/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "offload_visualizer" /*#define LOG_NDEBUG 0*/ #include <assert.h> #include <dlfcn.h> #include <math.h> #include <pthread.h> #include <stdlib.h> #include <string.h> #include <sys/prctl.h> #include <time.h> #include <unistd.h> #include <cutils/list.h> #include <cutils/log.h> #include <system/thread_defs.h> #include <tinyalsa/asoundlib.h> #include <audio_effects/effect_visualizer.h> #define LIB_ACDB_LOADER "libacdbloader.so" #define ACDB_DEV_TYPE_OUT 1 #define AFE_PROXY_ACDB_ID 45 static void* acdb_handle; typedef void (*acdb_send_audio_cal_t)(int, int); acdb_send_audio_cal_t acdb_send_audio_cal; enum { EFFECT_STATE_UNINITIALIZED, EFFECT_STATE_INITIALIZED, EFFECT_STATE_ACTIVE, }; typedef struct effect_context_s effect_context_t; typedef struct output_context_s output_context_t; /* effect specific operations. Only the init() and process() operations must be defined. * Others are optional. */ typedef struct effect_ops_s { int (*init)(effect_context_t *context); int (*release)(effect_context_t *context); int (*reset)(effect_context_t *context); int (*enable)(effect_context_t *context); int (*disable)(effect_context_t *context); int (*start)(effect_context_t *context, output_context_t *output); int (*stop)(effect_context_t *context, output_context_t *output); int (*process)(effect_context_t *context, audio_buffer_t *in, audio_buffer_t *out); int (*set_parameter)(effect_context_t *context, effect_param_t *param, uint32_t size); int (*get_parameter)(effect_context_t *context, effect_param_t *param, uint32_t *size); int (*command)(effect_context_t *context, uint32_t cmdCode, uint32_t cmdSize, void *pCmdData, uint32_t *replySize, void *pReplyData); } effect_ops_t; struct effect_context_s { const struct effect_interface_s *itfe; struct listnode effects_list_node; /* node in created_effects_list */ struct listnode output_node; /* node in output_context_t.effects_list */ effect_config_t config; const effect_descriptor_t *desc; audio_io_handle_t out_handle; /* io handle of the output the effect is attached to */ uint32_t state; bool offload_enabled; /* when offload is enabled we process VISUALIZER_CMD_CAPTURE command. Otherwise non offloaded visualizer has already processed the command and we must not overwrite the reply. */ effect_ops_t ops; }; struct output_context_s { struct listnode outputs_list_node; /* node in active_outputs_list */ audio_io_handle_t handle; /* io handle */ struct listnode effects_list; /* list of effects attached to this output */ }; /* maximum time since last capture buffer update before resetting capture buffer. This means that the framework has stopped playing audio and we must start returning silence */ #define MAX_STALL_TIME_MS 1000 #define CAPTURE_BUF_SIZE 65536 /* "64k should be enough for everyone" */ #define DISCARD_MEASUREMENTS_TIME_MS 2000 /* discard measurements older than this number of ms */ /* maximum number of buffers for which we keep track of the measurements */ #define MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS 25 /* note: buffer index is stored in uint8_t */ typedef struct buffer_stats_s { bool is_valid; uint16_t peak_u16; /* the positive peak of the absolute value of the samples in a buffer */ float rms_squared; /* the average square of the samples in a buffer */ } buffer_stats_t; typedef struct visualizer_context_s { effect_context_t common; uint32_t capture_idx; uint32_t capture_size; uint32_t scaling_mode; uint32_t last_capture_idx; uint32_t latency; struct timespec buffer_update_time; uint8_t capture_buf[CAPTURE_BUF_SIZE]; /* for measurements */ uint8_t channel_count; /* to avoid recomputing it every time a buffer is processed */ uint32_t meas_mode; uint8_t meas_wndw_size_in_buffers; uint8_t meas_buffer_idx; buffer_stats_t past_meas[MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS]; } visualizer_context_t; extern const struct effect_interface_s effect_interface; /* Offload visualizer UUID: 7a8044a0-1a71-11e3-a184-0002a5d5c51b */ const effect_descriptor_t visualizer_descriptor = { {0xe46b26a0, 0xdddd, 0x11db, 0x8afd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, {0x7a8044a0, 0x1a71, 0x11e3, 0xa184, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, EFFECT_CONTROL_API_VERSION, (EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_HW_ACC_TUNNEL ), 0, /* TODO */ 1, "QCOM MSM offload visualizer", "The Android Open Source Project", }; const effect_descriptor_t *descriptors[] = { &visualizer_descriptor, NULL, }; pthread_once_t once = PTHREAD_ONCE_INIT; int init_status; /* list of created effects. Updated by visualizer_hal_start_output() * and visualizer_hal_stop_output() */ struct listnode created_effects_list; /* list of active output streams. Updated by visualizer_hal_start_output() * and visualizer_hal_stop_output() */ struct listnode active_outputs_list; /* thread capturing PCM from Proxy port and calling the process function on each enabled effect * attached to an active output stream */ pthread_t capture_thread; /* lock must be held when modifying or accessing created_effects_list or active_outputs_list */ pthread_mutex_t lock; /* thread_lock must be held when starting or stopping the capture thread. * Locking order: thread_lock -> lock */ pthread_mutex_t thread_lock; /* cond is signaled when an output is started or stopped or an effect is enabled or disable: the * capture thread will reevaluate the capture and effect rocess conditions. */ pthread_cond_t cond; /* true when requesting the capture thread to exit */ bool exit_thread; /* 0 if the capture thread was created successfully */ int thread_status; #define DSP_OUTPUT_LATENCY_MS 0 /* Fudge factor for latency after capture point in audio DSP */ /* Retry for delay for mixer open */ #define RETRY_NUMBER 10 #define RETRY_US 500000 #define MIXER_CARD 0 #define SOUND_CARD 0 /* Proxy port supports only MMAP read and those fixed parameters*/ #define AUDIO_CAPTURE_CHANNEL_COUNT 2 #define AUDIO_CAPTURE_SMP_RATE 48000 #define AUDIO_CAPTURE_PERIOD_SIZE (768) #define AUDIO_CAPTURE_PERIOD_COUNT 32 struct pcm_config pcm_config_capture = { .channels = AUDIO_CAPTURE_CHANNEL_COUNT, .rate = AUDIO_CAPTURE_SMP_RATE, .period_size = AUDIO_CAPTURE_PERIOD_SIZE, .period_count = AUDIO_CAPTURE_PERIOD_COUNT, .format = PCM_FORMAT_S16_LE, .start_threshold = AUDIO_CAPTURE_PERIOD_SIZE / 4, .stop_threshold = INT_MAX, .avail_min = AUDIO_CAPTURE_PERIOD_SIZE / 4, }; /* * Local functions */ static void init_once() { list_init(&created_effects_list); list_init(&active_outputs_list); pthread_mutex_init(&lock, NULL); pthread_mutex_init(&thread_lock, NULL); pthread_cond_init(&cond, NULL); exit_thread = false; thread_status = -1; init_status = 0; } int lib_init() { pthread_once(&once, init_once); return init_status; } bool effect_exists(effect_context_t *context) { struct listnode *node; list_for_each(node, &created_effects_list) { effect_context_t *fx_ctxt = node_to_item(node, effect_context_t, effects_list_node); if (fx_ctxt == context) { return true; } } return false; } output_context_t *get_output(audio_io_handle_t output) { struct listnode *node; list_for_each(node, &active_outputs_list) { output_context_t *out_ctxt = node_to_item(node, output_context_t, outputs_list_node); if (out_ctxt->handle == output) { return out_ctxt; } } return NULL; } void add_effect_to_output(output_context_t * output, effect_context_t *context) { struct listnode *fx_node; list_for_each(fx_node, &output->effects_list) { effect_context_t *fx_ctxt = node_to_item(fx_node, effect_context_t, output_node); if (fx_ctxt == context) return; } list_add_tail(&output->effects_list, &context->output_node); if (context->ops.start) context->ops.start(context, output); } void remove_effect_from_output(output_context_t * output, effect_context_t *context) { struct listnode *fx_node; list_for_each(fx_node, &output->effects_list) { effect_context_t *fx_ctxt = node_to_item(fx_node, effect_context_t, output_node); if (fx_ctxt == context) { if (context->ops.stop) context->ops.stop(context, output); list_remove(&context->output_node); return; } } } bool effects_enabled() { struct listnode *out_node; list_for_each(out_node, &active_outputs_list) { struct listnode *fx_node; output_context_t *out_ctxt = node_to_item(out_node, output_context_t, outputs_list_node); list_for_each(fx_node, &out_ctxt->effects_list) { effect_context_t *fx_ctxt = node_to_item(fx_node, effect_context_t, output_node); if (fx_ctxt->state == EFFECT_STATE_ACTIVE && fx_ctxt->ops.process != NULL) return true; } } return false; } int configure_proxy_capture(struct mixer *mixer, int value) { const char *proxy_ctl_name = "AFE_PCM_RX Audio Mixer MultiMedia4"; struct