [SND_DEVICE_IN_VOICE_TTY_FULL_USB_MIC] = "voice-tty-full-usb-mic", [SND_DEVICE_IN_VOICE_TTY_HCO_USB_MIC] = "voice-tty-hco-usb-mic", [SND_DEVICE_IN_VOICE_REC_MIC] = "voice-rec-mic", [SND_DEVICE_IN_VOICE_REC_MIC_NS] = "voice-rec-mic", [SND_DEVICE_IN_VOICE_REC_MIC_AEC] = "voice-rec-mic", [SND_DEVICE_IN_VOICE_REC_MIC_AEC_NS] = "voice-rec-mic", [SND_DEVICE_IN_VOICE_REC_DMIC_STEREO] = "voice-rec-dmic-ef", [SND_DEVICE_IN_VOICE_REC_DMIC_FLUENCE] = "voice-rec-dmic-ef-fluence", [SND_DEVICE_IN_USB_HEADSET_MIC] = "usb-headset-mic", [SND_DEVICE_IN_VOICE_USB_HEADSET_MIC] ="usb-headset-mic", [SND_DEVICE_IN_USB_HEADSET_MIC_AEC] = "usb-headset-mic", [SND_DEVICE_IN_UNPROCESSED_USB_HEADSET_MIC] = "usb-headset-mic", [SND_DEVICE_IN_VOICE_RECOG_USB_HEADSET_MIC] = "usb-headset-mic", [SND_DEVICE_IN_VOICE_REC_HEADSET_MIC] = "headset-mic", [SND_DEVICE_IN_UNPROCESSED_MIC] = "unprocessed-mic", [SND_DEVICE_IN_UNPROCESSED_STEREO_MIC] = "unprocessed-stereo-mic", [SND_DEVICE_IN_UNPROCESSED_THREE_MIC] = "unprocessed-three-mic", [SND_DEVICE_IN_UNPROCESSED_QUAD_MIC] = "unprocessed-quad-mic", [SND_DEVICE_IN_UNPROCESSED_HEADSET_MIC] = "unprocessed-headset-mic", [SND_DEVICE_IN_VOICE_RX] = "voice-rx", [SND_DEVICE_IN_THREE_MIC] = "three-mic", [SND_DEVICE_IN_QUAD_MIC] = "quad-mic", [SND_DEVICE_IN_CAPTURE_VI_FEEDBACK] = "vi-feedback", [SND_DEVICE_IN_HANDSET_TMIC] = "three-mic", [SND_DEVICE_IN_HANDSET_QMIC] = "quad-mic", [SND_DEVICE_IN_HANDSET_TMIC_AEC] = "three-mic", [SND_DEVICE_IN_HANDSET_QMIC_AEC] = "quad-mic", }; /* ACDB IDs (audio DSP path configuration IDs) for each sound device */ static int acdb_device_table[SND_DEVICE_MAX] = { [SND_DEVICE_NONE] = -1, [SND_DEVICE_OUT_HANDSET] = 7, [SND_DEVICE_OUT_SPEAKER] = 15, [SND_DEVICE_OUT_SPEAKER_REVERSE] = 15, [SND_DEVICE_OUT_SPEAKER_SAFE] = 15, [SND_DEVICE_OUT_HEADPHONES] = 10, [SND_DEVICE_OUT_LINE] = 77, [SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES] = 10, [SND_DEVICE_OUT_SPEAKER_SAFE_AND_HEADPHONES] = 10, [SND_DEVICE_OUT_SPEAKER_AND_LINE] = 77, [SND_DEVICE_OUT_SPEAKER_SAFE_AND_LINE] = 77, [SND_DEVICE_OUT_VOICE_HANDSET] = ACDB_ID_VOICE_HANDSET, [SND_DEVICE_OUT_VOICE_SPEAKER] = ACDB_ID_VOICE_SPEAKER, [SND_DEVICE_OUT_VOICE_HAC_HANDSET] = 53, [SND_DEVICE_OUT_VOICE_HEADPHONES] = 10, [SND_DEVICE_OUT_VOICE_LINE] = 77, [SND_DEVICE_OUT_HDMI] = 18, [SND_DEVICE_OUT_SPEAKER_AND_HDMI] = 15, [SND_DEVICE_OUT_BT_SCO] = 22, [SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO] = 14, [SND_DEVICE_OUT_BT_SCO_WB] = 39, [SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO_WB] = 14, [SND_DEVICE_OUT_BT_A2DP] = 20, [SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP] = 14, [SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP] = 14, [SND_DEVICE_OUT_VOICE_HANDSET_TMUS] = ACDB_ID_VOICE_HANDSET_TMUS, [SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES] = 17, [SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES] = 17, [SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET] = 37, [SND_DEVICE_OUT_VOICE_TTY_FULL_USB] = 17, [SND_DEVICE_OUT_VOICE_TTY_VCO_USB] = 17, [SND_DEVICE_OUT_VOICE_TX] = 45, [SND_DEVICE_OUT_USB_HEADSET] = 45, [SND_DEVICE_OUT_VOICE_USB_HEADSET] = 45, [SND_DEVICE_OUT_USB_HEADPHONES] = 45, [SND_DEVICE_OUT_USB_HEADSET_SPEC] = 45, [SND_DEVICE_OUT_VOICE_USB_HEADPHONES] = 45, [SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET] = 14, [SND_DEVICE_OUT_SPEAKER_SAFE_AND_USB_HEADSET] = 14, [SND_DEVICE_OUT_SPEAKER_PROTECTED] = 124, [SND_DEVICE_OUT_VOICE_SPEAKER_PROTECTED] = 101, [SND_DEVICE_OUT_VOICE_SPEAKER_HFP] = ACDB_ID_VOICE_SPEAKER, [SND_DEVICE_IN_HANDSET_MIC] = 4, [SND_DEVICE_IN_HANDSET_MIC_AEC] = 106, [SND_DEVICE_IN_HANDSET_MIC_NS] = 107, [SND_DEVICE_IN_HANDSET_MIC_AEC_NS] = 108, [SND_DEVICE_IN_HANDSET_DMIC] = 41, [SND_DEVICE_IN_HANDSET_DMIC_AEC] = 109, [SND_DEVICE_IN_HANDSET_DMIC_NS] = 110, [SND_DEVICE_IN_HANDSET_DMIC_AEC_NS] = 111, [SND_DEVICE_IN_HANDSET_DMIC_STEREO] = 34, [SND_DEVICE_IN_SPEAKER_MIC] = 11, [SND_DEVICE_IN_SPEAKER_MIC_AEC] = 112, [SND_DEVICE_IN_SPEAKER_MIC_NS] = 113, [SND_DEVICE_IN_SPEAKER_MIC_AEC_NS] = 114, [SND_DEVICE_IN_SPEAKER_DMIC] = 43, [SND_DEVICE_IN_SPEAKER_DMIC_AEC] = 115, [SND_DEVICE_IN_SPEAKER_DMIC_NS] = 116, [SND_DEVICE_IN_SPEAKER_DMIC_AEC_NS] = 117, [SND_DEVICE_IN_SPEAKER_DMIC_STEREO] = 35, [SND_DEVICE_IN_HEADSET_MIC] = ACDB_ID_HEADSET_MIC_AEC, [SND_DEVICE_IN_HEADSET_MIC_AEC] = ACDB_ID_HEADSET_MIC_AEC, [SND_DEVICE_IN_HDMI_MIC] = 4, [SND_DEVICE_IN_BT_SCO_MIC] = 21, [SND_DEVICE_IN_BT_SCO_MIC_NREC] = 21, [SND_DEVICE_IN_BT_SCO_MIC_WB] = 38, [SND_DEVICE_IN_BT_SCO_MIC_WB_NREC] = 38, [SND_DEVICE_IN_CAMCORDER_MIC] = 61, [SND_DEVICE_IN_VOICE_DMIC] = 41, [SND_DEVICE_IN_VOICE_DMIC_TMUS] = ACDB_ID_VOICE_DMIC_EF_TMUS, [SND_DEVICE_IN_VOICE_SPEAKER_MIC] = 11, [SND_DEVICE_IN_VOICE_SPEAKER_MIC_HFP] = 11, [SND_DEVICE_IN_VOICE_SPEAKER_DMIC] = 43, [SND_DEVICE_IN_VOICE_HEADSET_MIC] = ACDB_ID_HEADSET_MIC_AEC, [SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC] = 16, [SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC] = 36, [SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC] = 16, [SND_DEVICE_IN_VOICE_TTY_FULL_USB_MIC] = 16, [SND_DEVICE_IN_VOICE_TTY_HCO_USB_MIC] = 16, [SND_DEVICE_IN_VOICE_REC_MIC] = ACDB_ID_VOICE_REC_MIC, [SND_DEVICE_IN_VOICE_REC_MIC_NS] = 113, [SND_DEVICE_IN_VOICE_REC_MIC_AEC] = 112, [SND_DEVICE_IN_VOICE_REC_MIC_AEC_NS] = 114, [SND_DEVICE_IN_VOICE_REC_DMIC_STEREO] = 35, [SND_DEVICE_IN_VOICE_REC_DMIC_FLUENCE] = 43, [SND_DEVICE_IN_VOICE_REC_HEADSET_MIC] = ACDB_ID_HEADSET_MIC_AEC, [SND_DEVICE_IN_UNPROCESSED_MIC] = ACDB_ID_VOICE_REC_MIC, [SND_DEVICE_IN_UNPROCESSED_HEADSET_MIC] = ACDB_ID_HEADSET_MIC_AEC, [SND_DEVICE_IN_UNPROCESSED_STEREO_MIC] = 35, [SND_DEVICE_IN_UNPROCESSED_THREE_MIC] = 125, [SND_DEVICE_IN_UNPROCESSED_QUAD_MIC] = 125, [SND_DEVICE_IN_VOICE_RX] = 44, [SND_DEVICE_IN_USB_HEADSET_MIC] = 44, [SND_DEVICE_IN_VOICE_USB_HEADSET_MIC] = 44, [SND_DEVICE_IN_UNPROCESSED_USB_HEADSET_MIC] = 44, [SND_DEVICE_IN_VOICE_RECOG_USB_HEADSET_MIC] = 44, [SND_DEVICE_IN_USB_HEADSET_MIC_AEC] = 44, [SND_DEVICE_IN_THREE_MIC] = 46, [SND_DEVICE_IN_QUAD_MIC] = 46, [SND_DEVICE_IN_CAPTURE_VI_FEEDBACK] = 102, [SND_DEVICE_IN_HANDSET_TMIC] = 125, [SND_DEVICE_IN_HANDSET_QMIC] = 125, [SND_DEVICE_IN_HANDSET_TMIC_AEC] = 125, /* override this for new target to 140 */ [SND_DEVICE_IN_HANDSET_QMIC_AEC] = 125, /* override this for new target to 140 */ }; // Platform specific backend bit width table static int backend_bit_width_table[SND_DEVICE_MAX] = {0}; struct name_to_index { char name[100]; unsigned int index; }; #define TO_NAME_INDEX(X) #X, X /* Used to get index from parsed string */ static const struct name_to_index snd_device_name_index[SND_DEVICE_MAX] = { /* out */ {TO_NAME_INDEX(SND_DEVICE_OUT_HANDSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_REVERSE)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_SAFE)}, {TO_NAME_INDEX(SND_DEVICE_OUT_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_LINE)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_SAFE_AND_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_AND_LINE)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_SAFE_AND_LINE)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_HANDSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_SPEAKER)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_SPEAKER_HFP)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_LINE)}, {TO_NAME_INDEX(SND_DEVICE_OUT_HDMI)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_AND_HDMI)}, {TO_NAME_INDEX(SND_DEVICE_OUT_BT_SCO)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO)}, {TO_NAME_INDEX(SND_DEVICE_OUT_BT_SCO_WB)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO_WB)}, {TO_NAME_INDEX(SND_DEVICE_OUT_BT_A2DP)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_HANDSET_TMUS)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_HAC_HANDSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_AND_BT_SCO)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_AND_BT_SCO_WB)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_TTY_FULL_USB)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_TTY_VCO_USB)}, {TO_NAME_INDEX(SND_DEVICE_OUT_USB_HEADSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_USB_HEADSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_USB_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_USB_HEADPHONES)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_SAFE_AND_USB_HEADSET)}, {TO_NAME_INDEX(SND_DEVICE_OUT_SPEAKER_PROTECTED)}, {TO_NAME_INDEX(SND_DEVICE_OUT_VOICE_SPEAKER_PROTECTED)}, {TO_NAME_INDEX(SND_DEVICE_OUT_USB_HEADSET_SPEC)}, /* in */ {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_MIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_MIC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_MIC_AEC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_DMIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_DMIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_DMIC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_DMIC_AEC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_DMIC_STEREO)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_MIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_MIC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_MIC_AEC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_DMIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_DMIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_DMIC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_DMIC_AEC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_SPEAKER_DMIC_STEREO)}, {TO_NAME_INDEX(SND_DEVICE_IN_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HEADSET_MIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HDMI_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_BT_SCO_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_BT_SCO_MIC_NREC)}, {TO_NAME_INDEX(SND_DEVICE_IN_BT_SCO_MIC_WB)}, {TO_NAME_INDEX(SND_DEVICE_IN_BT_SCO_MIC_WB_NREC)}, {TO_NAME_INDEX(SND_DEVICE_IN_CAMCORDER_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_DMIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_DMIC_TMUS)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_SPEAKER_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_SPEAKER_MIC_HFP)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_SPEAKER_DMIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_TTY_FULL_USB_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_TTY_HCO_USB_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_REC_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_REC_MIC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_REC_MIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_REC_MIC_AEC_NS)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_REC_DMIC_STEREO)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_REC_DMIC_FLUENCE)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_REC_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_USB_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_USB_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_UNPROCESSED_USB_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_VOICE_RECOG_USB_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_USB_HEADSET_MIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_UNPROCESSED_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_UNPROCESSED_HEADSET_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_UNPROCESSED_STEREO_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_UNPROCESSED_THREE_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_UNPROCESSED_QUAD_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_THREE_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_QUAD_MIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_CAPTURE_VI_FEEDBACK)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_TMIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_QMIC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_TMIC_AEC)}, {TO_NAME_INDEX(SND_DEVICE_IN_HANDSET_QMIC_AEC)}, }; static char * backend_tag_table[SND_DEVICE_MAX] = {0}; static char * hw_interface_table[SND_DEVICE_MAX] = {0}; static const struct name_to_index usecase_name_index[AUDIO_USECASE_MAX] = { {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_DEEP_BUFFER)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_LOW_LATENCY)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_HIFI)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_OFFLOAD)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_TTS)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_ULL)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_MMAP)}, {TO_NAME_INDEX(USECASE_AUDIO_RECORD)}, {TO_NAME_INDEX(USECASE_AUDIO_RECORD_LOW_LATENCY)}, {TO_NAME_INDEX(USECASE_AUDIO_RECORD_MMAP)}, {TO_NAME_INDEX(USECASE_AUDIO_RECORD_HIFI)}, {TO_NAME_INDEX(USECASE_VOICE_CALL)}, {TO_NAME_INDEX(USECASE_VOICE2_CALL)}, {TO_NAME_INDEX(USECASE_VOLTE_CALL)}, {TO_NAME_INDEX(USECASE_QCHAT_CALL)}, {TO_NAME_INDEX(USECASE_VOWLAN_CALL)}, {TO_NAME_INDEX(USECASE_VOICEMMODE1_CALL)}, {TO_NAME_INDEX(USECASE_VOICEMMODE2_CALL)}, {TO_NAME_INDEX(USECASE_INCALL_REC_UPLINK)}, {TO_NAME_INDEX(USECASE_INCALL_REC_DOWNLINK)}, {TO_NAME_INDEX(USECASE_INCALL_REC_UPLINK_AND_DOWNLINK)}, {TO_NAME_INDEX(USECASE_AUDIO_HFP_SCO)}, {TO_NAME_INDEX(USECASE_AUDIO_SPKR_CALIB_RX)}, {TO_NAME_INDEX(USECASE_AUDIO_SPKR_CALIB_TX)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_AFE_PROXY)}, {TO_NAME_INDEX(USECASE_AUDIO_RECORD_AFE_PROXY)}, {TO_NAME_INDEX(USECASE_AUDIO_DSM_FEEDBACK)}, {TO_NAME_INDEX(USECASE_AUDIO_PLAYBACK_VOIP)}, {TO_NAME_INDEX(USECASE_AUDIO_RECORD_VOIP)}, {TO_NAME_INDEX(USECASE_INCALL_MUSIC_UPLINK)}, {TO_NAME_INDEX(USECASE_AUDIO_A2DP_ABR_FEEDBACK)}, }; static const struct name_to_index usecase_type_index[USECASE_TYPE_MAX] = { {TO_NAME_INDEX(PCM_PLAYBACK)}, {TO_NAME_INDEX(PCM_CAPTURE)}, {TO_NAME_INDEX(VOICE_CALL)}, {TO_NAME_INDEX(PCM_HFP_CALL)}, }; struct app_type_entry { int uc_type; int bit_width; int app_type; int max_rate; char *mode; struct listnode node; // membership in app_type_entry_list; }; static struct listnode app_type_entry_list; #define DEEP_BUFFER_PLATFORM_DELAY (29*1000LL) #define LOW_LATENCY_PLATFORM_DELAY (13*1000LL) #define ULL_PLATFORM_DELAY (3*1000LL) #define MMAP_PLATFORM_DELAY (3*1000LL) static pthread_once_t check_op_once_ctl = PTHREAD_ONCE_INIT; static bool is_tmus = false; static int init_be_dai_name_table(struct audio_device *adev); static void check_operator() { char value[PROPERTY_VALUE_MAX]; int mccmnc; property_get("gsm.sim.operator.numeric",value,"0"); mccmnc = atoi(value); ALOGD("%s: tmus mccmnc %d", __func__, mccmnc); switch(mccmnc) { /* TMUS MCC(310), MNC(490, 260, 026) */ case 310490: case 310260: case 310026: /* Add new TMUS MNC(800, 660, 580, 310, 270, 250, 240, 230, 220, 210, 200, 160) */ case 310800: case 310660: case 310580: case 310310: case 310270: case 310250: case 310240: case 310230: case 310220: case 310210: case 310200: case 310160: is_tmus = true; break; } } bool is_operator_tmus() { pthread_once(&check_op_once_ctl, check_operator); return is_tmus; } static char *get_current_operator() { struct listnode *node; struct operator_info *info_item; char mccmnc[PROPERTY_VALUE_MAX]; char *ret = NULL; property_get("gsm.sim.operator.numeric",mccmnc,"00000"); list_for_each(node, &operator_info_list) { info_item = node_to_item(node, struct operator_info, list); if (strstr(info_item->mccmnc, mccmnc) != NULL) { ret = info_item->name; } } return ret; } static struct operator_specific_device *get_operator_specific_device(snd_device_t snd_device) { struct listnode *node; struct operator_specific_device *ret = NULL; struct operator_specific_device *device_item; char *operator_name; operator_name = get_current_operator(); if (operator_name == NULL) return ret; list_for_each(node, operator_specific_device_table[snd_device]) { device_item = node_to_item(node, struct operator_specific_device, list); if (strcmp(operator_name, device_item->operator) == 0) { ret = device_item; } } return ret; } static int get_operator_specific_device_acdb_id(snd_device_t snd_device) { struct operator_specific_device *device; int ret = acdb_device_table[snd_device]; device = get_operator_specific_device(snd_device); if (device != NULL) ret = device->acdb_id; return ret; } static const char *get_operator_specific_device_mixer_path(snd_device_t snd_device) { struct operator_specific_device *device; const char *ret = device_table[snd_device]; device = get_operator_specific_device(snd_device); if (device != NULL) ret = device->mixer_path; return ret; } inline bool platform_supports_app_type_cfg() { #if defined (PLATFORM_MSM8998) || (PLATFORM_SDM845) return true; #else return false; #endif } static int parse_audiocal_cfg(struct str_parms *parms, acdb_audio_cal_cfg_t *cal) { int err; char value[64]; int ret = 0; if (parms == NULL || cal == NULL) return ret; err = str_parms_get_str(parms, "cal_persist", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_persist"); cal->persist = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x1; } err = str_parms_get_str(parms, "cal_apptype", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_apptype"); cal->app_type = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x2; } err = str_parms_get_str(parms, "cal_caltype", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_caltype"); cal->cal_type = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x4; } err = str_parms_get_str(parms, "cal_samplerate", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_samplerate"); cal->sampling_rate = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x8; } err = str_parms_get_str(parms, "cal_devid", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_devid"); cal->dev_id = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x10; } err = str_parms_get_str(parms, "cal_snddevid", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_snddevid"); cal->snd_dev_id = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x20; } err = str_parms_get_str(parms, "cal_topoid", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_topoid"); cal->topo_id = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x40; } err = str_parms_get_str(parms, "cal_moduleid", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_moduleid"); cal->module_id = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x80; } err = str_parms_get_str(parms, "cal_paramid", value, sizeof(value)); if (err >= 0) { str_parms_del(parms, "cal_paramid"); cal->param_id = (uint32_t)strtoul(value, NULL, 0); ret = ret | 0x100; } return ret; } static void set_audiocal(void *platform, struct str_parms *parms, char *value, int len) { struct platform_data *my_data = (struct platform_data *)platform; acdb_audio_cal_cfg_t cal; uint8_t *dptr = NULL; int32_t dlen = 0; int err ,ret; if (value == NULL || platform == NULL || parms == NULL) { ALOGE("[%s] received null pointer, failed", __func__); goto done_key_audcal; } memset(&cal, 0, sizeof(acdb_audio_cal_cfg_t)); /* parse audio calibration keys */ ret = parse_audiocal_cfg(parms, &cal); /* handle audio calibration data now */ err = str_parms_get_str(parms, AUDIO_PARAMETER_KEY_AUD_CALDATA, value, len); if (err >= 0) { str_parms_del(parms, AUDIO_PARAMETER_KEY_AUD_CALDATA); dlen = strlen(value); if (dlen <= 0) { ALOGE("[%s] null data received", __func__); goto done_key_audcal; } /* The base64 encoded string is always larger than the binary data, so b64_pton will always output less data than provided (around 1/3 less than the input data). That's why we can allocate input buffer length and then get function work. */ dptr = (uint8_t *)calloc(dlen, sizeof(uint8_t)); if (dptr == NULL) { ALOGE("[%s] memory allocation failed for %d", __func__, dlen); goto done_key_audcal; } dlen = b64_pton(value, dptr, dlen); if (dlen <= 0) { ALOGE("[%s] data decoding failed %d", __func__, dlen); goto done_key_audcal; } if (cal.dev_id) { if (audio_is_input_device(cal.dev_id)) { cal.snd_dev_id = platform_get_input_snd_device(platform, cal.dev_id); } else { cal.snd_dev_id = platform_get_output_snd_device(platform, cal.dev_id); } } cal.acdb_dev_id = platform_get_snd_device_acdb_id(cal.snd_dev_id); ALOGD("Setting audio calibration for snd_device(%d) acdb_id(%d)", cal.snd_dev_id, cal.acdb_dev_id); if (cal.acdb_dev_id == -EINVAL) { ALOGE("[%s] Invalid acdb_device id %d for snd device id %d", __func__, cal.acdb_dev_id, cal.snd_dev_id); goto done_key_audcal; } if (my_data->acdb_set_audio_cal) { ret = my_data->acdb_set_audio_cal((void *)&cal, (void *)dptr, dlen); } } done_key_audcal: if (dptr != NULL) free(dptr); } bool platform_send_gain_dep_cal(void *platform, int level) { bool ret_val = false; struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; int acdb_dev_id, app_type; int acdb_dev_type = MSM_SNDDEV_CAP_RX; int mode = CAL_MODE_RTAC; struct listnode *node; struct audio_usecase *usecase; bool valid_uc_type; bool valid_dev; if (my_data->acdb_send_gain_dep_cal == NULL) { ALOGE("%s: dlsym error for acdb_send_gain_dep_cal", __func__); return ret_val; } if (!voice_is_in_call(adev)) { ALOGV("%s: Not Voice call usecase, apply new cal for level %d", __func__, level); // find the current active sound device list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); LOG_ALWAYS_FATAL_IF(usecase == NULL, "unxpected NULL usecase in usecase_list"); valid_uc_type = usecase->type == PCM_PLAYBACK; valid_dev = false; if (valid_uc_type) { audio_devices_t dev = usecase->stream.out->devices; valid_dev = (dev == AUDIO_DEVICE_OUT_SPEAKER || dev == AUDIO_DEVICE_OUT_SPEAKER_SAFE || dev == AUDIO_DEVICE_OUT_WIRED_HEADSET || dev == AUDIO_DEVICE_OUT_WIRED_HEADPHONE); } if (valid_dev) { ALOGV("%s: out device is %d", __func__, usecase->out_snd_device); if (platform_supports_app_type_cfg()) app_type = usecase->stream.out->app_type_cfg.app_type; else app_type = DEFAULT_APP_TYPE_RX_PATH; acdb_dev_id = platform_get_snd_device_acdb_id(usecase->out_snd_device); if (!my_data->acdb_send_gain_dep_cal(acdb_dev_id, app_type, acdb_dev_type, mode, level)) { // set ret_val true if at least one calibration is set successfully ret_val = true; } else { ALOGE("%s: my_data->acdb_send_gain_dep_cal failed ", __func__); } } else { ALOGW("%s: Usecase list is empty", __func__); } } } else { ALOGW("%s: Voice call in progress .. ignore setting new cal", __func__); } return ret_val; } void platform_set_echo_reference(struct audio_device *adev, bool enable, audio_devices_t out_device) { struct platform_data *my_data = (struct platform_data *)adev->platform; snd_device_t snd_device = SND_DEVICE_NONE; if (strcmp(my_data->ec_ref_mixer_path, "")) { ALOGV("%s: diabling %s", __func__, my_data->ec_ref_mixer_path); audio_route_reset_and_update_path(adev->audio_route, my_data->ec_ref_mixer_path); } if (enable) { strcpy(my_data->ec_ref_mixer_path, "echo-reference"); if (out_device != AUDIO_DEVICE_NONE) { snd_device = platform_get_output_snd_device(adev->platform, out_device); platform_add_backend_name(adev->platform, my_data->ec_ref_mixer_path, snd_device); } ALOGV("%s: enabling %s", __func__, my_data->ec_ref_mixer_path); audio_route_apply_and_update_path(adev->audio_route, my_data->ec_ref_mixer_path); } } static struct csd_data *open_csd_client(bool i2s_ext_modem) { struct csd_data *csd = calloc(1, sizeof(struct csd_data)); csd->csd_client = dlopen(LIB_CSD_CLIENT, RTLD_NOW); if (csd->csd_client == NULL) { ALOGE("%s: DLOPEN failed for %s", __func__, LIB_CSD_CLIENT); goto error; } else { ALOGV("%s: DLOPEN successful for %s", __func__, LIB_CSD_CLIENT); csd->deinit = (deinit_t)dlsym(csd->csd_client, "csd_client_deinit"); if (csd->deinit == NULL) { ALOGE("%s: dlsym error %s for csd_client_deinit", __func__, dlerror()); goto error; } csd->disable_device = (disable_device_t)dlsym(csd->csd_client, "csd_client_disable_device"); if (csd->disable_device == NULL) { ALOGE("%s: dlsym error %s for csd_client_disable_device", __func__, dlerror()); goto error; } csd->enable_device_config = (enable_device_config_t)dlsym(csd->csd_client, "csd_client_enable_device_config"); if (csd->enable_device_config == NULL) { ALOGE("%s: dlsym error %s for csd_client_enable_device_config", __func__, dlerror()); goto error; } csd->enable_device = (enable_device_t)dlsym(csd->csd_client, "csd_client_enable_device"); if (csd->enable_device == NULL) { ALOGE("%s: dlsym error %s for csd_client_enable_device", __func__, dlerror()); goto error; } csd->start_voice = (start_voice_t)dlsym(csd->csd_client, "csd_client_start_voice"); if (csd->start_voice == NULL) { ALOGE("%s: dlsym error %s for csd_client_start_voice", __func__, dlerror()); goto error; } csd->stop_voice = (stop_voice_t)dlsym(csd->csd_client, "csd_client_stop_voice"); if (csd->stop_voice == NULL) { ALOGE("%s: dlsym error %s for csd_client_stop_voice", __func__, dlerror()); goto error; } csd->volume = (volume_t)dlsym(csd->csd_client, "csd_client_volume"); if (csd->volume == NULL) { ALOGE("%s: dlsym error %s for csd_client_volume", __func__, dlerror()); goto error; } csd->mic_mute = (mic_mute_t)dlsym(csd->csd_client, "csd_client_mic_mute"); if (csd->mic_mute == NULL) { ALOGE("%s: dlsym error %s for csd_client_mic_mute", __func__, dlerror()); goto error; } csd->slow_talk = (slow_talk_t)dlsym(csd->csd_client, "csd_client_slow_talk"); if (csd->slow_talk == NULL) { ALOGE("%s: dlsym error %s for csd_client_slow_talk", __func__, dlerror()); goto error; } csd->start_playback = (start_playback_t)dlsym(csd->csd_client, "csd_client_start_playback"); if (csd->start_playback == NULL) { ALOGE("%s: dlsym error %s for csd_client_start_playback", __func__, dlerror()); goto error; } csd->stop_playback = (stop_playback_t)dlsym(csd->csd_client, "csd_client_stop_playback"); if (csd->stop_playback == NULL) { ALOGE("%s: dlsym error %s for csd_client_stop_playback", __func__, dlerror()); goto error; } csd->start_record = (start_record_t)dlsym(csd->csd_client, "csd_client_start_record"); if (csd->start_record == NULL) { ALOGE("%s: dlsym error %s for csd_client_start_record", __func__, dlerror()); goto error; } csd->stop_record = (stop_record_t)dlsym(csd->csd_client, "csd_client_stop_record"); if (csd->stop_record == NULL) { ALOGE("%s: dlsym error %s for csd_client_stop_record", __func__, dlerror()); goto error; } csd->get_sample_rate = (get_sample_rate_t)dlsym(csd->csd_client, "csd_client_get_sample_rate"); if (csd->get_sample_rate == NULL) { ALOGE("%s: dlsym error %s for csd_client_get_sample_rate", __func__, dlerror()); goto error; } csd->init = (init_t)dlsym(csd->csd_client, "csd_client_init"); if (csd->init == NULL) { ALOGE("%s: dlsym error %s for csd_client_init", __func__, dlerror()); goto error; } else { csd->init(i2s_ext_modem); } } return csd; error: free(csd); csd = NULL; return csd; } void close_csd_client(struct csd_data *csd) { if (csd != NULL) { csd->deinit(); dlclose(csd->csd_client); free(csd); csd = NULL; } } static void platform_csd_init(struct platform_data *my_data) { #ifdef PLATFORM_MSM8084 int32_t modems, (*count_modems)(void); const char *name = "libdetectmodem.so"; const char *func = "count_modems"; const char *error; my_data->csd = NULL; void *lib = dlopen(name, RTLD_NOW); error = dlerror(); if (!lib) { ALOGE("%s: could not find %s: %s", __func__, name, error); return; } count_modems = NULL; *(void **)(&count_modems) = dlsym(lib, func); error = dlerror(); if (!count_modems) { ALOGE("%s: could not find symbol %s in %s: %s", __func__, func, name, error); goto done; } modems = count_modems(); if (modems < 0) { ALOGE("%s: count_modems failed\n", __func__); goto done; } ALOGD("%s: num_modems %d\n", __func__, modems); if (modems > 0) my_data->csd = open_csd_client(false /*is_i2s_ext_modem*/); done: dlclose(lib); #else my_data->csd = NULL; #endif } static void set_platform_defaults(struct platform_data * my_data) { int32_t dev; for (dev = 0; dev < SND_DEVICE_MAX; dev++) { backend_tag_table[dev] = NULL; hw_interface_table[dev] = NULL; operator_specific_device_table[dev] = NULL; } for (dev = 0; dev < SND_DEVICE_MAX; dev++) { backend_bit_width_table[dev] = CODEC_BACKEND_DEFAULT_BIT_WIDTH; } // To overwrite these go to the audio_platform_info.xml file. backend_tag_table[SND_DEVICE_IN_BT_SCO_MIC] = strdup("bt-sco"); backend_tag_table[SND_DEVICE_IN_BT_SCO_MIC_NREC] = strdup("bt-sco"); backend_tag_table[SND_DEVICE_OUT_BT_SCO] = strdup("bt-sco"); backend_tag_table[SND_DEVICE_OUT_HDMI] = strdup("hdmi"); backend_tag_table[SND_DEVICE_OUT_SPEAKER_AND_HDMI] = strdup("speaker-and-hdmi"); backend_tag_table[SND_DEVICE_OUT_BT_SCO_WB] = strdup("bt-sco-wb"); backend_tag_table[SND_DEVICE_IN_BT_SCO_MIC_WB] = strdup("bt-sco-wb"); backend_tag_table[SND_DEVICE_IN_BT_SCO_MIC_WB_NREC] = strdup("bt-sco-wb"); backend_tag_table[SND_DEVICE_OUT_VOICE_TX] = strdup("afe-proxy"); backend_tag_table[SND_DEVICE_IN_VOICE_RX] = strdup("afe-proxy"); backend_tag_table[SND_DEVICE_OUT_USB_HEADSET] = strdup("usb-headset"); backend_tag_table[SND_DEVICE_OUT_VOICE_USB_HEADSET] = strdup("usb-headset"); backend_tag_table[SND_DEVICE_OUT_USB_HEADPHONES] = strdup("usb-headphones"); backend_tag_table[SND_DEVICE_OUT_VOICE_USB_HEADPHONES] = strdup("usb-headphones"); backend_tag_table[SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET] = strdup("speaker-and-usb-headphones"); backend_tag_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_USB_HEADSET] = strdup("speaker-safe-and-usb-headphones"); backend_tag_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO] = strdup("speaker-safe-and-bt-sco"), backend_tag_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO_WB] = strdup("speaker-safe-and-bt-sco-wb"), backend_tag_table[SND_DEVICE_IN_USB_HEADSET_MIC] = strdup("usb-headset-mic"); backend_tag_table[SND_DEVICE_IN_VOICE_USB_HEADSET_MIC] = strdup("usb-headset-mic"); backend_tag_table[SND_DEVICE_IN_UNPROCESSED_USB_HEADSET_MIC] = strdup("usb-headset-mic"); backend_tag_table[SND_DEVICE_IN_VOICE_RECOG_USB_HEADSET_MIC] = strdup("usb-headset-mic"); backend_tag_table[SND_DEVICE_IN_USB_HEADSET_MIC_AEC] = strdup("usb-headset-mic"); backend_tag_table[SND_DEVICE_OUT_BT_A2DP] = strdup("bt-a2dp"); backend_tag_table[SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP] = strdup("speaker-and-bt-a2dp"); backend_tag_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP] = strdup("speaker-safe-and-bt-a2dp"); backend_tag_table[SND_DEVICE_OUT_USB_HEADSET_SPEC] = strdup("usb-headset"); hw_interface_table[SND_DEVICE_OUT_HANDSET] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_REVERSE] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_SAFE] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_HEADPHONES] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_LINE] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_HEADPHONES] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_AND_LINE] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_LINE] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_HANDSET] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_HAC_HANDSET] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_SPEAKER] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_HEADPHONES] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_LINE] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_HDMI] = strdup("HDMI_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_AND_HDMI] = strdup("SLIMBUS_0_RX-and-HDMI_RX"); hw_interface_table[SND_DEVICE_OUT_BT_SCO] = strdup("SEC_AUX_PCM_RX"); hw_interface_table[SND_DEVICE_OUT_BT_SCO_WB] = strdup("SEC_AUX_PCM_RX"); hw_interface_table[SND_DEVICE_OUT_BT_A2DP] = strdup("SLIMBUS_7_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP] = strdup("SLIMBUS_0_RX-and-SLIMBUS_7_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP] = strdup("SLIMBUS_0_RX-and-SLIMBUS_7_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_HANDSET_TMUS] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_USB_HEADSET] = strdup("USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_TTY_FULL_USB] = strdup("USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_TTY_VCO_USB] = strdup("USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_USB_HEADSET] = strdup("USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_USB_HEADPHONES] = strdup("USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_USB_HEADPHONES] = strdup("USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_USB_HEADSET_SPEC] = strdup("USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET] = strdup("SLIMBUS_0_RX-and-USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_USB_HEADSET] = strdup("SLIMBUS_0_RX-and-USB_AUDIO_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_TX] = strdup("AFE_PCM_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_PROTECTED] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_SPEAKER_PROTECTED] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_VOICE_SPEAKER_HFP] = strdup("SLIMBUS_0_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_AND_BT_SCO] = strdup("SLIMBUS_0_RX-and-SEC_AUX_PCM_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_AND_BT_SCO_WB] = strdup("SLIMBUS_0_RX-and-SEC_AUX_PCM_RX"); hw_interface_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO] = strdup("QUAT_TDM_RX_0-and-SLIMBUS_7_RX"), hw_interface_table[SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO_WB] = strdup("QUAT_TDM_RX_0-and-SLIMBUS_7_RX"), hw_interface_table[SND_DEVICE_IN_USB_HEADSET_MIC] = strdup("USB_AUDIO_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_USB_HEADSET_MIC] = strdup("USB_AUDIO_TX"); hw_interface_table[SND_DEVICE_IN_USB_HEADSET_MIC_AEC] = strdup("USB_AUDIO_TX"); hw_interface_table[SND_DEVICE_IN_UNPROCESSED_USB_HEADSET_MIC] = strdup("USB_AUDIO_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_RECOG_USB_HEADSET_MIC] = strdup("USB_AUDIO_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_TTY_FULL_USB_MIC] = strdup("USB_AUDIO_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_TTY_HCO_USB_MIC] = strdup("USB_AUDIO_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_MIC_AEC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_MIC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_MIC_AEC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_DMIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_DMIC_AEC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_DMIC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_DMIC_AEC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_DMIC_STEREO] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HEADSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HEADSET_MIC_AEC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_CAMCORDER_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_REC_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_REC_MIC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_REC_MIC_AEC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_REC_MIC_AEC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_REC_DMIC_STEREO] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_REC_DMIC_FLUENCE] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_UNPROCESSED_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_UNPROCESSED_HEADSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_UNPROCESSED_STEREO_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_UNPROCESSED_THREE_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_UNPROCESSED_QUAD_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_MIC_AEC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_MIC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_MIC_AEC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_DMIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_DMIC_AEC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_DMIC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_DMIC_AEC_NS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_SPEAKER_DMIC_STEREO] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_DMIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_DMIC_TMUS] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_SPEAKER_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_SPEAKER_DMIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_SPEAKER_MIC_HFP] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_HEADSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_REC_HEADSET_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_BT_SCO_MIC] = strdup("SEC_AUX_PCM_TX"); hw_interface_table[SND_DEVICE_IN_BT_SCO_MIC_NREC] = strdup("SEC_AUX_PCM_TX"); hw_interface_table[SND_DEVICE_IN_BT_SCO_MIC_WB] = strdup("SEC_AUX_PCM_TX"); hw_interface_table[SND_DEVICE_IN_BT_SCO_MIC_WB_NREC] = strdup("SEC_AUX_PCM_TX"); hw_interface_table[SND_DEVICE_IN_VOICE_RX] = strdup("AFE_PCM_TX"); hw_interface_table[SND_DEVICE_IN_THREE_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_QUAD_MIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_TMIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_QMIC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_TMIC_AEC] = strdup("SLIMBUS_0_TX"); hw_interface_table[SND_DEVICE_IN_HANDSET_QMIC_AEC] = strdup("SLIMBUS_0_TX"); my_data->max_mic_count = PLATFORM_DEFAULT_MIC_COUNT; } void get_cvd_version(char *cvd_version, struct audio_device *adev) { struct mixer_ctl *ctl; int count; int ret = 0; ctl = mixer_get_ctl_by_name(adev->mixer, CVD_VERSION_MIXER_CTL); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, CVD_VERSION_MIXER_CTL); goto done; } mixer_ctl_update(ctl); count = mixer_ctl_get_num_values(ctl); if (count > MAX_CVD_VERSION_STRING_SIZE) count = MAX_CVD_VERSION_STRING_SIZE - 1; ret = mixer_ctl_get_array(ctl, cvd_version, count); if (ret != 0) { ALOGE("%s: ERROR! mixer_ctl_get_array() failed to get CVD Version", __func__); goto done; } done: return; } static int platform_acdb_init(void *platform) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; if (!my_data->acdb_init) { ALOGE("%s: no acdb_init fn provided", __func__); return -1; } if (my_data->acdb_initialized) { ALOGW("acdb is already initialized"); return 0; } #if defined (PLATFORM_MSM8994) || (PLATFORM_MSM8996) || (PLATFORM_MSM8998) || (PLATFORM_SDM845) char *cvd_version = calloc(1, MAX_CVD_VERSION_STRING_SIZE); if (!cvd_version) ALOGE("failed to allocate cvd_version"); else { get_cvd_version(cvd_version, adev); my_data->acdb_init((char *)my_data->snd_card_name, cvd_version, 0); free(cvd_version); } #elif defined (PLATFORM_MSM8084) my_data->acdb_init((char *)my_data->snd_card_name); #else my_data->acdb_init(); #endif my_data->acdb_initialized = true; return 0; } static void platform_backend_config_init(struct platform_data *pdata) { int i; /* initialize backend config */ for (i = 0; i < MAX_CODEC_BACKENDS; i++) { pdata->current_backend_cfg[i].sample_rate = CODEC_BACKEND_DEFAULT_SAMPLE_RATE; pdata->current_backend_cfg[i].bit_width = CODEC_BACKEND_DEFAULT_BIT_WIDTH; pdata->current_backend_cfg[i].channels = CODEC_BACKEND_DEFAULT_CHANNELS; if (i > MAX_RX_CODEC_BACKENDS) pdata->current_backend_cfg[i].channels = CODEC_BACKEND_DEFAULT_TX_CHANNELS; pdata->current_backend_cfg[i].bitwidth_mixer_ctl = NULL; pdata->current_backend_cfg[i].samplerate_mixer_ctl = NULL; pdata->current_backend_cfg[i].channels_mixer_ctl = NULL; } pdata->current_backend_cfg[DEFAULT_CODEC_BACKEND].bitwidth_mixer_ctl = strdup("SLIM_0_RX Format"); pdata->current_backend_cfg[DEFAULT_CODEC_BACKEND].samplerate_mixer_ctl = strdup("SLIM_0_RX SampleRate"); pdata->current_backend_cfg[DEFAULT_CODEC_TX_BACKEND].bitwidth_mixer_ctl = strdup("SLIM_0_TX Format"); pdata->current_backend_cfg[DEFAULT_CODEC_TX_BACKEND].samplerate_mixer_ctl = strdup("SLIM_0_TX SampleRate"); pdata->current_backend_cfg[USB_AUDIO_TX_BACKEND].bitwidth_mixer_ctl = strdup("USB_AUDIO_TX Format"); pdata->current_backend_cfg[USB_AUDIO_TX_BACKEND].samplerate_mixer_ctl = strdup("USB_AUDIO_TX SampleRate"); pdata->current_backend_cfg[USB_AUDIO_TX_BACKEND].channels_mixer_ctl = strdup("USB_AUDIO_TX Channels"); pdata->current_backend_cfg[HEADPHONE_BACKEND].bitwidth_mixer_ctl = strdup("SLIM_6_RX Format"); pdata->current_backend_cfg[HEADPHONE_BACKEND].samplerate_mixer_ctl = strdup("SLIM_6_RX SampleRate"); pdata->current_backend_cfg[USB_AUDIO_RX_BACKEND].bitwidth_mixer_ctl = strdup("USB_AUDIO_RX Format"); pdata->current_backend_cfg[USB_AUDIO_RX_BACKEND].samplerate_mixer_ctl = strdup("USB_AUDIO_RX SampleRate"); pdata->current_backend_cfg[USB_AUDIO_RX_BACKEND].channels = 1; pdata->current_backend_cfg[USB_AUDIO_RX_BACKEND].channels_mixer_ctl = strdup("USB_AUDIO_RX Channels"); } static int platform_backend_app_type_cfg_init(struct platform_data *pdata, struct mixer *mixer) { size_t app_type_cfg[128] = {0}; int length, num_app_types = 0; struct mixer_ctl *ctl = NULL; const char *mixer_ctl_name = "App Type Config"; ctl = mixer_get_ctl_by_name(mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s",__func__, mixer_ctl_name); return -1; } length = 1; // reserve index 0 for number of app types struct listnode *node; struct app_type_entry *entry; list_for_each(node, &app_type_entry_list) { entry = node_to_item(node, struct app_type_entry, node); app_type_cfg[length++] = entry->app_type; app_type_cfg[length++] = entry->max_rate; app_type_cfg[length++] = entry->bit_width; ALOGI("%s add entry %d %d", __func__, entry->app_type, entry->bit_width); num_app_types += 1; } // default for capture int t; platform_get_default_app_type_v2(pdata, PCM_CAPTURE, &t); app_type_cfg[length++] = t; app_type_cfg[length++] = 48000; app_type_cfg[length++] = 16; num_app_types += 1; if (num_app_types) { app_type_cfg[0] = num_app_types; if (mixer_ctl_set_array(ctl, app_type_cfg, length) < 0) { ALOGE("Failed to set app type cfg"); } } return 0; } static void configure_flicker_sensor_input(struct mixer *mixer) { struct mixer_ctl *ctl; const char* ctl1 = "AIF3_CAP Mixer SLIM TX2"; int setting1 = 1; const char* ctl2 = "CDC_IF TX2 MUX"; const char* setting2 = "DEC2"; const char* ctl3 = "SLIM_1_TX Channels"; const char* setting3 = "One"; const char* ctl4 = "ADC MUX2"; const char* setting4 = "AMIC"; const char* ctl5 = "AMIC MUX2"; const char* setting5 = "ADC1"; const char* ctl6 = "DEC2 Volume"; int setting6 = 84; const char* ctl7 = "MultiMedia9 Mixer SLIM_1_TX"; int setting7 = 1; const char* ctl8 = "SLIM_1_TX SampleRate"; const char* setting8 = "KHZ_8"; ctl = mixer_get_ctl_by_name(mixer, ctl1); mixer_ctl_set_value(ctl, 0, setting1); ctl = mixer_get_ctl_by_name(mixer, ctl2); mixer_ctl_set_enum_by_string(ctl, setting2); ctl = mixer_get_ctl_by_name(mixer, ctl3); mixer_ctl_set_enum_by_string(ctl, setting3); ctl = mixer_get_ctl_by_name(mixer, ctl4); mixer_ctl_set_enum_by_string(ctl, setting4); ctl = mixer_get_ctl_by_name(mixer, ctl5); mixer_ctl_set_enum_by_string(ctl, setting5); ctl = mixer_get_ctl_by_name(mixer, ctl6); mixer_ctl_set_value(ctl, 0, setting6); ctl = mixer_get_ctl_by_name(mixer, ctl7); mixer_ctl_set_value(ctl, 0, setting7); ctl = mixer_get_ctl_by_name(mixer, ctl8); mixer_ctl_set_enum_by_string(ctl, setting8); } void *platform_init(struct audio_device *adev) { char value[PROPERTY_VALUE_MAX]; struct platform_data *my_data = NULL; int retry_num = 0, snd_card_num = 0, key = 0, ret = 0; bool dual_mic_config = false, use_default_mixer_path = true; const char *snd_card_name; char *cvd_version = NULL; char *snd_internal_name = NULL; char *tmp = NULL; char mixer_xml_file[MIXER_PATH_MAX_LENGTH]= {0}; char platform_info_file[MIXER_PATH_MAX_LENGTH]= {0}; struct snd_card_split *snd_split_handle = NULL; my_data = calloc(1, sizeof(struct platform_data)); my_data->adev = adev; list_init(&operator_info_list); list_init(&app_type_entry_list); set_platform_defaults(my_data); // audio_extn_utils_get_snd_card_num does // - open mixer and get snd card name // - parse platform info xml file and check for valid snd card name // - on failure loop through all the active snd card snd_card_num = audio_extn_utils_get_snd_card_num(); if (-1 == snd_card_num) { ALOGE("%s: invalid sound card number (-1), bailing out ", __func__); goto init_failed; } adev->mixer = mixer_open(snd_card_num); snd_card_name = mixer_get_name(adev->mixer); my_data->hw_info = hw_info_init(snd_card_name); audio_extn_set_snd_card_split(snd_card_name); snd_split_handle = audio_extn_get_snd_card_split(); /* Get the codec internal name from the sound card and/or form factor * name and form the mixer paths and platfor info file name dynamically. * This is generic way of picking any codec and forma factor name based * mixer and platform info files in future with no code change. * current code extends and looks for any of the exteneded mixer path and * platform info file present based on codec and form factor. * order of picking appropriate file is * <i> mixer_paths_<codec_name>_<form_factor>.xml, if file not present * <ii> mixer_paths_<codec_name>.xml, if file not present * <iii> mixer_paths.xml * same order is followed for audio_platform_info.xml as well */ // need to carryforward old file name if (!strncmp(snd_card_name, TOMTOM_8226_SND_CARD_NAME, min(strlen(TOMTOM_8226_SND_CARD_NAME), strlen(snd_card_name)))) { snprintf(mixer_xml_file, sizeof(mixer_xml_file), "%s_%s.xml", MIXER_XML_BASE_STRING, TOMTOM_MIXER_FILE_SUFFIX ); } else { snprintf(mixer_xml_file, sizeof(mixer_xml_file), "%s_%s_%s.xml", MIXER_XML_BASE_STRING, snd_split_handle->snd_card, snd_split_handle->form_factor); if (!audio_extn_utils_resolve_config_file(mixer_xml_file)) { memset(mixer_xml_file, 0, sizeof(mixer_xml_file)); snprintf(mixer_xml_file, sizeof(mixer_xml_file), "%s_%s.xml", MIXER_XML_BASE_STRING, snd_split_handle->snd_card); if (!audio_extn_utils_resolve_config_file(mixer_xml_file)) { memset(mixer_xml_file, 0, sizeof(mixer_xml_file)); strlcpy(mixer_xml_file, MIXER_XML_DEFAULT_PATH, MIXER_PATH_MAX_LENGTH); audio_extn_utils_resolve_config_file(mixer_xml_file); } } } audio_extn_utils_get_platform_info(snd_card_name, platform_info_file); my_data->declared_mic_count = 0; /* Initialize platform specific ids and/or backends*/ platform_info_init(platform_info_file, my_data); ALOGD("%s: Loading mixer file: %s", __func__, mixer_xml_file); adev->audio_route = audio_route_init(snd_card_num, mixer_xml_file); if (!adev->audio_route) { ALOGE("%s: Failed to init audio route controls, aborting.", __func__); mixer_close(adev->mixer); adev->mixer = NULL; hw_info_deinit(my_data->hw_info); my_data->hw_info = NULL; goto init_failed; } adev->snd_card = snd_card_num; ALOGD("%s: Opened sound card:%d", __func__, snd_card_num); //set max volume step for voice call property_get("ro.config.vc_call_vol_steps", value, TOSTRING(MAX_VOL_INDEX)); my_data->max_vol_index = atoi(value); property_get("persist.audio.dualmic.config",value,""); if (!strcmp("endfire", value)) { dual_mic_config = true; } my_data->source_mic_type = 0; my_data->fluence_in_spkr_mode = false; my_data->fluence_in_voice_call = false; my_data->fluence_in_voice_comm = false; my_data->fluence_in_voice_rec = false; property_get("ro.qc.sdk.audio.fluencetype", value, "none"); if (!strcmp("fluencepro", value)) { my_data->fluence_type = FLUENCE_PRO_ENABLE; } else if (!strcmp("fluence", value) || (dual_mic_config)) { my_data->fluence_type = FLUENCE_ENABLE; } else if (!strcmp("none", value)) { my_data->fluence_type = FLUENCE_DISABLE; } if (my_data->fluence_type != FLUENCE_DISABLE) { property_get("persist.audio.fluence.voicecall",value,""); if (!strcmp("true", value)) { my_data->fluence_in_voice_call = true; } property_get("persist.audio.fluence.voicecomm",value,""); if (!strcmp("true", value)) { my_data->fluence_in_voice_comm = true; } property_get("persist.audio.fluence.voicerec",value,""); if (!strcmp("true", value)) { my_data->fluence_in_voice_rec = true; } property_get("persist.audio.fluence.speaker",value,""); if (!strcmp("true", value)) { my_data->fluence_in_spkr_mode = true; } } // support max to mono, example if max count is 3, usecase supports Three, dual and mono mic switch (my_data->max_mic_count) { case 4: my_data->source_mic_type |= SOURCE_QUAD_MIC; case 3: my_data->source_mic_type |= SOURCE_THREE_MIC; case 2: my_data->source_mic_type |= SOURCE_DUAL_MIC; case 1: my_data->source_mic_type |= SOURCE_MONO_MIC; break; default: ALOGE("%s: max_mic_count (%d), is not supported, setting to default", __func__, my_data->max_mic_count); my_data->source_mic_type = SOURCE_MONO_MIC|SOURCE_DUAL_MIC; break; } ALOGV("%s: Fluence_Type(%d) max_mic_count(%d) mic_type(0x%x) fluence_in_voice_call(%d)" " fluence_in_voice_comm(%d) fluence_in_voice_rec(%d) fluence_in_spkr_mode(%d) ", __func__, my_data->fluence_type, my_data->max_mic_count, my_data->source_mic_type, my_data->fluence_in_voice_call, my_data->fluence_in_voice_comm, my_data->fluence_in_voice_rec, my_data->fluence_in_spkr_mode); my_data->acdb_handle = dlopen(LIB_ACDB_LOADER, RTLD_NOW); if (my_data->acdb_handle == NULL) { ALOGE("%s: DLOPEN failed for %s", __func__, LIB_ACDB_LOADER); } else { ALOGV("%s: DLOPEN successful for %s", __func__, LIB_ACDB_LOADER); my_data->acdb_deallocate = (acdb_deallocate_t)dlsym(my_data->acdb_handle, "acdb_loader_deallocate_ACDB"); if (!my_data->acdb_deallocate) ALOGE("%s: Could not find the symbol acdb_loader_deallocate_ACDB from %s", __func__, LIB_ACDB_LOADER); my_data->acdb_send_audio_cal_v3 = (acdb_send_audio_cal_v3_t)dlsym(my_data->acdb_handle, "acdb_loader_send_audio_cal_v3"); if (!my_data->acdb_send_audio_cal_v3) ALOGE("%s: Could not find the symbol acdb_send_audio_cal_v3 from %s", __func__, LIB_ACDB_LOADER); my_data->acdb_send_audio_cal = (acdb_send_audio_cal_t)dlsym(my_data->acdb_handle, "acdb_loader_send_audio_cal"); if (!my_data->acdb_send_audio_cal) ALOGE("%s: Could not find the symbol acdb_send_audio_cal from %s", __func__, LIB_ACDB_LOADER); my_data->acdb_send_voice_cal = (acdb_send_voice_cal_t)dlsym(my_data->acdb_handle, "acdb_loader_send_voice_cal"); if (!my_data->acdb_send_voice_cal) ALOGE("%s: Could not find the symbol acdb_loader_send_voice_cal from %s", __func__, LIB_ACDB_LOADER); my_data->acdb_reload_vocvoltable = (acdb_reload_vocvoltable_t)dlsym(my_data->acdb_handle, "acdb_loader_reload_vocvoltable"); if (!my_data->acdb_reload_vocvoltable) ALOGE("%s: Could not find the symbol acdb_loader_reload_vocvoltable from %s", __func__, LIB_ACDB_LOADER); my_data->acdb_send_gain_dep_cal = (acdb_send_gain_dep_cal_t)dlsym(my_data->acdb_handle, "acdb_loader_send_gain_dep_cal"); if (!my_data->acdb_send_gain_dep_cal) ALOGV("%s: Could not find the symbol acdb_loader_send_gain_dep_cal from %s", __func__, LIB_ACDB_LOADER); #if defined (FLICKER_SENSOR_INPUT) configure_flicker_sensor_input(adev->mixer); #endif #if defined (PLATFORM_MSM8994) || (PLATFORM_MSM8996) || (PLATFORM_MSM8998) || (PLATFORM_SDM845) acdb_init_v2_cvd_t acdb_init_local; acdb_init_local = (acdb_init_v2_cvd_t)dlsym(my_data->acdb_handle, "acdb_loader_init_v2"); if (acdb_init_local == NULL) ALOGE("%s: dlsym error %s for acdb_loader_init_v2", __func__, dlerror()); #elif defined (PLATFORM_MSM8084) acdb_init_v2_t acdb_init_local; acdb_init_local = (acdb_init_v2_t)dlsym(my_data->acdb_handle, "acdb_loader_init_v2"); if (acdb_init_local == NULL) ALOGE("%s: dlsym error %s for acdb_loader_init_v2", __func__, dlerror()); #else acdb_init_t acdb_init_local; acdb_init_local = (acdb_init_t)dlsym(my_data->acdb_handle, "acdb_loader_init_ACDB"); if (acdb_init_local == NULL) ALOGE("%s: dlsym error %s for acdb_loader_init_ACDB", __func__, dlerror()); #endif my_data->acdb_init = acdb_init_local; my_data->acdb_send_custom_top = (acdb_send_custom_top_t) dlsym(my_data->acdb_handle, "acdb_loader_send_common_custom_topology"); if (!my_data->acdb_send_custom_top) ALOGE("%s: Could not find the symbol acdb_get_default_app_type from %s", __func__, LIB_ACDB_LOADER); my_data->acdb_set_audio_cal = (acdb_set_audio_cal_t)dlsym(my_data->acdb_handle, "acdb_loader_set_audio_cal_v2"); if (!my_data->acdb_set_audio_cal) ALOGE("%s: Could not find the symbol acdb_set_audio_cal_v2 from %s", __func__, LIB_ACDB_LOADER); int result = acdb_init(adev->snd_card); if (!result) { my_data->acdb_initialized = true; ALOGD("ACDB initialized"); } else { my_data->acdb_initialized = false; ALOGD("ACDB initialization failed"); } } /* init usb */ audio_extn_usb_init(adev); /* init a2dp */ audio_extn_a2dp_init(adev); audio_extn_spkr_prot_init(adev); audio_extn_hwdep_cal_send(adev->snd_card, my_data->acdb_handle); /* load csd client */ platform_csd_init(my_data); platform_backend_config_init(my_data); init_be_dai_name_table(adev); if (platform_supports_app_type_cfg()) platform_backend_app_type_cfg_init(my_data, adev->mixer); return my_data; init_failed: if (my_data) free(my_data); return NULL; } void platform_deinit(void *platform) { int32_t dev; struct operator_info *info_item; struct operator_specific_device *device_item; struct app_type_entry *ap; struct listnode *node; struct platform_data *my_data = (struct platform_data *)platform; close_csd_client(my_data->csd); hw_info_deinit(my_data->hw_info); for (dev = 0; dev < SND_DEVICE_MAX; dev++) { if (backend_tag_table[dev]) free(backend_tag_table[dev]); if (hw_interface_table[dev]) free(hw_interface_table[dev]); if (operator_specific_device_table[dev]) { while (!list_empty(operator_specific_device_table[dev])) { node = list_head(operator_specific_device_table[dev]); list_remove(node); device_item = node_to_item(node, struct operator_specific_device, list); free(device_item->operator); free(device_item->mixer_path); free(device_item); } free(operator_specific_device_table[dev]); } } if (my_data->snd_card_name) free(my_data->snd_card_name); while (!list_empty(&operator_info_list)) { node = list_head(&operator_info_list); list_remove(node); info_item = node_to_item(node, struct operator_info, list); free(info_item->name); free(info_item->mccmnc); free(info_item); } while (!list_empty(&app_type_entry_list)) { node = list_head(&app_type_entry_list); list_remove(node); ap = node_to_item(node, struct app_type_entry, node); if (ap->mode) free(ap->mode); free(ap); } mixer_close(my_data->adev->mixer); free(platform); /* deinit usb */ audio_extn_usb_deinit(); } const char *platform_get_snd_device_name(snd_device_t snd_device) { if (snd_device >= SND_DEVICE_MIN && snd_device < SND_DEVICE_MAX) { if (operator_specific_device_table[snd_device] != NULL) { return get_operator_specific_device_mixer_path(snd_device); } return device_table[snd_device]; } else return "none"; } int platform_get_snd_device_name_extn(void *platform, snd_device_t snd_device, char *device_name) { struct platform_data *my_data = (struct platform_data *)platform; if (platform == NULL) { ALOGW("%s: something wrong, use legacy get_snd_device name", __func__); strlcpy(device_name, platform_get_snd_device_name(snd_device), DEVICE_NAME_MAX_SIZE); } else if (snd_device >= SND_DEVICE_MIN && snd_device < SND_DEVICE_MAX) { if (operator_specific_device_table[snd_device] != NULL) { strlcpy(device_name, get_operator_specific_device_mixer_path(snd_device), DEVICE_NAME_MAX_SIZE); } else { strlcpy(device_name, device_table[snd_device], DEVICE_NAME_MAX_SIZE); } hw_info_append_hw_type(my_data->hw_info, snd_device, device_name); } else { strlcpy(device_name, "none", DEVICE_NAME_MAX_SIZE); return -EINVAL; } return 0; } void platform_add_backend_name(void *platform, char *mixer_path, snd_device_t snd_device) { struct platform_data *my_data = (struct platform_data *)platform; if ((snd_device < SND_DEVICE_MIN) || (snd_device >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %d", __func__, snd_device); return; } const char * suffix = backend_tag_table[snd_device]; if (suffix != NULL) { strcat(mixer_path, " "); strcat(mixer_path, suffix); } } bool platform_check_backends_match(snd_device_t snd_device1, snd_device_t snd_device2) { ALOGV("%s: snd_device1 = %s, snd_device2 = %s", __func__, platform_get_snd_device_name(snd_device1), platform_get_snd_device_name(snd_device2)); if ((snd_device1 < SND_DEVICE_MIN) || (snd_device1 >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %s", __func__, platform_get_snd_device_name(snd_device1)); return false; } if ((snd_device2 < SND_DEVICE_MIN) || (snd_device2 >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %s", __func__, platform_get_snd_device_name(snd_device2)); return false; } const char * be_itf1 = hw_interface_table[snd_device1]; const char * be_itf2 = hw_interface_table[snd_device2]; /* hw_interface_table has overrides for a snd_device. if there is no entry for a device, assume DEFAULT_RX_BACKEND */ if (be_itf1 == NULL) { be_itf1 = DEFAULT_RX_BACKEND; } if (be_itf2 == NULL) { be_itf2 = DEFAULT_RX_BACKEND; } ALOGV("%s: be_itf1 = %s, be_itf2 = %s", __func__, be_itf1, be_itf2); /* this takes care of finding a device within a combo device pair as well */ return strstr(be_itf1, be_itf2) != NULL || strstr(be_itf2, be_itf1) != NULL; } int platform_get_pcm_device_id(audio_usecase_t usecase, int device_type) { int device_id; if (device_type == PCM_PLAYBACK) device_id = pcm_device_table[usecase][0]; else device_id = pcm_device_table[usecase][1]; return device_id; } static int find_index(const struct name_to_index * table, int32_t len, const char * name) { int ret = 0; int32_t i; if (table == NULL) { ALOGE("%s: table is NULL", __func__); ret = -ENODEV; goto done; } if (name == NULL) { ALOGE("null key"); ret = -ENODEV; goto done; } for (i=0; i < len; i++) { if (!strcmp(table[i].name, name)) { ret = table[i].index; goto done; } } ALOGE("%s: Could not find index for name = %s", __func__, name); ret = -ENODEV; done: return ret; } int platform_get_snd_device_index(char *device_name) { return find_index(snd_device_name_index, SND_DEVICE_MAX, device_name); } int platform_get_usecase_index(const char *usecase_name) { return find_index(usecase_name_index, AUDIO_USECASE_MAX, usecase_name); } void platform_add_operator_specific_device(snd_device_t snd_device, const char *operator, const char *mixer_path, unsigned int acdb_id) { struct operator_specific_device *device; if (operator_specific_device_table[snd_device] == NULL) { operator_specific_device_table[snd_device] = (struct listnode *)calloc(1, sizeof(struct listnode)); list_init(operator_specific_device_table[snd_device]); } device = (struct operator_specific_device *)calloc(1, sizeof(struct operator_specific_device)); device->operator = strdup(operator); device->mixer_path = strdup(mixer_path); device->acdb_id = acdb_id; list_add_tail(operator_specific_device_table[snd_device], &device->list); ALOGD("%s: device[%s] -> operator[%s] mixer_path[%s] acdb_id[%d]", __func__, platform_get_snd_device_name(snd_device), operator, mixer_path, acdb_id); } int platform_set_snd_device_acdb_id(snd_device_t snd_device, unsigned int acdb_id) { int ret = 0; if ((snd_device < SND_DEVICE_MIN) || (snd_device >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %d", __func__, snd_device); ret = -EINVAL; goto done; } ALOGV("%s: acdb_device_table[%s]: old = %d new = %d", __func__, platform_get_snd_device_name(snd_device), acdb_device_table[snd_device], acdb_id); acdb_device_table[snd_device] = acdb_id; done: return ret; } int platform_get_snd_device_acdb_id(snd_device_t snd_device) { if ((snd_device < SND_DEVICE_MIN) || (snd_device >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %d", __func__, snd_device); return -EINVAL; } /* * If speaker protection is enabled, function returns supported * sound device for speaker. Else same sound device is returned. */ snd_device = audio_extn_get_spkr_prot_snd_device(snd_device); if (operator_specific_device_table[snd_device] != NULL) return get_operator_specific_device_acdb_id(snd_device); else return acdb_device_table[snd_device]; } static int platform_get_backend_index(snd_device_t snd_device) { int32_t port = DEFAULT_CODEC_BACKEND; if (snd_device >= SND_DEVICE_OUT_BEGIN && snd_device < SND_DEVICE_OUT_END) { if (backend_tag_table[snd_device] != NULL) { if (strncmp(backend_tag_table[snd_device], "headphones", sizeof("headphones")) == 0) port = HEADPHONE_BACKEND; else if (strcmp(backend_tag_table[snd_device], "hdmi") == 0) port = HDMI_RX_BACKEND; else if ((strcmp(backend_tag_table[snd_device], "usb-headphones") == 0) || (strcmp(backend_tag_table[snd_device], "usb-headset") == 0)) port = USB_AUDIO_RX_BACKEND; } } else if (snd_device >= SND_DEVICE_IN_BEGIN && snd_device < SND_DEVICE_IN_END) { port = DEFAULT_CODEC_TX_BACKEND; if (backend_tag_table[snd_device] != NULL) { if (strcmp(backend_tag_table[snd_device], "usb-headset-mic") == 0) port = USB_AUDIO_TX_BACKEND; else if (strstr(backend_tag_table[snd_device], "bt-sco") != NULL) port = BT_SCO_TX_BACKEND; } } else { ALOGW("%s:napb: Invalid device - %d ", __func__, snd_device); } ALOGV("%s:napb: backend port - %d device - %d ", __func__, port, snd_device); return port; } int platform_send_audio_calibration(void *platform, snd_device_t snd_device) { struct platform_data *my_data = (struct platform_data *)platform; int acdb_dev_id, acdb_dev_type; if (platform_supports_app_type_cfg()) // use v2 instead return -ENOSYS; acdb_dev_id = platform_get_snd_device_acdb_id(snd_device); if (acdb_dev_id < 0) { ALOGE("%s: Could not find acdb id for device(%d)", __func__, snd_device); return -EINVAL; } if (my_data->acdb_send_audio_cal) { ALOGV("%s: sending audio calibration for snd_device(%d) acdb_id(%d)", __func__, snd_device, acdb_dev_id); if (snd_device >= SND_DEVICE_OUT_BEGIN && snd_device < SND_DEVICE_OUT_END) acdb_dev_type = ACDB_DEV_TYPE_OUT; else acdb_dev_type = ACDB_DEV_TYPE_IN; my_data->acdb_send_audio_cal(acdb_dev_id, acdb_dev_type); } return 0; } int platform_send_audio_calibration_v2(void *platform, struct audio_usecase *usecase, int app_type, int sample_rate) { struct platform_data *my_data = (struct platform_data *)platform; int acdb_dev_id, acdb_dev_type; int snd_device = usecase->out_snd_device; int new_snd_device[SND_DEVICE_OUT_END] = {0}; int i, num_devices = 1; if (!platform_supports_app_type_cfg()) // use v1 instead return -ENOSYS; if ((usecase->type == PCM_HFP_CALL) || (usecase->type == PCM_CAPTURE)) snd_device = usecase->in_snd_device; // skipped over get_spkr_prot_device acdb_dev_id = platform_get_snd_device_acdb_id(snd_device); if (acdb_dev_id < 0) { ALOGE("%s: Could not find acdb id for device(%d)", __func__, snd_device); return -EINVAL; } if (platform_can_split_snd_device(snd_device, &num_devices, new_snd_device) < 0) { new_snd_device[0] = snd_device; } for (i = 0; i < num_devices; i++) { acdb_dev_id = platform_get_snd_device_acdb_id(new_snd_device[i]); if (acdb_dev_id < 0) { ALOGE("%s: Could not find acdb id for device(%d)", __func__, new_snd_device[i]); return -EINVAL; } ALOGV("%s: sending audio calibration for snd_device(%d) acdb_id(%d)", __func__, new_snd_device[i], acdb_dev_id); if (new_snd_device[i] >= SND_DEVICE_OUT_BEGIN && new_snd_device[i] < SND_DEVICE_OUT_END) acdb_dev_type = ACDB_DEV_TYPE_OUT; else acdb_dev_type = ACDB_DEV_TYPE_IN; if (my_data->acdb_send_audio_cal_v3) { my_data->acdb_send_audio_cal_v3(acdb_dev_id, acdb_dev_type, app_type, sample_rate, i); } else if (my_data->acdb_send_audio_cal) { my_data->acdb_send_audio_cal(acdb_dev_id, acdb_dev_type); // this version differs from internal } } return 0; } int platform_switch_voice_call_device_pre(void *platform) { struct platform_data *my_data = (struct platform_data *)platform; int ret = 0; if (my_data->csd != NULL && voice_is_in_call(my_data->adev)) { /* This must be called before disabling mixer controls on APQ side */ ret = my_data->csd->disable_device(); if (ret < 0) { ALOGE("%s: csd_client_disable_device, failed, error %d", __func__, ret); } } return ret; } int platform_switch_voice_call_enable_device_config(void *platform, snd_device_t out_snd_device, snd_device_t in_snd_device) { struct platform_data *my_data = (struct platform_data *)platform; int acdb_rx_id, acdb_tx_id; int ret = 0; if (my_data->csd == NULL) return ret; acdb_rx_id = platform_get_snd_device_acdb_id(out_snd_device); acdb_tx_id = platform_get_snd_device_acdb_id(in_snd_device); if (acdb_rx_id > 0 && acdb_tx_id > 0) { ret = my_data->csd->enable_device_config(acdb_rx_id, acdb_tx_id); if (ret < 0) { ALOGE("%s: csd_enable_device_config, failed, error %d", __func__, ret); } } else { ALOGE("%s: Incorrect ACDB IDs (rx: %d tx: %d)", __func__, acdb_rx_id, acdb_tx_id); } return ret; } int platform_switch_voice_call_device_post(void *platform, snd_device_t out_snd_device, snd_device_t in_snd_device) { struct platform_data *my_data = (struct platform_data *)platform; int acdb_rx_id, acdb_tx_id; if (my_data->acdb_send_voice_cal == NULL) { ALOGE("%s: dlsym error for acdb_send_voice_call", __func__); } else { acdb_rx_id = platform_get_snd_device_acdb_id(out_snd_device); acdb_tx_id = platform_get_snd_device_acdb_id(in_snd_device); if (acdb_rx_id > 0 && acdb_tx_id > 0) my_data->acdb_send_voice_cal(acdb_rx_id, acdb_tx_id); else ALOGE("%s: Incorrect ACDB IDs (rx: %d tx: %d)", __func__, acdb_rx_id, acdb_tx_id); } return 0; } int platform_switch_voice_call_usecase_route_post(void *platform, snd_device_t out_snd_device, snd_device_t in_snd_device) { struct platform_data *my_data = (struct platform_data *)platform; int acdb_rx_id, acdb_tx_id; int ret = 0; if (my_data->csd == NULL) return ret; acdb_rx_id = platform_get_snd_device_acdb_id(out_snd_device); acdb_tx_id = platform_get_snd_device_acdb_id(in_snd_device); if (acdb_rx_id > 0 && acdb_tx_id > 0) { ret = my_data->csd->enable_device(acdb_rx_id, acdb_tx_id, my_data->adev->acdb_settings); if (ret < 0) { ALOGE("%s: csd_enable_device, failed, error %d", __func__, ret); } } else { ALOGE("%s: Incorrect ACDB IDs (rx: %d tx: %d)", __func__, acdb_rx_id, acdb_tx_id); } return ret; } int platform_start_voice_call(void *platform, uint32_t vsid) { struct platform_data *my_data = (struct platform_data *)platform; int ret = 0; if (my_data->csd != NULL) { ret = my_data->csd->start_voice(vsid); if (ret < 0) { ALOGE("%s: csd_start_voice error %d\n", __func__, ret); } } return ret; } int platform_stop_voice_call(void *platform, uint32_t vsid) { struct platform_data *my_data = (struct platform_data *)platform; int ret = 0; if (my_data->csd != NULL) { ret = my_data->csd->stop_voice(vsid); if (ret < 0) { ALOGE("%s: csd_stop_voice error %d\n", __func__, ret); } } return ret; } int platform_set_mic_break_det(void *platform, bool enable) { int ret = 0; struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; const char *mixer_ctl_name = "Voice Mic Break Enable"; struct mixer_ctl *ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mixer_ctl_name); return -EINVAL; } ret = mixer_ctl_set_value(ctl, 0, enable); if(ret) ALOGE("%s: Failed to set mixer ctl: %s", __func__, mixer_ctl_name); return ret; } int platform_get_sample_rate(void *platform, uint32_t *rate) { struct platform_data *my_data = (struct platform_data *)platform; int ret = 0; if (my_data->csd != NULL) { ret = my_data->csd->get_sample_rate(rate); if (ret < 0) { ALOGE("%s: csd_get_sample_rate error %d\n", __func__, ret); } } return ret; } void platform_set_speaker_gain_in_combo(struct audio_device *adev, snd_device_t snd_device, bool enable) { const char* name; switch (snd_device) { case SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES: if (enable) name = "spkr-gain-in-headphone-combo"; else name = "speaker-gain-default"; break; case SND_DEVICE_OUT_SPEAKER_AND_LINE: if (enable) name = "spkr-gain-in-line-combo"; else name = "speaker-gain-default"; break; case SND_DEVICE_OUT_SPEAKER_SAFE_AND_HEADPHONES: if (enable) name = "spkr-safe-gain-in-headphone-combo"; else name = "speaker-safe-gain-default"; break; case SND_DEVICE_OUT_SPEAKER_SAFE_AND_LINE: if (enable) name = "spkr-safe-gain-in-line-combo"; else name = "speaker-safe-gain-default"; break; default: return; } audio_route_apply_and_update_path(adev->audio_route, name); } int platform_set_voice_volume(void *platform, int volume) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; struct mixer_ctl *ctl; const char *mixer_ctl_name = "Voice Rx Gain"; const char *mute_mixer_ctl_name = "Voice Rx Device Mute"; int vol_index = 0, ret = 0; uint32_t set_values[ ] = {0, ALL_SESSION_VSID, DEFAULT_VOLUME_RAMP_DURATION_MS}; // Voice volume levels are mapped to adsp volume levels as follows. // 100 -> 5, 80 -> 4, 60 -> 3, 40 -> 2, 20 -> 1 0 -> 0 // But this values don't changed in kernel. So, below change is need. vol_index = (int)percent_to_index(volume, MIN_VOL_INDEX, my_data->max_vol_index); set_values[0] = vol_index; ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mixer_ctl_name); return -EINVAL; } ALOGV("Setting voice volume index: %d", set_values[0]); mixer_ctl_set_array(ctl, set_values, ARRAY_SIZE(set_values)); // Send mute command in case volume index is max since indexes are inverted // for mixer controls. if (vol_index == my_data->max_vol_index) { set_values[0] = 1; } else { set_values[0] = 0; } ctl = mixer_get_ctl_by_name(adev->mixer, mute_mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mute_mixer_ctl_name); return -EINVAL; } ALOGV("%s: Setting RX Device Mute to: %d", __func__, set_values[0]); mixer_ctl_set_array(ctl, set_values, ARRAY_SIZE(set_values)); if (my_data->csd != NULL) { ret = my_data->csd->volume(ALL_SESSION_VSID, volume, DEFAULT_VOLUME_RAMP_DURATION_MS); if (ret < 0) { ALOGE("%s: csd_volume error %d", __func__, ret); } } return ret; } int platform_set_mic_mute(void *platform, bool state) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; struct mixer_ctl *ctl; const char *mixer_ctl_name = "Voice Tx Mute"; int ret = 0; uint32_t set_values[ ] = {0, ALL_SESSION_VSID, DEFAULT_MUTE_RAMP_DURATION_MS}; if (adev->mode != AUDIO_MODE_IN_CALL && adev->mode != AUDIO_MODE_IN_COMMUNICATION) return 0; if (adev->enable_hfp) mixer_ctl_name = "HFP Tx Mute"; set_values[0] = state; ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mixer_ctl_name); return -EINVAL; } ALOGV("Setting voice mute state: %d", state); mixer_ctl_set_array(ctl, set_values, ARRAY_SIZE(set_values)); if (my_data->csd != NULL) { ret = my_data->csd->mic_mute(ALL_SESSION_VSID, state, DEFAULT_MUTE_RAMP_DURATION_MS); if (ret < 0) { ALOGE("%s: csd_mic_mute error %d", __func__, ret); } } return ret; } int platform_set_device_mute(void *platform, bool state, char *dir) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; struct mixer_ctl *ctl; char *mixer_ctl_name = NULL; int ret = 0; uint32_t set_values[ ] = {0, ALL_SESSION_VSID, 0}; if(dir == NULL) { ALOGE("%s: Invalid direction:%s", __func__, dir); return -EINVAL; } if (!strncmp("rx", dir, sizeof("rx"))) { mixer_ctl_name = "Voice Rx Device Mute"; } else if (!strncmp("tx", dir, sizeof("tx"))) { mixer_ctl_name = "Voice Tx Device Mute"; } else { return -EINVAL; } set_values[0] = state; ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mixer_ctl_name); return -EINVAL; } ALOGV("%s: Setting device mute state: %d, mixer ctrl:%s", __func__,state, mixer_ctl_name); mixer_ctl_set_array(ctl, set_values, ARRAY_SIZE(set_values)); return ret; } int platform_can_split_snd_device(snd_device_t snd_device, int *num_devices, snd_device_t *new_snd_devices) { int ret = -EINVAL; if (NULL == num_devices || NULL == new_snd_devices) { ALOGE("%s: NULL pointer ..", __func__); return -EINVAL; } /* * If wired headset/headphones/line devices share the same backend * with speaker/earpiece this routine returns -EINVAL. */ if (snd_device == SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER, SND_DEVICE_OUT_HEADPHONES)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER; new_snd_devices[1] = SND_DEVICE_OUT_HEADPHONES; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_AND_LINE && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER, SND_DEVICE_OUT_LINE)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER; new_snd_devices[1] = SND_DEVICE_OUT_LINE; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_SAFE_AND_HEADPHONES && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER_SAFE, SND_DEVICE_OUT_HEADPHONES)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER_SAFE; new_snd_devices[1] = SND_DEVICE_OUT_HEADPHONES; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_SAFE_AND_LINE && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER_SAFE, SND_DEVICE_OUT_LINE)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER_SAFE; new_snd_devices[1] = SND_DEVICE_OUT_LINE; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_AND_BT_SCO && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER, SND_DEVICE_OUT_BT_SCO)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER; new_snd_devices[1] = SND_DEVICE_OUT_BT_SCO; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER_SAFE, SND_DEVICE_OUT_BT_SCO)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER_SAFE; new_snd_devices[1] = SND_DEVICE_OUT_BT_SCO; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_AND_BT_SCO_WB && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER, SND_DEVICE_OUT_BT_SCO_WB)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER; new_snd_devices[1] = SND_DEVICE_OUT_BT_SCO_WB; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO_WB && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER_SAFE, SND_DEVICE_OUT_BT_SCO_WB)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER_SAFE; new_snd_devices[1] = SND_DEVICE_OUT_BT_SCO_WB; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER, SND_DEVICE_OUT_USB_HEADSET)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER; new_snd_devices[1] = SND_DEVICE_OUT_USB_HEADSET; ret = 0; } else if (snd_device == SND_DEVICE_OUT_SPEAKER_SAFE_AND_USB_HEADSET && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER_SAFE, SND_DEVICE_OUT_USB_HEADSET)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER_SAFE; new_snd_devices[1] = SND_DEVICE_OUT_USB_HEADSET; ret = 0; } else if (SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP == snd_device && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER, SND_DEVICE_OUT_BT_A2DP)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER; new_snd_devices[1] = SND_DEVICE_OUT_BT_A2DP; ret = 0; } else if (SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP == snd_device && !platform_check_backends_match(SND_DEVICE_OUT_SPEAKER_SAFE, SND_DEVICE_OUT_BT_A2DP)) { *num_devices = 2; new_snd_devices[0] = SND_DEVICE_OUT_SPEAKER_SAFE; new_snd_devices[1] = SND_DEVICE_OUT_BT_A2DP; ret = 0; } return ret; } snd_device_t platform_get_output_snd_device(void *platform, audio_devices_t devices) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; audio_mode_t mode = adev->mode; snd_device_t snd_device = SND_DEVICE_NONE; ALOGV("%s: enter: output devices(%#x)", __func__, devices); if (devices == AUDIO_DEVICE_NONE || devices & AUDIO_DEVICE_BIT_IN) { ALOGV("%s: Invalid output devices (%#x)", __func__, devices); goto exit; } if (popcount(devices) == 2) { if (devices == (AUDIO_DEVICE_OUT_WIRED_HEADPHONE | AUDIO_DEVICE_OUT_SPEAKER) || devices == (AUDIO_DEVICE_OUT_WIRED_HEADSET | AUDIO_DEVICE_OUT_SPEAKER)) { snd_device = SND_DEVICE_OUT_SPEAKER_AND_HEADPHONES; } else if (devices == (AUDIO_DEVICE_OUT_LINE | AUDIO_DEVICE_OUT_SPEAKER)) { snd_device = SND_DEVICE_OUT_SPEAKER_AND_LINE; } else if (devices == (AUDIO_DEVICE_OUT_WIRED_HEADPHONE | AUDIO_DEVICE_OUT_SPEAKER_SAFE) || devices == (AUDIO_DEVICE_OUT_WIRED_HEADSET | AUDIO_DEVICE_OUT_SPEAKER_SAFE)) { snd_device = SND_DEVICE_OUT_SPEAKER_SAFE_AND_HEADPHONES; } else if (devices == (AUDIO_DEVICE_OUT_LINE | AUDIO_DEVICE_OUT_SPEAKER_SAFE)) { snd_device = SND_DEVICE_OUT_SPEAKER_SAFE_AND_LINE; } else if (devices == (AUDIO_DEVICE_OUT_AUX_DIGITAL | AUDIO_DEVICE_OUT_SPEAKER)) { snd_device = SND_DEVICE_OUT_SPEAKER_AND_HDMI; } else if ((devices & AUDIO_DEVICE_OUT_ALL_SCO) && ((devices & ~AUDIO_DEVICE_OUT_ALL_SCO) == AUDIO_DEVICE_OUT_SPEAKER)) { snd_device = adev->bt_wb_speech_enabled ? SND_DEVICE_OUT_SPEAKER_AND_BT_SCO_WB : SND_DEVICE_OUT_SPEAKER_AND_BT_SCO; } else if ((devices & AUDIO_DEVICE_OUT_ALL_SCO) && ((devices & ~AUDIO_DEVICE_OUT_ALL_SCO) == AUDIO_DEVICE_OUT_SPEAKER_SAFE)) { snd_device = adev->bt_wb_speech_enabled ? SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO_WB : SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_SCO; } else if ((devices == (AUDIO_DEVICE_OUT_USB_DEVICE | AUDIO_DEVICE_OUT_SPEAKER)) || (devices == (AUDIO_DEVICE_OUT_USB_HEADSET | AUDIO_DEVICE_OUT_SPEAKER))) { snd_device = SND_DEVICE_OUT_SPEAKER_AND_USB_HEADSET; } else if ((devices == (AUDIO_DEVICE_OUT_USB_DEVICE | AUDIO_DEVICE_OUT_SPEAKER_SAFE)) || (devices == (AUDIO_DEVICE_OUT_USB_HEADSET | AUDIO_DEVICE_OUT_SPEAKER_SAFE))) { snd_device = SND_DEVICE_OUT_SPEAKER_SAFE_AND_USB_HEADSET; } else if ((devices & AUDIO_DEVICE_OUT_SPEAKER) && (devices & AUDIO_DEVICE_OUT_ALL_A2DP)) { snd_device = SND_DEVICE_OUT_SPEAKER_AND_BT_A2DP; } else if ((devices & AUDIO_DEVICE_OUT_SPEAKER_SAFE) && (devices & AUDIO_DEVICE_OUT_ALL_A2DP)) { snd_device = SND_DEVICE_OUT_SPEAKER_SAFE_AND_BT_A2DP; } else { ALOGE("%s: Invalid combo device(%#x)", __func__, devices); goto exit; } if (snd_device != SND_DEVICE_NONE) { goto exit; } } if (popcount(devices) != 1) { ALOGE("%s: Invalid output devices(%#x)", __func__, devices); goto exit; } if (voice_is_in_call(adev) || adev->enable_voicerx || audio_extn_hfp_is_active(adev)) { if (devices & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || devices & AUDIO_DEVICE_OUT_WIRED_HEADSET || devices & AUDIO_DEVICE_OUT_LINE) { if (voice_is_in_call(adev) && (adev->voice.tty_mode == TTY_MODE_FULL)) snd_device = SND_DEVICE_OUT_VOICE_TTY_FULL_HEADPHONES; else if (voice_is_in_call(adev) && (adev->voice.tty_mode == TTY_MODE_VCO)) snd_device = SND_DEVICE_OUT_VOICE_TTY_VCO_HEADPHONES; else if (voice_is_in_call(adev) && (adev->voice.tty_mode == TTY_MODE_HCO)) snd_device = SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET; else { if (devices & AUDIO_DEVICE_OUT_LINE) snd_device = SND_DEVICE_OUT_VOICE_LINE; else snd_device = SND_DEVICE_OUT_VOICE_HEADPHONES; } } else if (audio_is_usb_out_device(devices)) { if (voice_is_in_call(adev)) { switch (adev->voice.tty_mode) { case TTY_MODE_FULL: snd_device = SND_DEVICE_OUT_VOICE_TTY_FULL_USB; break; case TTY_MODE_VCO: snd_device = SND_DEVICE_OUT_VOICE_TTY_VCO_USB; break; case TTY_MODE_HCO: // since Hearing will be on handset\speaker, use existing device snd_device = SND_DEVICE_OUT_VOICE_TTY_HCO_HANDSET; break; case TTY_MODE_OFF: break; default: ALOGE("%s: Invalid TTY mode (%#x)", __func__, adev->voice.tty_mode); } } if (snd_device == SND_DEVICE_NONE) { snd_device = audio_extn_usb_is_capture_supported() ? SND_DEVICE_OUT_VOICE_USB_HEADSET : SND_DEVICE_OUT_VOICE_USB_HEADPHONES; } } else if (devices & AUDIO_DEVICE_OUT_ALL_SCO) { if (adev->bt_wb_speech_enabled) { snd_device = SND_DEVICE_OUT_BT_SCO_WB; } else { snd_device = SND_DEVICE_OUT_BT_SCO; } } else if (devices & AUDIO_DEVICE_OUT_ALL_A2DP) { snd_device = SND_DEVICE_OUT_BT_A2DP; } else if (devices & (AUDIO_DEVICE_OUT_SPEAKER | AUDIO_DEVICE_OUT_SPEAKER_SAFE)) { if (!adev->enable_hfp) { snd_device = SND_DEVICE_OUT_VOICE_SPEAKER; } else { snd_device = SND_DEVICE_OUT_VOICE_SPEAKER_HFP; } } else if (devices & AUDIO_DEVICE_OUT_EARPIECE) { if(adev->voice.hac) snd_device = SND_DEVICE_OUT_VOICE_HAC_HANDSET; else if (is_operator_tmus()) snd_device = SND_DEVICE_OUT_VOICE_HANDSET_TMUS; else snd_device = SND_DEVICE_OUT_VOICE_HANDSET; } else if (devices & AUDIO_DEVICE_OUT_TELEPHONY_TX) snd_device = SND_DEVICE_OUT_VOICE_TX; if (snd_device != SND_DEVICE_NONE) { goto exit; } } if (devices & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || devices & AUDIO_DEVICE_OUT_WIRED_HEADSET) { snd_device = SND_DEVICE_OUT_HEADPHONES; } else if (devices & AUDIO_DEVICE_OUT_LINE) { snd_device = SND_DEVICE_OUT_LINE; } else if (devices & AUDIO_DEVICE_OUT_SPEAKER_SAFE) { snd_device = SND_DEVICE_OUT_SPEAKER_SAFE; } else if (devices & AUDIO_DEVICE_OUT_SPEAKER) { /* * Perform device switch only if acdb tuning is different between SPEAKER & SPEAKER_REVERSE, * Or there will be a small pause while performing device switch. */ if (my_data->speaker_lr_swap && (acdb_device_table[SND_DEVICE_OUT_SPEAKER] != acdb_device_table[SND_DEVICE_OUT_SPEAKER_REVERSE])) snd_device = SND_DEVICE_OUT_SPEAKER_REVERSE; else snd_device = SND_DEVICE_OUT_SPEAKER; } else if (devices & AUDIO_DEVICE_OUT_ALL_SCO) { if (adev->bt_wb_speech_enabled) { snd_device = SND_DEVICE_OUT_BT_SCO_WB; } else { snd_device = SND_DEVICE_OUT_BT_SCO; } } else if (devices & AUDIO_DEVICE_OUT_ALL_A2DP) { snd_device = SND_DEVICE_OUT_BT_A2DP; } else if (devices & AUDIO_DEVICE_OUT_AUX_DIGITAL) { snd_device = SND_DEVICE_OUT_HDMI ; } else if (audio_is_usb_out_device(devices)) { if (audio_extn_ma_supported_usb()) snd_device = SND_DEVICE_OUT_USB_HEADSET_SPEC; else if (audio_extn_usb_is_capture_supported()) snd_device = SND_DEVICE_OUT_USB_HEADSET; else snd_device = SND_DEVICE_OUT_USB_HEADPHONES; }else if (devices & AUDIO_DEVICE_OUT_EARPIECE) { /*HAC support for voice-ish audio (eg visual voicemail)*/ if(adev->voice.hac) snd_device = SND_DEVICE_OUT_VOICE_HAC_HANDSET; else snd_device = SND_DEVICE_OUT_HANDSET; } else { ALOGE("%s: Unknown device(s) %#x", __func__, devices); } exit: ALOGV("%s: exit: snd_device(%s)", __func__, device_table[snd_device]); return snd_device; } snd_device_t platform_get_input_snd_device(void *platform, audio_devices_t out_device) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; audio_source_t source = (adev->active_input == NULL) ? AUDIO_SOURCE_DEFAULT : adev->active_input->source; audio_mode_t mode = adev->mode; audio_devices_t in_device = ((adev->active_input == NULL) ? AUDIO_DEVICE_NONE : adev->active_input->device) & ~AUDIO_DEVICE_BIT_IN; audio_channel_mask_t channel_mask = (adev->active_input == NULL) ? AUDIO_CHANNEL_IN_MONO : adev->active_input->channel_mask; snd_device_t snd_device = SND_DEVICE_NONE; int channel_count = popcount(channel_mask); ALOGV("%s: enter: out_device(%#x) in_device(%#x) channel_count (%d) channel_mask (0x%x)", __func__, out_device, in_device, channel_count, channel_mask); if ((out_device != AUDIO_DEVICE_NONE) && (voice_is_in_call(adev) || audio_extn_hfp_is_active(adev))) { if (adev->voice.tty_mode != TTY_MODE_OFF) { if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET || out_device & AUDIO_DEVICE_OUT_LINE) { switch (adev->voice.tty_mode) { case TTY_MODE_FULL: snd_device = SND_DEVICE_IN_VOICE_TTY_FULL_HEADSET_MIC; break; case TTY_MODE_VCO: snd_device = SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC; break; case TTY_MODE_HCO: snd_device = SND_DEVICE_IN_VOICE_TTY_HCO_HEADSET_MIC; break; default: ALOGE("%s: Invalid TTY mode (%#x)", __func__, adev->voice.tty_mode); } goto exit; } else if (out_device & (AUDIO_DEVICE_OUT_USB_DEVICE|AUDIO_DEVICE_OUT_USB_HEADSET)) { switch (adev->voice.tty_mode) { case TTY_MODE_FULL: snd_device = SND_DEVICE_IN_VOICE_TTY_FULL_USB_MIC; break; case TTY_MODE_VCO: // since voice will be captured from handset mic, use existing device snd_device = SND_DEVICE_IN_VOICE_TTY_VCO_HANDSET_MIC; break; case TTY_MODE_HCO: snd_device = SND_DEVICE_IN_VOICE_TTY_HCO_USB_MIC; break; default: ALOGE("%s: Invalid TTY mode (%#x)", __func__, adev->voice.tty_mode); } goto exit; } } if (out_device & AUDIO_DEVICE_OUT_EARPIECE) { if (my_data->fluence_in_voice_call == false) { snd_device = SND_DEVICE_IN_HANDSET_MIC; } else { if (is_operator_tmus()) snd_device = SND_DEVICE_IN_VOICE_DMIC_TMUS; else snd_device = SND_DEVICE_IN_VOICE_DMIC; } } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_VOICE_HEADSET_MIC; } else if (out_device & AUDIO_DEVICE_OUT_ALL_SCO) { if (adev->bt_wb_speech_enabled) { if (adev->bluetooth_nrec) snd_device = SND_DEVICE_IN_BT_SCO_MIC_WB_NREC; else snd_device = SND_DEVICE_IN_BT_SCO_MIC_WB; } else { if (adev->bluetooth_nrec) snd_device = SND_DEVICE_IN_BT_SCO_MIC_NREC; else snd_device = SND_DEVICE_IN_BT_SCO_MIC; } } else if (out_device & AUDIO_DEVICE_OUT_SPEAKER || out_device & AUDIO_DEVICE_OUT_SPEAKER_SAFE || out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || out_device & AUDIO_DEVICE_OUT_LINE) { if (my_data->fluence_in_voice_call && my_data->fluence_in_spkr_mode) { if (my_data->source_mic_type & SOURCE_DUAL_MIC) { snd_device = SND_DEVICE_IN_VOICE_SPEAKER_DMIC; } else { snd_device = SND_DEVICE_IN_VOICE_SPEAKER_MIC; } } //select default if (snd_device == SND_DEVICE_NONE) { if (!adev->enable_hfp) { snd_device = SND_DEVICE_IN_VOICE_SPEAKER_MIC; } else { snd_device = SND_DEVICE_IN_VOICE_SPEAKER_MIC_HFP; platform_set_echo_reference(adev, true, out_device); } } } else if (out_device & AUDIO_DEVICE_OUT_TELEPHONY_TX) { snd_device = SND_DEVICE_IN_VOICE_RX; } else if (out_device & (AUDIO_DEVICE_OUT_USB_DEVICE|AUDIO_DEVICE_OUT_USB_HEADSET)) { if (audio_extn_usb_is_capture_supported()) { snd_device = SND_DEVICE_IN_VOICE_USB_HEADSET_MIC; } else if (my_data->fluence_in_voice_call && my_data->fluence_in_spkr_mode) { if (my_data->source_mic_type & SOURCE_DUAL_MIC) { snd_device = SND_DEVICE_IN_VOICE_SPEAKER_DMIC; } else { snd_device = SND_DEVICE_IN_VOICE_SPEAKER_MIC; } } } } else if (source == AUDIO_SOURCE_CAMCORDER) { if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC || in_device & AUDIO_DEVICE_IN_BACK_MIC) { snd_device = SND_DEVICE_IN_CAMCORDER_MIC; } } else if (source == AUDIO_SOURCE_VOICE_RECOGNITION) { if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if (my_data->fluence_in_voice_rec && channel_count == 1) { if ((my_data->fluence_type == FLUENCE_PRO_ENABLE) && (my_data->source_mic_type & SOURCE_QUAD_MIC)) { if (adev->active_input->enable_aec) snd_device = SND_DEVICE_IN_HANDSET_QMIC_AEC; else snd_device = SND_DEVICE_IN_HANDSET_QMIC; } else if ((my_data->fluence_type == FLUENCE_PRO_ENABLE) && (my_data->source_mic_type & SOURCE_THREE_MIC)) { if (adev->active_input->enable_aec) snd_device = SND_DEVICE_IN_HANDSET_TMIC_AEC; else snd_device = SND_DEVICE_IN_HANDSET_TMIC; } else if (((my_data->fluence_type == FLUENCE_PRO_ENABLE) || (my_data->fluence_type == FLUENCE_ENABLE)) && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { if (adev->active_input->enable_aec) snd_device = SND_DEVICE_IN_HANDSET_DMIC_AEC; else snd_device = SND_DEVICE_IN_VOICE_REC_DMIC_FLUENCE; } platform_set_echo_reference(adev, true, out_device); } else if ((channel_mask == AUDIO_CHANNEL_IN_FRONT_BACK) && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_VOICE_REC_DMIC_STEREO; } else if ((channel_mask == AUDIO_CHANNEL_INDEX_MASK_3) && (my_data->source_mic_type & SOURCE_THREE_MIC)) { snd_device = SND_DEVICE_IN_THREE_MIC; } else if ((channel_mask == AUDIO_CHANNEL_INDEX_MASK_4) && (my_data->source_mic_type & SOURCE_QUAD_MIC)) { snd_device = SND_DEVICE_IN_QUAD_MIC; } if (snd_device == SND_DEVICE_NONE) { if (adev->active_input->enable_aec) { if (adev->active_input->enable_ns) { snd_device = SND_DEVICE_IN_VOICE_REC_MIC_AEC_NS; } else { snd_device = SND_DEVICE_IN_VOICE_REC_MIC_AEC; } platform_set_echo_reference(adev, true, out_device); } else if (adev->active_input->enable_ns) { snd_device = SND_DEVICE_IN_VOICE_REC_MIC_NS; } else { snd_device = SND_DEVICE_IN_VOICE_REC_MIC; } } } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_VOICE_REC_HEADSET_MIC; } else if (audio_is_usb_in_device(in_device | AUDIO_DEVICE_BIT_IN)) { snd_device = SND_DEVICE_IN_VOICE_RECOG_USB_HEADSET_MIC; } } else if (source == AUDIO_SOURCE_UNPROCESSED) { if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if (((channel_mask == AUDIO_CHANNEL_IN_FRONT_BACK) || (channel_mask == AUDIO_CHANNEL_IN_STEREO)) && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_UNPROCESSED_STEREO_MIC; } else if ((channel_mask == AUDIO_CHANNEL_INDEX_MASK_3) && (my_data->source_mic_type & SOURCE_THREE_MIC)) { snd_device = SND_DEVICE_IN_UNPROCESSED_THREE_MIC; } else if ((channel_mask == AUDIO_CHANNEL_INDEX_MASK_4) && (my_data->source_mic_type & SOURCE_QUAD_MIC)) { snd_device = SND_DEVICE_IN_UNPROCESSED_QUAD_MIC; } else { snd_device = SND_DEVICE_IN_UNPROCESSED_MIC; } } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_UNPROCESSED_HEADSET_MIC; } else if (audio_is_usb_in_device(in_device | AUDIO_DEVICE_BIT_IN)) { snd_device = SND_DEVICE_IN_UNPROCESSED_USB_HEADSET_MIC; } } else if (source == AUDIO_SOURCE_VOICE_COMMUNICATION || mode == AUDIO_MODE_IN_COMMUNICATION) { if (out_device & (AUDIO_DEVICE_OUT_SPEAKER | AUDIO_DEVICE_OUT_SPEAKER_SAFE) || out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || (out_device & (AUDIO_DEVICE_OUT_USB_DEVICE | AUDIO_DEVICE_OUT_USB_HEADSET) && !audio_extn_usb_is_capture_supported())) { in_device = AUDIO_DEVICE_IN_BACK_MIC; } if (adev->active_input) { if (adev->active_input->enable_aec && adev->active_input->enable_ns) { if (in_device & AUDIO_DEVICE_IN_BACK_MIC) { if (my_data->fluence_in_spkr_mode && my_data->fluence_in_voice_comm && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_SPEAKER_DMIC_AEC_NS; } else { snd_device = SND_DEVICE_IN_SPEAKER_MIC_AEC_NS; } } else if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if (my_data->fluence_in_voice_comm && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_HANDSET_DMIC_AEC_NS; } else { snd_device = SND_DEVICE_IN_HANDSET_MIC_AEC_NS; } } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_HEADSET_MIC_AEC; } else if (audio_is_usb_in_device(in_device | AUDIO_DEVICE_BIT_IN)) { snd_device = SND_DEVICE_IN_USB_HEADSET_MIC_AEC; } platform_set_echo_reference(adev, true, out_device); } else if (adev->active_input->enable_aec) { if (in_device & AUDIO_DEVICE_IN_BACK_MIC) { if (my_data->fluence_in_spkr_mode && my_data->fluence_in_voice_comm && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_SPEAKER_DMIC_AEC; } else { snd_device = SND_DEVICE_IN_SPEAKER_MIC_AEC; } } else if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if (my_data->fluence_in_voice_comm && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_HANDSET_DMIC_AEC; } else { snd_device = SND_DEVICE_IN_HANDSET_MIC_AEC; } } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_HEADSET_MIC_AEC; } else if (audio_is_usb_in_device(in_device | AUDIO_DEVICE_BIT_IN)) { snd_device = SND_DEVICE_IN_USB_HEADSET_MIC_AEC; } platform_set_echo_reference(adev, true, out_device); } else if (adev->active_input->enable_ns) { if (in_device & AUDIO_DEVICE_IN_BACK_MIC) { if (my_data->fluence_in_spkr_mode && my_data->fluence_in_voice_comm && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_SPEAKER_DMIC_NS; } else { snd_device = SND_DEVICE_IN_SPEAKER_MIC_NS; } } else if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if (my_data->fluence_in_voice_comm && (my_data->source_mic_type & SOURCE_DUAL_MIC)) { snd_device = SND_DEVICE_IN_HANDSET_DMIC_NS; } else { snd_device = SND_DEVICE_IN_HANDSET_MIC_NS; } } } } } else if (source == AUDIO_SOURCE_DEFAULT) { goto exit; } if (snd_device != SND_DEVICE_NONE) { goto exit; } if (in_device != AUDIO_DEVICE_NONE && !(in_device & AUDIO_DEVICE_IN_VOICE_CALL) && !(in_device & AUDIO_DEVICE_IN_COMMUNICATION)) { if (in_device & AUDIO_DEVICE_IN_BUILTIN_MIC) { if ((my_data->source_mic_type & SOURCE_QUAD_MIC) && channel_mask == AUDIO_CHANNEL_INDEX_MASK_4) { snd_device = SND_DEVICE_IN_QUAD_MIC; } else if ((my_data->source_mic_type & SOURCE_THREE_MIC) && channel_mask == AUDIO_CHANNEL_INDEX_MASK_3) { snd_device = SND_DEVICE_IN_THREE_MIC; } else if ((my_data->source_mic_type & SOURCE_DUAL_MIC) && channel_count == 2) { snd_device = SND_DEVICE_IN_HANDSET_DMIC_STEREO; } else if ((my_data->source_mic_type & SOURCE_MONO_MIC) && channel_count == 1) { snd_device = SND_DEVICE_IN_HANDSET_MIC; } else { ALOGE("%s: something wrong (1): source type (%d) channel_count (%d) .." " channel mask (0x%x) no combination found .. setting to mono", __func__, my_data->source_mic_type, channel_count, channel_mask); snd_device = SND_DEVICE_IN_HANDSET_MIC; } } else if (in_device & AUDIO_DEVICE_IN_BACK_MIC) { if ((my_data->source_mic_type & SOURCE_DUAL_MIC) && channel_count == 2) { snd_device = SND_DEVICE_IN_SPEAKER_DMIC_STEREO; } else if ((my_data->source_mic_type & SOURCE_MONO_MIC) && channel_count == 1) { snd_device = SND_DEVICE_IN_SPEAKER_MIC; } else { ALOGE("%s: something wrong (2): source type (%d) channel_count (%d) .." " no combination found .. setting to mono", __func__, my_data->source_mic_type, channel_count); snd_device = SND_DEVICE_IN_SPEAKER_MIC; } } else if (in_device & AUDIO_DEVICE_IN_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_HEADSET_MIC; } else if (in_device & AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET) { if (adev->bt_wb_speech_enabled) { if (adev->bluetooth_nrec) snd_device = SND_DEVICE_IN_BT_SCO_MIC_WB_NREC; else snd_device = SND_DEVICE_IN_BT_SCO_MIC_WB; } else { if (adev->bluetooth_nrec) snd_device = SND_DEVICE_IN_BT_SCO_MIC_NREC; else snd_device = SND_DEVICE_IN_BT_SCO_MIC; } } else if (in_device & AUDIO_DEVICE_IN_AUX_DIGITAL) { snd_device = SND_DEVICE_IN_HDMI_MIC; } else if (audio_is_usb_in_device(in_device | AUDIO_DEVICE_BIT_IN)) { snd_device = SND_DEVICE_IN_USB_HEADSET_MIC; } else { ALOGE("%s: Unknown input device(s) %#x", __func__, in_device); ALOGW("%s: Using default handset-mic", __func__); snd_device = SND_DEVICE_IN_HANDSET_MIC; } } else { if (out_device & AUDIO_DEVICE_OUT_EARPIECE) { snd_device = SND_DEVICE_IN_HANDSET_MIC; } else if (out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET) { snd_device = SND_DEVICE_IN_HEADSET_MIC; } else if (out_device & AUDIO_DEVICE_OUT_SPEAKER || out_device & AUDIO_DEVICE_OUT_SPEAKER_SAFE || out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE || out_device & AUDIO_DEVICE_OUT_LINE) { if ((my_data->source_mic_type & SOURCE_DUAL_MIC) && channel_count == 2) { snd_device = SND_DEVICE_IN_SPEAKER_DMIC_STEREO; } else if ((my_data->source_mic_type & SOURCE_MONO_MIC) && channel_count == 1) { snd_device = SND_DEVICE_IN_SPEAKER_MIC; } else { ALOGE("%s: something wrong (3): source type (%d) channel_count (%d) .." " no combination found .. setting to mono", __func__, my_data->source_mic_type, channel_count); snd_device = SND_DEVICE_IN_SPEAKER_MIC; } } else if (out_device & AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET) { if (adev->bt_wb_speech_enabled) { if (adev->bluetooth_nrec) snd_device = SND_DEVICE_IN_BT_SCO_MIC_WB_NREC; else snd_device = SND_DEVICE_IN_BT_SCO_MIC_WB; } else { if (adev->bluetooth_nrec) snd_device = SND_DEVICE_IN_BT_SCO_MIC_NREC; else snd_device = SND_DEVICE_IN_BT_SCO_MIC; } } else if (out_device & AUDIO_DEVICE_OUT_AUX_DIGITAL) { snd_device = SND_DEVICE_IN_HDMI_MIC; } else if (out_device & (AUDIO_DEVICE_OUT_USB_DEVICE|AUDIO_DEVICE_OUT_USB_HEADSET)) { if (audio_extn_usb_is_capture_supported()) snd_device = SND_DEVICE_IN_USB_HEADSET_MIC; else snd_device = SND_DEVICE_IN_SPEAKER_MIC; } else { ALOGE("%s: Unknown output device(s) %#x", __func__, out_device); ALOGW("%s: Using default handset-mic", __func__); snd_device = SND_DEVICE_IN_HANDSET_MIC; } } exit: ALOGV("%s: exit: in_snd_device(%s)", __func__, device_table[snd_device]); return snd_device; } int platform_set_hdmi_channels(void *platform, int channel_count) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; struct mixer_ctl *ctl; const char *channel_cnt_str = NULL; const char *mixer_ctl_name = "HDMI_RX Channels"; switch (channel_count) { case 8: channel_cnt_str = "Eight"; break; case 7: channel_cnt_str = "Seven"; break; case 6: channel_cnt_str = "Six"; break; case 5: channel_cnt_str = "Five"; break; case 4: channel_cnt_str = "Four"; break; case 3: channel_cnt_str = "Three"; break; default: channel_cnt_str = "Two"; break; } ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mixer_ctl_name); return -EINVAL; } ALOGV("HDMI channel count: %s", channel_cnt_str); mixer_ctl_set_enum_by_string(ctl, channel_cnt_str); return 0; } int platform_edid_get_max_channels(void *platform) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; char block[MAX_SAD_BLOCKS * SAD_BLOCK_SIZE]; char *sad = block; int num_audio_blocks; int channel_count; int max_channels = 0; int i, ret, count; struct mixer_ctl *ctl; ctl = mixer_get_ctl_by_name(adev->mixer, AUDIO_DATA_BLOCK_MIXER_CTL); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, AUDIO_DATA_BLOCK_MIXER_CTL); return 0; } mixer_ctl_update(ctl); count = mixer_ctl_get_num_values(ctl); /* Read SAD blocks, clamping the maximum size for safety */ if (count > (int)sizeof(block)) count = (int)sizeof(block); ret = mixer_ctl_get_array(ctl, block, count); if (ret != 0) { ALOGE("%s: mixer_ctl_get_array() failed to get EDID info", __func__); return 0; } /* Calculate the number of SAD blocks */ num_audio_blocks = count / SAD_BLOCK_SIZE; for (i = 0; i < num_audio_blocks; i++) { /* Only consider LPCM blocks */ if ((sad[0] >> 3) != EDID_FORMAT_LPCM) { sad += 3; continue; } channel_count = (sad[0] & 0x7) + 1; if (channel_count > max_channels) max_channels = channel_count; /* Advance to next block */ sad += 3; } return max_channels; } int platform_set_incall_recording_session_id(void *platform, uint32_t session_id, int rec_mode) { int ret = 0; struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; struct mixer_ctl *ctl; const char *mixer_ctl_name = "Voc VSID"; int num_ctl_values; int i; ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mixer_ctl_name); ret = -EINVAL; } else { num_ctl_values = mixer_ctl_get_num_values(ctl); for (i = 0; i < num_ctl_values; i++) { if (mixer_ctl_set_value(ctl, i, session_id)) { ALOGV("Error: invalid session_id: %x", session_id); ret = -EINVAL; break; } } } if (my_data->csd != NULL) { ret = my_data->csd->start_record(ALL_SESSION_VSID, rec_mode); if (ret < 0) { ALOGE("%s: csd_client_start_record failed, error %d", __func__, ret); } } return ret; } int platform_set_incall_recording_session_channels(void *platform, uint32_t channel_count) { int ret = 0; struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; const char *mixer_ctl_name = "Voc Rec Config"; int num_ctl_values; int i; struct mixer_ctl *ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s", __func__, mixer_ctl_name); ret = -EINVAL; } else { num_ctl_values = mixer_ctl_get_num_values(ctl); for (i = 0; i < num_ctl_values; i++) { if (mixer_ctl_set_value(ctl, i, channel_count)) { ALOGE("Error: invalid channel count: %x", channel_count); ret = -EINVAL; break; } } } return ret; } int platform_stop_incall_recording_usecase(void *platform) { int ret = 0; struct platform_data *my_data = (struct platform_data *)platform; if (my_data->csd != NULL) { ret = my_data->csd->stop_record(ALL_SESSION_VSID); if (ret < 0) { ALOGE("%s: csd_client_stop_record failed, error %d", __func__, ret); } } return ret; } int platform_start_incall_music_usecase(void *platform) { int ret = 0; struct platform_data *my_data = (struct platform_data *)platform; if (my_data->csd != NULL) { ret = my_data->csd->start_playback(ALL_SESSION_VSID); if (ret < 0) { ALOGE("%s: csd_client_start_playback failed, error %d", __func__, ret); } } return ret; } int platform_stop_incall_music_usecase(void *platform) { int ret = 0; struct platform_data *my_data = (struct platform_data *)platform; if (my_data->csd != NULL) { ret = my_data->csd->stop_playback(ALL_SESSION_VSID); if (ret < 0) { ALOGE("%s: csd_client_stop_playback failed, error %d", __func__, ret); } } return ret; } int platform_set_parameters(void *platform, struct str_parms *parms) { struct platform_data *my_data = (struct platform_data *)platform; char *value = NULL; char *kv_pairs = str_parms_to_str(parms); int len; int ret = 0, err; if (kv_pairs == NULL) { ret = -EINVAL; ALOGE("%s: key-value pair is NULL", __func__); goto done; } ALOGV("%s: enter: %s", __func__, kv_pairs); len = strlen(kv_pairs); value = (char*)calloc(len + 1, sizeof(char)); if (value == NULL) { ret = -ENOMEM; ALOGE("[%s] failed to allocate memory", __func__); goto done; } err = str_parms_get_str(parms, PLATFORM_CONFIG_KEY_SOUNDCARD_NAME, value, len); if (err >= 0) { str_parms_del(parms, PLATFORM_CONFIG_KEY_SOUNDCARD_NAME); my_data->snd_card_name = strdup(value); ALOGV("%s: sound card name %s", __func__, my_data->snd_card_name); } err = str_parms_get_str(parms, PLATFORM_CONFIG_KEY_OPERATOR_INFO, value, len); if (err >= 0) { struct operator_info *info; char *str = value; char *name; str_parms_del(parms, PLATFORM_CONFIG_KEY_OPERATOR_INFO); info = (struct operator_info *)calloc(1, sizeof(struct operator_info)); name = strtok(str, ";"); info->name = strdup(name); info->mccmnc = strdup(str + strlen(name) + 1); list_add_tail(&operator_info_list, &info->list); ALOGV("%s: add operator[%s] mccmnc[%s]", __func__, info->name, info->mccmnc); } memset(value, 0, len + 1); err = str_parms_get_str(parms, PLATFORM_CONFIG_KEY_MAX_MIC_COUNT, value, len); if (err >= 0) { str_parms_del(parms, PLATFORM_CONFIG_KEY_MAX_MIC_COUNT); my_data->max_mic_count = atoi(value); ALOGV("%s: max_mic_count %s/%d", __func__, value, my_data->max_mic_count); } /* handle audio calibration parameters */ set_audiocal(platform, parms, value, len); // to-do: disable setting sidetone gain, will revist this later // audio_extn_usb_set_sidetone_gain(parms, value, len); done: ALOGV("%s: exit with code(%d)", __func__, ret); if (kv_pairs != NULL) free(kv_pairs); if (value != NULL) free(value); return ret; } /* Delay in Us */ int64_t platform_render_latency(audio_usecase_t usecase) { switch (usecase) { case USECASE_AUDIO_PLAYBACK_DEEP_BUFFER: return DEEP_BUFFER_PLATFORM_DELAY; case USECASE_AUDIO_PLAYBACK_LOW_LATENCY: return LOW_LATENCY_PLATFORM_DELAY; case USECASE_AUDIO_PLAYBACK_ULL: return ULL_PLATFORM_DELAY; case USECASE_AUDIO_PLAYBACK_MMAP: return MMAP_PLATFORM_DELAY; default: return 0; } } int platform_set_snd_device_backend(snd_device_t device, const char *backend_tag, const char * hw_interface) { int ret = 0; if ((device < SND_DEVICE_MIN) || (device >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %d", __func__, device); ret = -EINVAL; goto done; } ALOGV("%s: backend_tag_table[%s]: old = %s new = %s", __func__, platform_get_snd_device_name(device), backend_tag_table[device] != NULL ? backend_tag_table[device]: "null", backend_tag); if (backend_tag_table[device]) { free(backend_tag_table[device]); } backend_tag_table[device] = strdup(backend_tag); if (hw_interface != NULL) { if (hw_interface_table[device]) free(hw_interface_table[device]); ALOGV("%s: hw_interface_table[%d] = %s", __func__, device, hw_interface); hw_interface_table[device] = strdup(hw_interface); } done: return ret; } int platform_set_usecase_pcm_id(audio_usecase_t usecase, int32_t type, int32_t pcm_id) { int ret = 0; if ((usecase <= USECASE_INVALID) || (usecase >= AUDIO_USECASE_MAX)) { ALOGE("%s: invalid usecase case idx %d", __func__, usecase); ret = -EINVAL; goto done; } if ((type != 0) && (type != 1)) { ALOGE("%s: invalid usecase type", __func__); ret = -EINVAL; } ALOGV("%s: pcm_device_table[%d %s][%d] = %d", __func__, usecase, use_case_table[usecase], type, pcm_id); pcm_device_table[usecase][type] = pcm_id; done: return ret; } #define DEFAULT_NOMINAL_SPEAKER_GAIN 20 int ramp_speaker_gain(struct audio_device *adev, bool ramp_up, int target_ramp_up_gain) { // backup_gain: gain to try to set in case of an error during ramp int start_gain, end_gain, step, backup_gain, i; bool error = false; const struct mixer_ctl *ctl; const char *mixer_ctl_name_gain_left = "Left Speaker Gain"; const char *mixer_ctl_name_gain_right = "Right Speaker Gain"; struct mixer_ctl *ctl_left = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name_gain_left); struct mixer_ctl *ctl_right = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name_gain_right); if (!ctl_left || !ctl_right) { ALOGE("%s: Could not get ctl for mixer cmd - %s or %s, not applying speaker gain ramp", __func__, mixer_ctl_name_gain_left, mixer_ctl_name_gain_right); return -EINVAL; } else if ((mixer_ctl_get_num_values(ctl_left) != 1) || (mixer_ctl_get_num_values(ctl_right) != 1)) { ALOGE("%s: Unexpected num values for mixer cmd - %s or %s, not applying speaker gain ramp", __func__, mixer_ctl_name_gain_left, mixer_ctl_name_gain_right); return -EINVAL; } if (ramp_up) { start_gain = 0; end_gain = target_ramp_up_gain > 0 ? target_ramp_up_gain : DEFAULT_NOMINAL_SPEAKER_GAIN; step = +1; backup_gain = end_gain; } else { // using same gain on left and right const int left_gain = mixer_ctl_get_value(ctl_left, 0); start_gain = left_gain > 0 ? left_gain : DEFAULT_NOMINAL_SPEAKER_GAIN; end_gain = 0; step = -1; backup_gain = start_gain; } for (i = start_gain ; i != (end_gain + step) ; i += step) { //ALOGV("setting speaker gain to %d", i); if (mixer_ctl_set_value(ctl_left, 0, i)) { ALOGE("%s: error setting %s to %d during gain ramp", __func__, mixer_ctl_name_gain_left, i); error = true; break; } if (mixer_ctl_set_value(ctl_right, 0, i)) { ALOGE("%s: error setting %s to %d during gain ramp", __func__, mixer_ctl_name_gain_right, i); error = true; break; } usleep(1000); } if (error) { // an error occured during the ramp, let's still try to go back to a safe volume if (mixer_ctl_set_value(ctl_left, 0, backup_gain)) { ALOGE("%s: error restoring left gain to %d", __func__, backup_gain); } if (mixer_ctl_set_value(ctl_right, 0, backup_gain)) { ALOGE("%s: error restoring right gain to %d", __func__, backup_gain); } } return start_gain; } int platform_set_swap_mixer(struct audio_device *adev, bool swap_channels) { const char *mixer_ctl_name = "Swap channel"; struct mixer_ctl *ctl; const char *mixer_path; struct platform_data *my_data = (struct platform_data *)adev->platform; // forced to set to swap, but device not rotated ... ignore set if (swap_channels && !my_data->speaker_lr_swap) return 0; ALOGV("%s:", __func__); if (swap_channels) { mixer_path = platform_get_snd_device_name(SND_DEVICE_OUT_SPEAKER_REVERSE); audio_route_apply_and_update_path(adev->audio_route, mixer_path); } else { mixer_path = platform_get_snd_device_name(SND_DEVICE_OUT_SPEAKER); audio_route_apply_and_update_path(adev->audio_route, mixer_path); } ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer cmd - %s",__func__, mixer_ctl_name); return -EINVAL; } if (mixer_ctl_set_value(ctl, 0, swap_channels) < 0) { ALOGE("%s: Could not set reverse cotrol %d",__func__, swap_channels); return -EINVAL; } ALOGV("platfor_force_swap_channel :: Channel orientation ( %s ) ", swap_channels?"R --> L":"L --> R"); return 0; } int platform_check_and_set_swap_lr_channels(struct audio_device *adev, bool swap_channels) { // only update if there is active pcm playback on speaker struct audio_usecase *usecase; struct listnode *node; struct platform_data *my_data = (struct platform_data *)adev->platform; my_data->speaker_lr_swap = swap_channels; return platform_set_swap_channels(adev, swap_channels); } int platform_set_swap_channels(struct audio_device *adev, bool swap_channels) { // only update if there is active pcm playback on speaker struct audio_usecase *usecase; struct listnode *node; struct platform_data *my_data = (struct platform_data *)adev->platform; // do not swap channels in audio modes with concurrent capture and playback // as this may break the echo reference if ((adev->mode == AUDIO_MODE_IN_COMMUNICATION) || (adev->mode == AUDIO_MODE_IN_CALL)) { ALOGV("%s: will not swap due to audio mode %d", __func__, adev->mode); return 0; } list_for_each(node, &adev->usecase_list) { usecase = node_to_item(node, struct audio_usecase, list); if (usecase->type == PCM_PLAYBACK && usecase->stream.out->devices & AUDIO_DEVICE_OUT_SPEAKER) { /* * If acdb tuning is different for SPEAKER_REVERSE, it is must * to perform device switch to disable the current backend to * enable it with new acdb data. */ if (acdb_device_table[SND_DEVICE_OUT_SPEAKER] != acdb_device_table[SND_DEVICE_OUT_SPEAKER_REVERSE]) { const int initial_skpr_gain = ramp_speaker_gain(adev, false /*ramp_up*/, -1); select_devices(adev, usecase->id); if (initial_skpr_gain != -EINVAL) ramp_speaker_gain(adev, true /*ramp_up*/, initial_skpr_gain); } else { platform_set_swap_mixer(adev, swap_channels); } break; } } return 0; } static struct amp_db_and_gain_table tbl_mapping[MAX_VOLUME_CAL_STEPS]; static int num_gain_tbl_entry = 0; bool platform_add_gain_level_mapping(struct amp_db_and_gain_table *tbl_entry) { ALOGV("%s: enter .. add %f %f %d", __func__, tbl_entry->amp, tbl_entry->db, tbl_entry->level); if (num_gain_tbl_entry == -1) { ALOGE("%s: num entry beyond valid step levels or corrupted..rejecting custom mapping", __func__); return false; } if (num_gain_tbl_entry >= MAX_VOLUME_CAL_STEPS) { ALOGE("%s: max entry reached max[%d] current index[%d] .. rejecting", __func__, MAX_VOLUME_CAL_STEPS, num_gain_tbl_entry); num_gain_tbl_entry = -1; // indicates error and no more info will be cached return false; } if (num_gain_tbl_entry > 0 && tbl_mapping[num_gain_tbl_entry - 1].amp >= tbl_entry->amp) { ALOGE("%s: value not in ascending order .. rejecting custom mapping", __func__); num_gain_tbl_entry = -1; // indicates error and no more info will be cached return false; } tbl_mapping[num_gain_tbl_entry] = *tbl_entry; ++num_gain_tbl_entry; return true; } int platform_get_gain_level_mapping(struct amp_db_and_gain_table *mapping_tbl, int table_size) { int itt = 0; ALOGV("platform_get_gain_level_mapping called "); if (num_gain_tbl_entry <= 0 || num_gain_tbl_entry > MAX_VOLUME_CAL_STEPS) { ALOGD("%s: empty or currupted gain_mapping_table", __func__); return 0; } for (; itt < num_gain_tbl_entry && itt <= table_size; itt++) { mapping_tbl[itt] = tbl_mapping[itt]; ALOGV("%s: added amp[%f] db[%f] level[%d]", __func__, mapping_tbl[itt].amp, mapping_tbl[itt].db, mapping_tbl[itt].level); } return num_gain_tbl_entry; } int platform_snd_card_update(void *platform, card_status_t status) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; if (status == CARD_STATUS_ONLINE) { if (my_data->acdb_send_custom_top) my_data->acdb_send_custom_top(); } return 0; } /* * configures afe with bit width and Sample Rate */ int platform_set_backend_cfg(const struct audio_device* adev, snd_device_t snd_device, const struct audio_backend_cfg *backend_cfg) { int ret = 0; const int backend_idx = platform_get_backend_index(snd_device); struct platform_data *my_data = (struct platform_data *)adev->platform; const unsigned int bit_width = backend_cfg->bit_width; const unsigned int sample_rate = backend_cfg->sample_rate; const unsigned int channels = backend_cfg->channels; const audio_format_t format = backend_cfg->format; const bool passthrough_enabled = backend_cfg->passthrough_enabled; ALOGV("%s:becf: afe: bitwidth %d, samplerate %d channels %d" ", backend_idx %d device (%s)", __func__, bit_width, sample_rate, channels, backend_idx, platform_get_snd_device_name(snd_device)); if ((my_data->current_backend_cfg[backend_idx].bitwidth_mixer_ctl) && (bit_width != my_data->current_backend_cfg[backend_idx].bit_width)) { struct mixer_ctl *ctl = NULL; ctl = mixer_get_ctl_by_name(adev->mixer, my_data->current_backend_cfg[backend_idx].bitwidth_mixer_ctl); if (!ctl) { ALOGE("%s:becf: afe: Could not get ctl for mixer command - %s", __func__, my_data->current_backend_cfg[backend_idx].bitwidth_mixer_ctl); return -EINVAL; } if (bit_width == 24) { if (format == AUDIO_FORMAT_PCM_24_BIT_PACKED) ret = mixer_ctl_set_enum_by_string(ctl, "S24_3LE"); else ret = mixer_ctl_set_enum_by_string(ctl, "S24_LE"); } else if (bit_width == 32) { ret = mixer_ctl_set_enum_by_string(ctl, "S32_LE"); } else { ret = mixer_ctl_set_enum_by_string(ctl, "S16_LE"); } if ( ret < 0) { ALOGE("%s:becf: afe: fail for %s mixer set to %d bit for %x format", __func__, my_data->current_backend_cfg[backend_idx].bitwidth_mixer_ctl, bit_width, format); } else { my_data->current_backend_cfg[backend_idx].bit_width = bit_width; ALOGD("%s:becf: afe: %s mixer set to %d bit for %x format", __func__, my_data->current_backend_cfg[backend_idx].bitwidth_mixer_ctl, bit_width, format); } /* set the ret as 0 and not pass back to upper layer */ ret = 0; } if (passthrough_enabled || ((my_data->current_backend_cfg[backend_idx].samplerate_mixer_ctl) && (sample_rate != my_data->current_backend_cfg[backend_idx].sample_rate))) { char *rate_str = NULL; struct mixer_ctl *ctl = NULL; switch (sample_rate) { case 32000: if (passthrough_enabled) { rate_str = "KHZ_32"; break; } case 8000: case 11025: case 16000: case 22050: case 48000: rate_str = "KHZ_48"; break; case 44100: rate_str = "KHZ_44P1"; break; case 64000: case 96000: rate_str = "KHZ_96"; break; case 88200: rate_str = "KHZ_88P2"; break; case 176400: rate_str = "KHZ_176P4"; break; case 192000: rate_str = "KHZ_192"; break; case 352800: rate_str = "KHZ_352P8"; break; case 384000: rate_str = "KHZ_384"; break; case 144000: if (passthrough_enabled) { rate_str = "KHZ_144"; break; } default: rate_str = "KHZ_48"; break; } ctl = mixer_get_ctl_by_name(adev->mixer, my_data->current_backend_cfg[backend_idx].samplerate_mixer_ctl); if(!ctl) { ALOGE("%s:becf: afe: Could not get ctl for mixer command - %s", __func__, my_data->current_backend_cfg[backend_idx].samplerate_mixer_ctl); return -EINVAL; } ALOGD("%s:becf: afe: %s set to %s", __func__, my_data->current_backend_cfg[backend_idx].samplerate_mixer_ctl, rate_str); mixer_ctl_set_enum_by_string(ctl, rate_str); my_data->current_backend_cfg[backend_idx].sample_rate = sample_rate; } if ((my_data->current_backend_cfg[backend_idx].channels_mixer_ctl) && (channels != my_data->current_backend_cfg[backend_idx].channels)) { struct mixer_ctl *ctl = NULL; char *channel_cnt_str = NULL; switch (channels) { case 8: channel_cnt_str = "Eight"; break; case 7: channel_cnt_str = "Seven"; break; case 6: channel_cnt_str = "Six"; break; case 5: channel_cnt_str = "Five"; break; case 4: channel_cnt_str = "Four"; break; case 3: channel_cnt_str = "Three"; break; case 1: channel_cnt_str = "One"; break; case 2: default: channel_cnt_str = "Two"; break; } ctl = mixer_get_ctl_by_name(adev->mixer, my_data->current_backend_cfg[backend_idx].channels_mixer_ctl); if (!ctl) { ALOGE("%s:becf: afe: Could not get ctl for mixer command - %s", __func__, my_data->current_backend_cfg[backend_idx].channels_mixer_ctl); return -EINVAL; } mixer_ctl_set_enum_by_string(ctl, channel_cnt_str); my_data->current_backend_cfg[backend_idx].channels = channels; // skip EDID configuration for HDMI backend ALOGD("%s:becf: afe: %s set to %s", __func__, my_data->current_backend_cfg[backend_idx].channels_mixer_ctl, channel_cnt_str); } // skip set ext_display format mixer control return ret; } static int platform_get_snd_device_bit_width(snd_device_t snd_device) { if ((snd_device < SND_DEVICE_MIN) || (snd_device >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %d", __func__, snd_device); return CODEC_BACKEND_DEFAULT_BIT_WIDTH; } return backend_bit_width_table[snd_device]; } /* * return backend_idx on which voice call is active */ static int platform_get_voice_call_backend(struct audio_device* adev) { struct audio_usecase *uc = NULL; struct listnode *node; snd_device_t out_snd_device = SND_DEVICE_NONE; int backend_idx = -1; if (voice_is_in_call(adev) || adev->mode == AUDIO_MODE_IN_COMMUNICATION) { list_for_each(node, &adev->usecase_list) { uc = node_to_item(node, struct audio_usecase, list); if (uc && uc->type == VOICE_CALL && uc->stream.out) { out_snd_device = platform_get_output_snd_device(adev->platform, uc->stream.out->devices); backend_idx = platform_get_backend_index(out_snd_device); break; } } } return backend_idx; } /* * goes through all the current usecases and picks the highest * bitwidth & samplerate */ static bool platform_check_capture_backend_cfg(struct audio_device* adev, int backend_idx, struct audio_backend_cfg *backend_cfg) { bool backend_change = false; unsigned int bit_width; unsigned int sample_rate; unsigned int channels; struct platform_data *my_data = (struct platform_data *)adev->platform; bit_width = backend_cfg->bit_width; sample_rate = backend_cfg->sample_rate; channels = backend_cfg->channels; ALOGV("%s:txbecf: afe: Codec selected backend: %d current bit width: %d and " "sample rate: %d, channels %d",__func__,backend_idx, bit_width, sample_rate, channels); // For voice calls use default configuration i.e. 16b/48K, only applicable to // default backend // force routing is not required here, caller will do it anyway if (voice_is_in_call(adev) || adev->mode == AUDIO_MODE_IN_COMMUNICATION) { ALOGW("%s:txbecf: afe: Use default bw and sr for voice/voip calls and " "for unprocessed/camera source", __func__); bit_width = CODEC_BACKEND_DEFAULT_BIT_WIDTH; sample_rate = CODEC_BACKEND_DEFAULT_SAMPLE_RATE; } if (backend_idx == USB_AUDIO_TX_BACKEND) { audio_extn_usb_is_config_supported(&bit_width, &sample_rate, &channels, false); ALOGV("%s:txbecf: afe: USB BE configured as bit_width(%d)sample_rate(%d)channels(%d)", __func__, bit_width, sample_rate, channels); } ALOGV("%s:txbecf: afe: Codec selected backend: %d updated bit width: %d and " "sample rate: %d", __func__, backend_idx, bit_width, sample_rate); // Force routing if the expected bitwdith or samplerate // is not same as current backend comfiguration if ((bit_width != my_data->current_backend_cfg[backend_idx].bit_width) || (sample_rate != my_data->current_backend_cfg[backend_idx].sample_rate) || (channels != my_data->current_backend_cfg[backend_idx].channels)) { backend_cfg->bit_width = bit_width; backend_cfg->sample_rate= sample_rate; backend_cfg->channels = channels; backend_change = true; ALOGI("%s:txbecf: afe: Codec backend needs to be updated. new bit width: %d " "new sample rate: %d new channel: %d", __func__, backend_cfg->bit_width, backend_cfg->sample_rate, backend_cfg->channels); } return backend_change; } static void pick_playback_cfg_for_uc(struct audio_device *adev, struct audio_usecase *usecase, snd_device_t snd_device, unsigned int *bit_width, unsigned int *sample_rate, unsigned int *channels) { int i =0; struct listnode *node; list_for_each(node, &adev->usecase_list) { struct audio_usecase *uc; uc = node_to_item(node, struct audio_usecase, list); struct stream_out *out = (struct stream_out*) uc->stream.out; if (uc->type == PCM_PLAYBACK && out && usecase != uc) { unsigned int out_channels = audio_channel_count_from_out_mask(out->channel_mask); ALOGV("%s:napb: (%d) - (%s)id (%d) sr %d bw " "(%d) ch (%d) device %s", __func__, i++, use_case_table[uc->id], uc->id, out->sample_rate, pcm_format_to_bits(out->config.format), out_channels, platform_get_snd_device_name(uc->out_snd_device)); if (platform_check_backends_match(snd_device, uc->out_snd_device)) { if (*bit_width < pcm_format_to_bits(out->config.format)) *bit_width = pcm_format_to_bits(out->config.format); if (*sample_rate < out->sample_rate) *sample_rate = out->sample_rate; if (out->sample_rate < OUTPUT_SAMPLING_RATE_44100) *sample_rate = CODEC_BACKEND_DEFAULT_SAMPLE_RATE; if (*channels < out_channels) *channels = out_channels; } } } return; } static void headset_is_config_supported(unsigned int *bit_width, unsigned int *sample_rate, unsigned int *channels) { switch (*bit_width) { case 16: case 24: break; default: *bit_width = 16; break; } if (*sample_rate > 192000) { *sample_rate = 192000; } if (*channels > 2) { *channels = 2; } } static bool platform_check_playback_backend_cfg(struct audio_device* adev, struct audio_usecase* usecase, snd_device_t snd_device, struct audio_backend_cfg *backend_cfg) { bool backend_change = false; unsigned int bit_width; unsigned int sample_rate; unsigned int channels; int backend_idx = DEFAULT_CODEC_BACKEND; unsigned long service_interval = 0; // 0 is invalid struct platform_data *my_data = (struct platform_data *)adev->platform; if (snd_device == SND_DEVICE_OUT_BT_SCO || snd_device == SND_DEVICE_OUT_BT_SCO_WB) { backend_change = false; return backend_change; } backend_idx = platform_get_backend_index(snd_device); bit_width = backend_cfg->bit_width; sample_rate = backend_cfg->sample_rate; channels = backend_cfg->channels; ALOGV("%s:becf: afe: bitwidth %d, samplerate %d channels %d" ", backend_idx %d usecase = %d device (%s)", __func__, bit_width, sample_rate, channels, backend_idx, usecase->id, platform_get_snd_device_name(snd_device)); if (backend_idx == platform_get_voice_call_backend(adev)) { ALOGW("%s:becf: afe:Use default bw and sr for voice/voip calls ", __func__); bit_width = CODEC_BACKEND_DEFAULT_BIT_WIDTH; sample_rate = CODEC_BACKEND_DEFAULT_SAMPLE_RATE; channels = CODEC_BACKEND_DEFAULT_CHANNELS; } else { /* * The backend should be configured at highest bit width and/or * sample rate amongst all playback usecases. * If the selected sample rate and/or bit width differ with * current backend sample rate and/or bit width, then, we set the * backend re-configuration flag. * * Exception: 16 bit playbacks is allowed through 16 bit/48/44.1 khz backend only */ pick_playback_cfg_for_uc(adev, usecase, snd_device, &bit_width, &sample_rate, &channels); } switch (backend_idx) { case USB_AUDIO_RX_BACKEND: audio_extn_usb_is_config_supported(&bit_width, &sample_rate, &channels, true); if (platform_get_usb_service_interval(adev->platform, true, &service_interval) == 0) { /* overwrite with best altset for this service interval */ int ret = audio_extn_usb_altset_for_service_interval(true /*playback*/, service_interval, &bit_width, &sample_rate, &channels); if (ret < 0) { ALOGE("Failed to find altset for service interval %lu, skip reconfig", service_interval); return false; } } ALOGV("%s: USB BE configured as bit_width(%d)sample_rate(%d)channels(%d)", __func__, bit_width, sample_rate, channels); break; case HEADPHONE_BACKEND: headset_is_config_supported(&bit_width, &sample_rate, &channels); break; case DEFAULT_CODEC_BACKEND: default: bit_width = platform_get_snd_device_bit_width(snd_device); sample_rate = CODEC_BACKEND_DEFAULT_SAMPLE_RATE; channels = CODEC_BACKEND_DEFAULT_CHANNELS; break; } ALOGV("%s:becf: afe: Codec selected backend: %d updated bit