mixer_ctl *ctl; if (value && acdb_send_audio_cal) acdb_send_audio_cal(AFE_PROXY_ACDB_ID, ACDB_DEV_TYPE_OUT); ctl = mixer_get_ctl_by_name(mixer, proxy_ctl_name); if (ctl == NULL) { ALOGW("%s: could not get %s ctl", __func__, proxy_ctl_name); return -EINVAL; } if (mixer_ctl_set_value(ctl, 0, value) != 0) ALOGW("%s: error setting value %d on %s ", __func__, value, proxy_ctl_name); return 0; } void *capture_thread_loop(void *arg __unused) { int16_t data[AUDIO_CAPTURE_PERIOD_SIZE * AUDIO_CAPTURE_CHANNEL_COUNT * sizeof(int16_t)]; audio_buffer_t buf; buf.frameCount = AUDIO_CAPTURE_PERIOD_SIZE; buf.s16 = data; bool capture_enabled = false; struct mixer *mixer; struct pcm *pcm = NULL; int ret; int retry_num = 0; ALOGD("thread enter"); prctl(PR_SET_NAME, (unsigned long)"visualizer capture", 0, 0, 0); pthread_mutex_lock(&lock); mixer = mixer_open(MIXER_CARD); while (mixer == NULL && retry_num < RETRY_NUMBER) { usleep(RETRY_US); mixer = mixer_open(MIXER_CARD); retry_num++; } if (mixer == NULL) { pthread_mutex_unlock(&lock); return NULL; } for (;;) { if (exit_thread) { break; } if (effects_enabled()) { if (!capture_enabled) { ret = configure_proxy_capture(mixer, 1); if (ret == 0) { pcm = pcm_open(SOUND_CARD, CAPTURE_DEVICE, PCM_IN|PCM_MMAP|PCM_NOIRQ, &pcm_config_capture); if (pcm && !pcm_is_ready(pcm)) { ALOGW("%s: %s", __func__, pcm_get_error(pcm)); pcm_close(pcm); pcm = NULL; configure_proxy_capture(mixer, 0); } else { capture_enabled = true; ALOGD("%s: capture ENABLED", __func__); } } } } else { if (capture_enabled) { if (pcm != NULL) pcm_close(pcm); configure_proxy_capture(mixer, 0); ALOGD("%s: capture DISABLED", __func__); capture_enabled = false; } pthread_cond_wait(&cond, &lock); } if (!capture_enabled) continue; pthread_mutex_unlock(&lock); ret = pcm_mmap_read(pcm, data, sizeof(data)); pthread_mutex_lock(&lock); if (ret == 0) { struct listnode *out_node; list_for_each(out_node, &active_outputs_list) { output_context_t *out_ctxt = node_to_item(out_node, output_context_t, outputs_list_node); struct listnode *fx_node; list_for_each(fx_node, &out_ctxt->effects_list) { effect_context_t *fx_ctxt = node_to_item(fx_node, effect_context_t, output_node); if (fx_ctxt->ops.process != NULL) fx_ctxt->ops.process(fx_ctxt, &buf, &buf); } } } else { ALOGW("%s: read status %d %s", __func__, ret, pcm_get_error(pcm)); } } if (capture_enabled) { if (pcm != NULL) pcm_close(pcm); configure_proxy_capture(mixer, 0); } mixer_close(mixer); pthread_mutex_unlock(&lock); ALOGD("thread exit"); return NULL; } /* * Interface from audio HAL */ __attribute__ ((visibility ("default"))) int visualizer_hal_start_output(audio_io_handle_t output, int pcm_id) { int ret = 0; struct listnode *node; ALOGV("%s output %d pcm_id %d", __func__, output, pcm_id); if (lib_init() != 0) return init_status; pthread_mutex_lock(&thread_lock); pthread_mutex_lock(&lock); if (get_output(output) != NULL) { ALOGW("%s output already started", __func__); ret = -ENOSYS; goto exit; } output_context_t *out_ctxt = (output_context_t *)malloc(sizeof(output_context_t)); out_ctxt->handle = output; list_init(&out_ctxt->effects_list); list_for_each(node, &created_effects_list) { effect_context_t *fx_ctxt = node_to_item(node, effect_context_t, effects_list_node); if (fx_ctxt->out_handle == output) { if (fx_ctxt->ops.start) fx_ctxt->ops.start(fx_ctxt, out_ctxt); list_add_tail(&out_ctxt->effects_list, &fx_ctxt->output_node); } } if (list_empty(&active_outputs_list)) { exit_thread = false; thread_status = pthread_create(&capture_thread, (const pthread_attr_t *) NULL, capture_thread_loop, NULL); } list_add_tail(&active_outputs_list, &out_ctxt->outputs_list_node); pthread_cond_signal(&cond); exit: pthread_mutex_unlock(&lock); pthread_mutex_unlock(&thread_lock); return ret; } __attribute__ ((visibility ("default"))) int visualizer_hal_stop_output(audio_io_handle_t output, int pcm_id) { int ret = 0; struct listnode *node; struct listnode *fx_node; output_context_t *out_ctxt; ALOGV("%s output %d pcm_id %d", __func__, output, pcm_id); if (lib_init() != 0) return init_status; pthread_mutex_lock(&thread_lock); pthread_mutex_lock(&lock); out_ctxt = get_output(output); if (out_ctxt == NULL) { ALOGW("%s output not started", __func__); ret = -ENOSYS; goto exit; } list_for_each(fx_node, &out_ctxt->effects_list) { effect_context_t *fx_ctxt = node_to_item(fx_node, effect_context_t, output_node); if (fx_ctxt->ops.stop) fx_ctxt->ops.stop(fx_ctxt, out_ctxt); } list_remove(&out_ctxt->outputs_list_node); pthread_cond_signal(&cond); if (list_empty(&active_outputs_list)) { if (thread_status == 0) { exit_thread = true; pthread_cond_signal(&cond); pthread_mutex_unlock(&lock); pthread_join(capture_thread, (void **) NULL); pthread_mutex_lock(&lock); thread_status = -1; } } free(out_ctxt); exit: pthread_mutex_unlock(&lock); pthread_mutex_unlock(&thread_lock); return ret; } /* * Effect operations */ int set_config(effect_context_t *context, effect_config_t *config) { if (config->inputCfg.samplingRate != config->outputCfg.samplingRate) return -EINVAL; if (config->inputCfg.channels != config->outputCfg.channels) return -EINVAL; if (config->inputCfg.format != config->outputCfg.format) return -EINVAL; if (config->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO) return -EINVAL; if (config->outputCfg.accessMode != EFFECT_BUFFER_ACCESS_WRITE && config->outputCfg.accessMode != EFFECT_BUFFER_ACCESS_ACCUMULATE) return -EINVAL; if (config->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT) return -EINVAL; context->config = *config; if (context->ops.reset) context->ops.reset(context); return 0; } void get_config(effect_context_t *context, effect_config_t *config) { *config = context->config; } /* * Visualizer operations */ uint32_t visualizer_get_delta_time_ms_from_updated_time(visualizer_context_t* visu_ctxt) { uint32_t delta_ms = 0; if (visu_ctxt->buffer_update_time.tv_sec != 0) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { time_t secs = ts.tv_sec - visu_ctxt->buffer_update_time.tv_sec; long nsec = ts.tv_nsec - visu_ctxt->buffer_update_time.tv_nsec; if (nsec < 0) { --secs; nsec += 1000000000; } delta_ms = secs * 1000 + nsec / 1000000; } } return delta_ms; } int visualizer_reset(effect_context_t *context) { visualizer_context_t * visu_ctxt = (visualizer_context_t *)context; visu_ctxt->capture_idx = 0; visu_ctxt->last_capture_idx = 0; visu_ctxt->buffer_update_time.tv_sec = 0; visu_ctxt->latency = DSP_OUTPUT_LATENCY_MS; memset(visu_ctxt->capture_buf, 0x80, CAPTURE_BUF_SIZE); return 0; } int visualizer_init(effect_context_t *context) { int32_t i; visualizer_context_t * visu_ctxt = (visualizer_context_t *)context; context->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ; context->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO; context->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT; context->config.inputCfg.samplingRate = 44100; context->config.inputCfg.bufferProvider.getBuffer = NULL; context->config.inputCfg.bufferProvider.releaseBuffer = NULL; context->config.inputCfg.bufferProvider.cookie = NULL; context->config.inputCfg.mask = EFFECT_CONFIG_ALL; context->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE; context->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO; context->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT; context->config.outputCfg.samplingRate = 44100; context->config.outputCfg.bufferProvider.getBuffer = NULL; context->config.outputCfg.bufferProvider.releaseBuffer = NULL; context->config.outputCfg.bufferProvider.cookie = NULL; context->config.outputCfg.mask = EFFECT_CONFIG_ALL; visu_ctxt->capture_size = VISUALIZER_CAPTURE_SIZE_MAX; visu_ctxt->scaling_mode = VISUALIZER_SCALING_MODE_NORMALIZED; // measurement initialization visu_ctxt->channel_count = audio_channel_count_from_out_mask(context->config.inputCfg.channels); visu_ctxt->meas_mode = MEASUREMENT_MODE_NONE; visu_ctxt->meas_wndw_size_in_buffers = MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS; visu_ctxt->meas_buffer_idx = 0; for (i=0 ; i<visu_ctxt->meas_wndw_size_in_buffers ; i++) { visu_ctxt->past_meas[i].is_valid = false; visu_ctxt->past_meas[i].peak_u16 = 0; visu_ctxt->past_meas[i].rms_squared = 0; } set_config(context, &context->config); if (acdb_handle == NULL) { acdb_handle = dlopen(LIB_ACDB_LOADER, RTLD_NOW); if (acdb_handle == NULL) { ALOGE("%s: DLOPEN failed for %s", __func__, LIB_ACDB_LOADER); } else { acdb_send_audio_cal = (acdb_send_audio_cal_t)dlsym(acdb_handle, "acdb_loader_send_audio_cal"); if (!acdb_send_audio_cal) ALOGE("%s: Could not find the symbol acdb_send_audio_cal from %s", __func__, LIB_ACDB_LOADER); } } return 0; } int visualizer_get_parameter(effect_context_t *context, effect_param_t *p, uint32_t *size) { visualizer_context_t *visu_ctxt = (visualizer_context_t *)context; p->status = 0; *size = sizeof(effect_param_t) + sizeof(uint32_t); if (p->psize != sizeof(uint32_t)) { p->status = -EINVAL; return 0; } switch (*(uint32_t *)p->data) { case VISUALIZER_PARAM_CAPTURE_SIZE: ALOGV("%s get capture_size = %d", __func__, visu_ctxt->capture_size); *((uint32_t *)p->data + 1) = visu_ctxt->capture_size; p->vsize = sizeof(uint32_t); *size += sizeof(uint32_t); break; case VISUALIZER_PARAM_SCALING_MODE: ALOGV("%s get scaling_mode = %d", __func__, visu_ctxt->scaling_mode); *((uint32_t *)p->data + 1) = visu_ctxt->scaling_mode; p->vsize = sizeof(uint32_t); *size += sizeof(uint32_t); break; case VISUALIZER_PARAM_MEASUREMENT_MODE: ALOGV("%s get meas_mode = %d", __func__, visu_ctxt->meas_mode); *((uint32_t *)p->data + 1) = visu_ctxt->meas_mode; p->vsize = sizeof(uint32_t); *size += sizeof(uint32_t); break; default: p->status = -EINVAL; } return 0; } int visualizer_set_parameter(effect_context_t *context, effect_param_t *p, uint32_t size __unused) { visualizer_context_t *visu_ctxt = (visualizer_context_t *)context; if (p->psize != sizeof(uint32_t) || p->vsize != sizeof(uint32_t)) return -EINVAL; switch (*(uint32_t *)p->data) { case VISUALIZER_PARAM_CAPTURE_SIZE: visu_ctxt->capture_size = *((uint32_t *)p->data + 1); ALOGV("%s set capture_size = %d", __func__, visu_ctxt->capture_size); break; case VISUALIZER_PARAM_SCALING_MODE: visu_ctxt->scaling_mode = *((uint32_t *)p->data + 1); ALOGV("%s set scaling_mode = %d", __func__, visu_ctxt->scaling_mode); break; case VISUALIZER_PARAM_LATENCY: /* Ignore latency as we capture at DSP output * visu_ctxt->latency = *((uint32_t *)p->data + 1); */ ALOGV("%s set latency = %d", __func__, visu_ctxt->latency); break; case VISUALIZER_PARAM_MEASUREMENT_MODE: visu_ctxt->meas_mode = *((uint32_t *)p->data + 1); ALOGV("%s set meas_mode = %d", __func__, visu_ctxt->meas_mode); break; default: return -EINVAL; } return 0; } /* Real process function called from capture thread. Called with lock held */ int visualizer_process(effect_context_t *context, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) { visualizer_context_t *visu_ctxt = (visualizer_context_t *)context; if (!effect_exists(context)) return -EINVAL; if (inBuffer == NULL || inBuffer->raw == NULL || outBuffer == NULL || outBuffer->raw == NULL || inBuffer->frameCount != outBuffer->frameCount || inBuffer->frameCount == 0) { return -EINVAL; } // perform measurements if needed if (visu_ctxt->meas_mode & MEASUREMENT_MODE_PEAK_RMS) { // find the peak and RMS squared for the new buffer uint32_t inIdx; int16_t max_sample = 0; float rms_squared_acc = 0; for (inIdx = 0 ; inIdx < inBuffer->frameCount * visu_ctxt->channel_count ; inIdx++) { if (inBuffer->s16[inIdx] > max_sample) { max_sample = inBuffer->s16[inIdx]; } else if (-inBuffer->s16[inIdx] > max_sample) { max_sample = -inBuffer->s16[inIdx]; } rms_squared_acc += (inBuffer->s16[inIdx] * inBuffer->s16[inIdx]); } // store the measurement visu_ctxt->past_meas[visu_ctxt->meas_buffer_idx].peak_u16 = (uint16_t)max_sample; visu_ctxt->past_meas[visu_ctxt->meas_buffer_idx].rms_squared = rms_squared_acc / (inBuffer->frameCount * visu_ctxt->channel_count); visu_ctxt->past_meas[visu_ctxt->meas_buffer_idx].is_valid = true; if (++visu_ctxt->meas_buffer_idx >= visu_ctxt->meas_wndw_size_in_buffers) { visu_ctxt->meas_buffer_idx = 0; } } /* all code below assumes stereo 16 bit PCM output and input */ int32_t shift; if (visu_ctxt->scaling_mode == VISUALIZER_SCALING_MODE_NORMALIZED) { /* derive capture scaling factor from peak value in current buffer * this gives more interesting captures for display. */ shift = 32; int len = inBuffer->frameCount * 2; int i; for (i = 0; i < len; i++) { int32_t smp = inBuffer->s16[i]; if (smp < 0) smp = -smp - 1; /* take care to keep the max negative in range */ int32_t clz = __builtin_clz(smp); if (shift > clz) shift = clz; } /* A maximum amplitude signal will have 17 leading zeros, which we want to * translate to a shift of 8 (for converting 16 bit to 8 bit) */ shift = 25 - shift; /* Never scale by less than 8 to avoid returning unaltered PCM signal. */ if (shift < 3) { shift = 3; } /* add one to combine the division by 2 needed after summing * left and right channels below */ shift++; } else { assert(visu_ctxt->scaling_mode == VISUALIZER_SCALING_MODE_AS_PLAYED); shift = 9; } uint32_t capt_idx; uint32_t in_idx; uint8_t *buf = visu_ctxt->capture_buf; for (in_idx = 0, capt_idx = visu_ctxt->capture_idx; in_idx < inBuffer->frameCount; in_idx++, capt_idx++) { if (capt_idx >= CAPTURE_BUF_SIZE) { /* wrap around */ capt_idx = 0; } int32_t smp = inBuffer->s16[2 * in_idx] + inBuffer->s16[2 * in_idx + 1]; smp = smp >> shift; buf[capt_idx] = ((uint8_t)smp)^0x80; } /* XXX the following two should really be atomic, though it probably doesn't * matter much for visualization purposes */ visu_ctxt->capture_idx = capt_idx; /* update last buffer update time stamp */ if (clock_gettime(CLOCK_MONOTONIC, &visu_ctxt->buffer_update_time) < 0) { visu_ctxt->buffer_update_time.tv_sec = 0; } if (context->state != EFFECT_STATE_ACTIVE) { ALOGV("%s DONE inactive", __func__); return -ENODATA; } return 0; } int visualizer_command(effect_context_t * context, uint32_t cmdCode, uint32_t cmdSize __unused, void *pCmdData __unused, uint32_t *replySize, void *pReplyData) { visualizer_context_t * visu_ctxt = (visualizer_context_t *)context; switch (cmdCode) { case VISUALIZER_CMD_CAPTURE: if (pReplyData == NULL || *replySize != visu_ctxt->capture_size) { ALOGV("%s VISUALIZER_CMD_CAPTURE error *replySize %d context->capture_size %d", __func__, *replySize, visu_ctxt->capture_size); return -EINVAL; } if (!context->offload_enabled) break; if (context->state == EFFECT_STATE_ACTIVE) { int32_t latency_ms = visu_ctxt->latency; const uint32_t delta_ms = visualizer_get_delta_time_ms_from_updated_time(visu_ctxt); latency_ms -= delta_ms; if (latency_ms < 0) { latency_ms = 0; } const uint32_t delta_smp = context->config.inputCfg.samplingRate * latency_ms / 1000; int32_t capture_point = visu_ctxt->capture_idx - visu_ctxt->capture_size - delta_smp; int32_t capture_size = visu_ctxt->capture_size; if (capture_point < 0) { int32_t size = -capture_point; if (size > capture_size) size = capture_size; memcpy(pReplyData, visu_ctxt->capture_buf + CAPTURE_BUF_SIZE + capture_point, size); pReplyData = (void *)((size_t)pReplyData + size); capture_size -= size; capture_point = 0; } memcpy(pReplyData, visu_ctxt->capture_buf + capture_point, capture_size); /* if audio framework has stopped playing audio although the effect is still * active we must clear the capture buffer to return silence */ if ((visu_ctxt->last_capture_idx == visu_ctxt->capture_idx) && (visu_ctxt->buffer_update_time.tv_sec != 0)) { if (delta_ms > MAX_STALL_TIME_MS) { ALOGV("%s capture going to idle", __func__); visu_ctxt->buffer_update_time.tv_sec = 0; memset(pReplyData, 0x80, visu_ctxt->capture_size); } } visu_ctxt->last_capture_idx = visu_ctxt->capture_idx; } else { memset(pReplyData, 0x80, visu_ctxt->capture_size); } break; case VISUALIZER_CMD_MEASURE: { if (pReplyData == NULL || replySize == NULL || *replySize < (sizeof(int32_t) * MEASUREMENT_COUNT)) { if (replySize == NULL) { ALOGV("%s VISUALIZER_CMD_MEASURE error replySize NULL", __func__); } else { ALOGV("%s VISUALIZER_CMD_MEASURE error *replySize %u <" "(sizeof(int32_t) * MEASUREMENT_COUNT) %zu", __func__, *replySize, sizeof(int32_t) * MEASUREMENT_COUNT); } android_errorWriteLog(0x534e4554, "30229821"); return -EINVAL; } uint16_t peak_u16 = 0; float sum_rms_squared = 0.0f; uint8_t nb_valid_meas = 0; /* reset measurements if last measurement was too long ago (which implies stored * measurements aren't relevant anymore and shouldn't bias the new one) */ const int32_t delay_ms = visualizer_get_delta_time_ms_from_updated_time(visu_ctxt); if (delay_ms > DISCARD_MEASUREMENTS_TIME_MS) { uint32_t i; ALOGV("Discarding measurements, last measurement is %dms old", delay_ms); for (i=0 ; i<visu_ctxt->meas_wndw_size_in_buffers ; i++) { visu_ctxt->past_meas[i].is_valid = false; visu_ctxt->past_meas[i].peak_u16 = 0; visu_ctxt->past_meas[i].rms_squared = 0; } visu_ctxt->meas_buffer_idx = 0; } else { /* only use actual measurements, otherwise the first RMS measure happening before * MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS have been played will always be artificially * low */ uint32_t i; for (i=0 ; i < visu_ctxt->meas_wndw_size_in_buffers ; i++) { if (visu_ctxt->past_meas[i].is_valid) { if (visu_ctxt->past_meas[i].peak_u16 > peak_u16) { peak_u16 = visu_ctxt->past_meas[i].peak_u16; } sum_rms_squared += visu_ctxt->past_meas[i].rms_squared; nb_valid_meas++; } } } float rms = nb_valid_meas == 0 ? 