width: %d and" "sample rate: %d", __func__, backend_idx , bit_width, sample_rate); // Force routing if the expected bitwdith or samplerate // is not same as current backend comfiguration if (bit_width != my_data->current_backend_cfg[backend_idx].bit_width || sample_rate != my_data->current_backend_cfg[backend_idx].sample_rate || channels != my_data->current_backend_cfg[backend_idx].channels) { backend_cfg->bit_width = bit_width; backend_cfg->sample_rate = sample_rate; backend_cfg->channels = channels; backend_cfg->passthrough_enabled = false; backend_change = true; ALOGV("%s:becf: afe: Codec backend needs to be updated. new bit width: %d" "new sample rate: %d new channels: %d", __func__, backend_cfg->bit_width, backend_cfg->sample_rate, backend_cfg->channels); } return backend_change; } bool platform_check_and_set_playback_backend_cfg(struct audio_device* adev, struct audio_usecase *usecase, snd_device_t snd_device) { int backend_idx = DEFAULT_CODEC_BACKEND; int new_snd_devices[SND_DEVICE_OUT_END]; int i, num_devices = 1; bool ret = false; struct platform_data *my_data = (struct platform_data *)adev->platform; struct audio_backend_cfg backend_cfg; backend_idx = platform_get_backend_index(snd_device); backend_cfg.bit_width = pcm_format_to_bits(usecase->stream.out->config.format); backend_cfg.sample_rate = usecase->stream.out->sample_rate; backend_cfg.format = usecase->stream.out->format; backend_cfg.channels = audio_channel_count_from_out_mask(usecase->stream.out->channel_mask); /*this is populated by check_codec_backend_cfg hence set default value to false*/ backend_cfg.passthrough_enabled = false; ALOGV("%s:becf: afe: bitwidth %d, samplerate %d channels %d" ", backend_idx %d usecase = %d device (%s)", __func__, backend_cfg.bit_width, backend_cfg.sample_rate, backend_cfg.channels, backend_idx, usecase->id, platform_get_snd_device_name(snd_device)); if (platform_can_split_snd_device(snd_device, &num_devices, new_snd_devices) < 0) new_snd_devices[0] = snd_device; for (i = 0; i < num_devices; i++) { ALOGV("%s: new_snd_devices[%d] is %d", __func__, i, new_snd_devices[i]); if ((platform_check_playback_backend_cfg(adev, usecase, new_snd_devices[i], &backend_cfg))) { platform_set_backend_cfg(adev, new_snd_devices[i], &backend_cfg); ret = true; } } return ret; } bool platform_check_and_set_capture_backend_cfg(struct audio_device* adev, struct audio_usecase *usecase, snd_device_t snd_device) { int backend_idx = platform_get_backend_index(snd_device); int ret = 0; struct audio_backend_cfg backend_cfg; memset(&backend_cfg, 0, sizeof(struct audio_backend_cfg)); if (usecase->type == PCM_CAPTURE) { backend_cfg.format = usecase->stream.in->format; backend_cfg.channels = audio_channel_count_from_in_mask(usecase->stream.in->channel_mask); } else { backend_cfg.bit_width = CODEC_BACKEND_DEFAULT_BIT_WIDTH; backend_cfg.sample_rate = CODEC_BACKEND_DEFAULT_SAMPLE_RATE; backend_cfg.format = AUDIO_FORMAT_PCM_16_BIT; backend_cfg.channels = 1; } ALOGV("%s:txbecf: afe: bitwidth %d, samplerate %d, channel %d" ", backend_idx %d usecase = %d device (%s)", __func__, backend_cfg.bit_width, backend_cfg.sample_rate, backend_cfg.channels, backend_idx, usecase->id, platform_get_snd_device_name(snd_device)); if (platform_check_capture_backend_cfg(adev, backend_idx, &backend_cfg)) { ret = platform_set_backend_cfg(adev, snd_device, &backend_cfg); if(!ret) return true; } return false; } static int max_be_dai_names = 0; static const struct be_dai_name_struct *be_dai_name_table; /* * Retrieves the be_dai_name_table from kernel to enable a mapping * between sound device hw interfaces and backend IDs. This allows HAL to * specify the backend a specific calibration is needed for. */ static int init_be_dai_name_table(struct audio_device *adev) { const char *mixer_ctl_name = "Backend DAI Name Table"; struct mixer_ctl *ctl; int i, j, ret, size; bool valid_hw_interface; ctl = mixer_get_ctl_by_name(adev->mixer, mixer_ctl_name); if (!ctl) { ALOGE("%s: Could not get ctl for mixer name %s\n", __func__, mixer_ctl_name); ret = -EINVAL; goto done; } mixer_ctl_update(ctl); size = mixer_ctl_get_num_values(ctl); if (size <= 0){ ALOGE("%s: Failed to get %s size %d\n", __func__, mixer_ctl_name, size); ret = -EFAULT; goto done; } be_dai_name_table = (const struct be_dai_name_struct *)calloc(1, size); if (be_dai_name_table == NULL) { ALOGE("%s: Failed to allocate memory for %s\n", __func__, mixer_ctl_name); ret = -ENOMEM; goto freeMem; } ret = mixer_ctl_get_array(ctl, (void *)be_dai_name_table, size); if (ret) { ALOGE("%s: Failed to get %s, ret %d\n", __func__, mixer_ctl_name, ret); ret = -EFAULT; goto freeMem; } if (be_dai_name_table != NULL) { max_be_dai_names = size / sizeof(struct be_dai_name_struct); ALOGV("%s: Successfully got %s, number of be dais is %d\n", __func__, mixer_ctl_name, max_be_dai_names); ret = 0; } else { ALOGE("%s: Failed to get %s\n", __func__, mixer_ctl_name); ret = -EFAULT; goto freeMem; } /* * Validate all sound devices have a valid backend set to catch * errors for uncommon sound devices */ for (i = 0; i < SND_DEVICE_MAX; i++) { valid_hw_interface = false; if (hw_interface_table[i] == NULL) { ALOGW("%s: sound device %s has no hw interface set\n", __func__, platform_get_snd_device_name(i)); continue; } for (j = 0; j < max_be_dai_names; j++) { if (strcmp(hw_interface_table[i], be_dai_name_table[j].be_name) == 0) { valid_hw_interface = true; break; } } if (!valid_hw_interface) ALOGD("%s: sound device %s does not have a valid hw interface set " "(disregard for combo devices) %s\n", __func__, platform_get_snd_device_name(i), hw_interface_table[i]); } goto done; freeMem: if (be_dai_name_table) { free((void *)be_dai_name_table); be_dai_name_table = NULL; } done: return ret; } int platform_get_snd_device_backend_index(snd_device_t device) { int i, be_dai_id; const char * hw_interface_name = NULL; ALOGV("%s: enter with device %d\n", __func__, device); if ((device < SND_DEVICE_MIN) || (device >= SND_DEVICE_MAX)) { ALOGE("%s: Invalid snd_device = %d", __func__, device); be_dai_id = -EINVAL; goto done; } /* Get string value of necessary backend for device */ hw_interface_name = hw_interface_table[device]; if (hw_interface_name == NULL) { ALOGE("%s: no hw_interface set for device %d\n", __func__, device); be_dai_id = -EINVAL; goto done; } /* Check if be dai name table was retrieved successfully */ if (be_dai_name_table == NULL) { ALOGE("%s: BE DAI Name Table is not present\n", __func__); be_dai_id = -EFAULT; goto done; } /* Get backend ID for device specified */ for (i = 0; i < max_be_dai_names; i++) { if (strcmp(hw_interface_name, be_dai_name_table[i].be_name) == 0) { be_dai_id = be_dai_name_table[i].be_id; goto done; } } ALOGE("%s: no interface matching name %s\n", __func__, hw_interface_name); be_dai_id = -EINVAL; goto done; done: return be_dai_id; } void platform_check_and_update_copp_sample_rate(void* platform, snd_device_t snd_device, unsigned int stream_sr, int* sample_rate) { struct platform_data* my_data = (struct platform_data *)platform; int backend_idx = platform_get_backend_index(snd_device); int device_sr = my_data->current_backend_cfg[backend_idx].sample_rate; /* *Check if device SR is multiple of 8K or 11.025 Khz *check if the stream SR is multiple of same base, if yes *then have copp SR equal to stream SR, this ensures that *post processing happens at stream SR, else have *copp SR equal to device SR. */ if (!(((sample_rate_multiple(device_sr, SAMPLE_RATE_8000)) && (sample_rate_multiple(stream_sr, SAMPLE_RATE_8000))) || ((sample_rate_multiple(device_sr, SAMPLE_RATE_11025)) && (sample_rate_multiple(stream_sr, SAMPLE_RATE_11025))))) { *sample_rate = device_sr; } else *sample_rate = stream_sr; ALOGI("sn_device %d device sr %d stream sr %d copp sr %d", snd_device, device_sr, stream_sr , *sample_rate); } // called from info parser void platform_add_app_type(const char *uc_type, const char *mode, int bw, int app_type, int max_rate) { struct app_type_entry *ap = (struct app_type_entry *)calloc(1, sizeof(struct app_type_entry)); if (!ap) { ALOGE("%s failed to allocate mem for app type", __func__); return; } ap->uc_type = -1; for (int i=0; i<USECASE_TYPE_MAX; i++) { if (!strcmp(uc_type, usecase_type_index[i].name)) { ap->uc_type = usecase_type_index[i].index; break; } } if (ap->uc_type == -1) { free(ap); return; } ALOGI("%s uc %s mode %s bw %d app_type %d max_rate %d", __func__, uc_type, mode, bw, app_type, max_rate); ap->bit_width = bw; ap->app_type = app_type; ap->max_rate = max_rate; ap->mode = strdup(mode); list_add_tail(&app_type_entry_list, &ap->node); } int platform_get_default_app_type_v2(void *platform __unused, usecase_type_t type, int *app_type ) { if (type == PCM_PLAYBACK) *app_type = DEFAULT_APP_TYPE_RX_PATH; else *app_type = DEFAULT_APP_TYPE_TX_PATH; return 0; } int platform_get_app_type_v2(void *platform, usecase_type_t uc_type, const char *mode, int bw, int sr __unused, int *app_type) { struct listnode *node; struct app_type_entry *entry; *app_type = -1; ALOGV("%s find match for uc %d mode %s bw %d rate %d", __func__, uc_type, mode, bw, sr); list_for_each(node, &app_type_entry_list) { entry = node_to_item(node, struct app_type_entry, node); ALOGV("%s uc %d mode %s bw %d app_type %d max_rate %d", __func__, entry->uc_type, entry->mode, entry->bit_width, entry->app_type, entry->max_rate); if (entry->bit_width == bw && entry->uc_type == uc_type && sr <= entry->max_rate && entry->mode && !strcmp(mode, entry->mode)) { ALOGV("%s found match %d", __func__, entry->app_type); *app_type = entry->app_type; break; } } if (*app_type == -1) { ALOGV("%s no match found, return default", __func__); return platform_get_default_app_type_v2(platform, uc_type, app_type); } return 0; } int platform_set_sidetone(struct audio_device *adev, snd_device_t out_snd_device, bool enable, char *str) { int ret; if (out_snd_device == SND_DEVICE_OUT_USB_HEADSET || out_snd_device == SND_DEVICE_OUT_VOICE_USB_HEADSET) { ret = audio_extn_usb_enable_sidetone(out_snd_device, enable); if (ret) ALOGI("%s: usb device %d does not support device sidetone\n", __func__, out_snd_device); } else { ALOGV("%s: sidetone out device(%d) mixer cmd = %s\n", __func__, out_snd_device, str); if (enable) audio_route_apply_and_update_path(adev->audio_route, str); else audio_route_reset_and_update_path(adev->audio_route, str); } return 0; } int platform_get_mmap_data_fd(void *platform __unused, int fe_dev __unused, int dir __unused, int *fd __unused, uint32_t *size __unused) { #if defined (PLATFORM_MSM8996) || (PLATFORM_MSM8998) || (PLATFORM_SDM845) struct platform_data *my_data = (struct platform_data *)platform; struct audio_device *adev = my_data->adev; int hw_fd = -1; char dev_name[128]; struct snd_pcm_mmap_fd mmap_fd; memset(&mmap_fd, 0, sizeof(mmap_fd)); mmap_fd.dir = dir; snprintf(dev_name, sizeof(dev_name), "/dev/snd/hwC%uD%u", adev->snd_card, HWDEP_FE_BASE+fe_dev); hw_fd = open(dev_name, O_RDONLY); if (hw_fd < 0) { ALOGE("fe hw dep node open %d/%d failed", adev->snd_card, fe_dev); return -1; } if (ioctl(hw_fd, SNDRV_PCM_IOCTL_MMAP_DATA_FD, &mmap_fd) < 0) { ALOGE("fe hw dep node ioctl failed"); close(hw_fd); return -1; } *fd = mmap_fd.fd; *size = mmap_fd.size; close(hw_fd); // mmap_fd should still be valid return 0; #else return -1; #endif } bool platform_sound_trigger_usecase_needs_event(audio_usecase_t uc_id) { bool needs_event = false; switch (uc_id) { /* concurrent capture usecases which needs event */ case USECASE_AUDIO_RECORD: case USECASE_AUDIO_RECORD_LOW_LATENCY: case USECASE_AUDIO_RECORD_MMAP: case USECASE_AUDIO_RECORD_HIFI: case USECASE_AUDIO_RECORD_VOIP: case USECASE_VOICEMMODE1_CALL: case USECASE_VOICEMMODE2_CALL: /* concurrent playback usecases that needs event */ case USECASE_AUDIO_PLAYBACK_DEEP_BUFFER: case USECASE_AUDIO_PLAYBACK_OFFLOAD: needs_event = true; break; default: ALOGV("%s:usecase_id[%d] no need to raise event.", __func__, uc_id); } return needs_event; } bool platform_snd_device_has_speaker(snd_device_t dev) { int num_devs = 2; snd_device_t split_devs[2] = {SND_DEVICE_NONE, SND_DEVICE_NONE}; if (platform_can_split_snd_device(dev, &num_devs, split_devs) == 0) { return platform_snd_device_has_speaker(split_devs[0]) || platform_snd_device_has_speaker(split_devs[1]); } switch (dev) { case SND_DEVICE_OUT_SPEAKER: case SND_DEVICE_OUT_SPEAKER_SAFE: case SND_DEVICE_OUT_SPEAKER_REVERSE: case SND_DEVICE_OUT_SPEAKER_PROTECTED: case SND_DEVICE_OUT_VOICE_SPEAKER_PROTECTED: case SND_DEVICE_OUT_VOICE_SPEAKER_HFP: return true; default: break; } return false; } bool platform_set_microphone_characteristic(void *platform, struct audio_microphone_characteristic_t mic) { struct platform_data *my_data = (struct platform_data *)platform; if (my_data->declared_mic_count >= AUDIO_MICROPHONE_MAX_COUNT) { ALOGE("mic number is more than maximum number"); return false; } for (size_t ch = 0; ch < AUDIO_CHANNEL_COUNT_MAX; ch++) { mic.channel_mapping[ch] = AUDIO_MICROPHONE_CHANNEL_MAPPING_UNUSED; } my_data->microphones[my_data->declared_mic_count++] = mic; return true; } int platform_get_microphones(void *platform, struct audio_microphone_characteristic_t *mic_array, size_t *mic_count) { struct platform_data *my_data = (struct platform_data *)platform; if (mic_count == NULL) { return -EINVAL; } if (mic_array == NULL) { return -EINVAL; } if (*mic_count == 0) { *mic_count = my_data->declared_mic_count; return 0; } size_t max_mic_count = *mic_count; size_t actual_mic_count = 0; for (size_t i = 0; i < max_mic_count && i < my_data->declared_mic_count; i++) { mic_array[i] = my_data->microphones[i]; actual_mic_count++; } *mic_count = actual_mic_count; return 0; } bool platform_set_microphone_map(void *platform, snd_device_t in_snd_device, const struct mic_info *info) { struct platform_data *my_data = (struct platform_data *)platform; if (in_snd_device < SND_DEVICE_IN_BEGIN || in_snd_device >= SND_DEVICE_IN_END) { ALOGE("%s: Sound device not valid", __func__); return false; } size_t m_count = my_data->mic_map[in_snd_device].mic_count++; if (m_count >= AUDIO_MICROPHONE_MAX_COUNT) { ALOGE("%s: Microphone count is greater than max allowed value", __func__); my_data->mic_map[in_snd_device].mic_count--; return false; } my_data->mic_map[in_snd_device].microphones[m_count] = *info; return true; } int platform_get_active_microphones(void *platform, unsigned int channels, audio_usecase_t uc_id, struct audio_microphone_characteristic_t *mic_array, size_t *mic_count) { struct platform_data *my_data = (struct platform_data *)platform; struct audio_usecase *usecase = get_usecase_from_list(my_data->adev, uc_id); if (mic_count == NULL || mic_array == NULL || usecase == NULL) { return -EINVAL; } size_t max_mic_count = my_data->declared_mic_count; size_t actual_mic_count = 0; snd_device_t active_input_snd_device = platform_get_input_snd_device(platform, usecase->stream.in->device); if (active_input_snd_device == SND_DEVICE_NONE) { ALOGI("%s: No active microphones found", __func__); goto end; } size_t active_mic_count = my_data->mic_map[active_input_snd_device].mic_count; struct mic_info *m_info = my_data->mic_map[active_input_snd_device].microphones; for (size_t i = 0; i < active_mic_count; i++) { unsigned int channels_for_active_mic = channels; if (channels_for_active_mic > m_info[i].channel_count) { channels_for_active_mic = m_info[i].channel_count; } for (size_t j = 0; j < max_mic_count; j++) { if (strcmp(my_data->microphones[j].device_id, m_info[i].device_id) == 0) { mic_array[actual_mic_count] = my_data->microphones[j]; for (size_t ch = 0; ch < channels_for_active_mic; ch++) { mic_array[actual_mic_count].channel_mapping[ch] = m_info[i].channel_mapping[ch]; } actual_mic_count++; break; } } } end: *mic_count = actual_mic_count; return 0; } int platform_set_usb_service_interval(void *platform, bool playback, unsigned long service_interval, bool *reconfig) { #if defined (USB_SERVICE_INTERVAL_ENABLED) struct platform_data *_platform = (struct platform_data *)platform; *reconfig = false; if (!playback) { ALOGE("%s not valid for capture", __func__); return -1; } const char *ctl_name = "USB_AUDIO_RX service_interval"; struct mixer_ctl *ctl = mixer_get_ctl_by_name(_platform->adev->mixer, ctl_name); if (!ctl) { ALOGV("%s: could not get mixer %s", __func__, ctl_name); return -1; } if (mixer_ctl_get_value(ctl, 0) != (int)service_interval) { mixer_ctl_set_value(ctl, 0, service_interval); *reconfig = true; } return 0; #else *reconfig = false; (void)platform; (void)playback; (void)service_interval; return -1; #endif } int platform_get_usb_service_interval(void *platform, bool playback, unsigned long *service_interval) { #if defined (USB_SERVICE_INTERVAL_ENABLED) struct platform_data *_platform = (struct platform_data *)platform; if (!playback) { ALOGE("%s not valid for capture", __func__); return -1; } const char *ctl_name = "USB_AUDIO_RX service_interval"; struct mixer_ctl *ctl = mixer_get_ctl_by_name(_platform->adev->mixer, ctl_name); if (!ctl) { ALOGV("%s: could not get mixer %s", __func__, ctl_name); return -1; } *service_interval = mixer_ctl_get_value(ctl, 0); return 0; #else (void)platform; (void)playback; (void)service_interval; return -1; #endif } int platform_set_acdb_metainfo_key(void *platform __unused, char *name __unused, int key __unused) { return -ENOSYS; }