0.0f : sqrtf(sum_rms_squared / nb_valid_meas); int32_t* p_int_reply_data = (int32_t*)pReplyData; /* convert from I16 sample values to mB and write results */ if (rms < 0.000016f) { p_int_reply_data[MEASUREMENT_IDX_RMS] = -9600; //-96dB } else { p_int_reply_data[MEASUREMENT_IDX_RMS] = (int32_t) (2000 * log10(rms / 32767.0f)); } if (peak_u16 == 0) { p_int_reply_data[MEASUREMENT_IDX_PEAK] = -9600; //-96dB } else { p_int_reply_data[MEASUREMENT_IDX_PEAK] = (int32_t) (2000 * log10(peak_u16 / 32767.0f)); } ALOGV("VISUALIZER_CMD_MEASURE peak=%d (%dmB), rms=%.1f (%dmB)", peak_u16, p_int_reply_data[MEASUREMENT_IDX_PEAK], rms, p_int_reply_data[MEASUREMENT_IDX_RMS]); } break; default: ALOGW("%s invalid command %d", __func__, cmdCode); return -EINVAL; } return 0; } /* * Effect Library Interface Implementation */ int effect_lib_create(const effect_uuid_t *uuid, int32_t sessionId __unused, int32_t ioId, effect_handle_t *pHandle) { int ret; int i; if (lib_init() != 0) return init_status; if (pHandle == NULL || uuid == NULL) return -EINVAL; for (i = 0; descriptors[i] != NULL; i++) { if (memcmp(uuid, &descriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) break; } if (descriptors[i] == NULL) return -EINVAL; effect_context_t *context; if (memcmp(uuid, &visualizer_descriptor.uuid, sizeof(effect_uuid_t)) == 0) { visualizer_context_t *visu_ctxt = (visualizer_context_t *)calloc(1, sizeof(visualizer_context_t)); context = (effect_context_t *)visu_ctxt; context->ops.init = visualizer_init; context->ops.reset = visualizer_reset; context->ops.process = visualizer_process; context->ops.set_parameter = visualizer_set_parameter; context->ops.get_parameter = visualizer_get_parameter; context->ops.command = visualizer_command; context->desc = &visualizer_descriptor; } else { return -EINVAL; } context->itfe = &effect_interface; context->state = EFFECT_STATE_UNINITIALIZED; context->out_handle = (audio_io_handle_t)ioId; ret = context->ops.init(context); if (ret < 0) { ALOGW("%s init failed", __func__); free(context); return ret; } context->state = EFFECT_STATE_INITIALIZED; pthread_mutex_lock(&lock); list_add_tail(&created_effects_list, &context->effects_list_node); output_context_t *out_ctxt = get_output(ioId); if (out_ctxt != NULL) add_effect_to_output(out_ctxt, context); pthread_mutex_unlock(&lock); *pHandle = (effect_handle_t)context; ALOGV("%s created context %p", __func__, context); return 0; } int effect_lib_release(effect_handle_t handle) { effect_context_t *context = (effect_context_t *)handle; int status; if (lib_init() != 0) return init_status; ALOGV("%s context %p", __func__, handle); pthread_mutex_lock(&lock); status = -EINVAL; if (effect_exists(context)) { output_context_t *out_ctxt = get_output(context->out_handle); if (out_ctxt != NULL) remove_effect_from_output(out_ctxt, context); list_remove(&context->effects_list_node); if (context->ops.release) context->ops.release(context); free(context); status = 0; } pthread_mutex_unlock(&lock); return status; } int effect_lib_get_descriptor(const effect_uuid_t *uuid, effect_descriptor_t *descriptor) { int i; if (lib_init() != 0) return init_status; if (descriptor == NULL || uuid == NULL) { ALOGV("%s called with NULL pointer", __func__); return -EINVAL; } for (i = 0; descriptors[i] != NULL; i++) { if (memcmp(uuid, &descriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) { *descriptor = *descriptors[i]; return 0; } } return -EINVAL; } /* * Effect Control Interface Implementation */ /* Stub function for effect interface: never called for offloaded effects */ int effect_process(effect_handle_t self, audio_buffer_t *inBuffer __unused, audio_buffer_t *outBuffer __unused) { effect_context_t * context = (effect_context_t *)self; int status = 0; ALOGW("%s Called ?????", __func__); pthread_mutex_lock(&lock); if (!effect_exists(context)) { status = -EINVAL; goto exit; } if (context->state != EFFECT_STATE_ACTIVE) { status = -EINVAL; goto exit; } exit: pthread_mutex_unlock(&lock); return status; } int effect_command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize, void *pCmdData, uint32_t *replySize, void *pReplyData) { effect_context_t * context = (effect_context_t *)self; int retsize; int status = 0; pthread_mutex_lock(&lock); if (!effect_exists(context)) { status = -EINVAL; goto exit; } if (context == NULL || context->state == EFFECT_STATE_UNINITIALIZED) { status = -EINVAL; goto exit; } // ALOGV_IF(cmdCode != VISUALIZER_CMD_CAPTURE, // "%s command %d cmdSize %d", __func__, cmdCode, cmdSize); switch (cmdCode) { case EFFECT_CMD_INIT: if (pReplyData == NULL || *replySize != sizeof(int)) { status = -EINVAL; goto exit; } if (context->ops.init) *(int *) pReplyData = context->ops.init(context); else *(int *) pReplyData = 0; break; case EFFECT_CMD_SET_CONFIG: if (pCmdData == NULL || cmdSize != sizeof(effect_config_t) || pReplyData == NULL || *replySize != sizeof(int)) { status = -EINVAL; goto exit; } *(int *) pReplyData = set_config(context, (effect_config_t *) pCmdData); break; case EFFECT_CMD_GET_CONFIG: if (pReplyData == NULL || *replySize != sizeof(effect_config_t)) { status = -EINVAL; goto exit; } if (!context->offload_enabled) { status = -EINVAL; goto exit; } get_config(context, (effect_config_t *)pReplyData); break; case EFFECT_CMD_RESET: if (context->ops.reset) context->ops.reset(context); break; case EFFECT_CMD_ENABLE: if (pReplyData == NULL || *replySize != sizeof(int)) { status = -EINVAL; goto exit; } if (context->state != EFFECT_STATE_INITIALIZED) { status = -ENOSYS; goto exit; } context->state = EFFECT_STATE_ACTIVE; if (context->ops.enable) context->ops.enable(context); pthread_cond_signal(&cond); ALOGV("%s EFFECT_CMD_ENABLE", __func__); *(int *)pReplyData = 0; break; case EFFECT_CMD_DISABLE: if (pReplyData == NULL || *replySize != sizeof(int)) { status = -EINVAL; goto exit; } if (context->state != EFFECT_STATE_ACTIVE) { status = -ENOSYS; goto exit; } context->state = EFFECT_STATE_INITIALIZED; if (context->ops.disable) context->ops.disable(context); pthread_cond_signal(&cond); ALOGV("%s EFFECT_CMD_DISABLE", __func__); *(int *)pReplyData = 0; break; case EFFECT_CMD_GET_PARAM: { if (pCmdData == NULL || cmdSize != (int)(sizeof(effect_param_t) + sizeof(uint32_t)) || pReplyData == NULL || *replySize < (int)(sizeof(effect_param_t) + sizeof(uint32_t) + sizeof(uint32_t))) { status = -EINVAL; goto exit; } if (!context->offload_enabled) { status = -EINVAL; goto exit; } memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(uint32_t)); effect_param_t *p = (effect_param_t *)pReplyData; if (context->ops.get_parameter) context->ops.get_parameter(context, p, replySize); } break; case EFFECT_CMD_SET_PARAM: { if (pCmdData == NULL || cmdSize != (int)(sizeof(effect_param_t) + sizeof(uint32_t) + sizeof(uint32_t)) || pReplyData == NULL || *replySize != sizeof(int32_t)) { status = -EINVAL; goto exit; } *(int32_t *)pReplyData = 0; effect_param_t *p = (effect_param_t *)pCmdData; if (context->ops.set_parameter) *(int32_t *)pReplyData = context->ops.set_parameter(context, p, *replySize); } break; case EFFECT_CMD_SET_DEVICE: case EFFECT_CMD_SET_VOLUME: case EFFECT_CMD_SET_AUDIO_MODE: break; case EFFECT_CMD_OFFLOAD: { output_context_t *out_ctxt; if (cmdSize != sizeof(effect_offload_param_t) || pCmdData == NULL || pReplyData == NULL || *replySize != sizeof(int)) { ALOGV("%s EFFECT_CMD_OFFLOAD bad format", __func__); status = -EINVAL; break; } effect_offload_param_t* offload_param = (effect_offload_param_t*)pCmdData; ALOGV("%s EFFECT_CMD_OFFLOAD offload %d output %d", __func__, offload_param->isOffload, offload_param->ioHandle); *(int *)pReplyData = 0; context->offload_enabled = offload_param->isOffload; if (context->out_handle == offload_param->ioHandle) break; out_ctxt = get_output(context->out_handle); if (out_ctxt != NULL) remove_effect_from_output(out_ctxt, context); context->out_handle = offload_param->ioHandle; out_ctxt = get_output(offload_param->ioHandle); if (out_ctxt != NULL) add_effect_to_output(out_ctxt, context); } break; default: if (cmdCode >= EFFECT_CMD_FIRST_PROPRIETARY && context->ops.command) status = context->ops.command(context, cmdCode, cmdSize, pCmdData, replySize, pReplyData); else { ALOGW("%s invalid command %d", __func__, cmdCode); status = -EINVAL; } break; } exit: pthread_mutex_unlock(&lock); // ALOGV_IF(cmdCode != VISUALIZER_CMD_CAPTURE,"%s DONE", __func__); return status; } /* Effect Control Interface Implementation: get_descriptor */ int effect_get_descriptor(effect_handle_t self, effect_descriptor_t *descriptor) { effect_context_t *context = (effect_context_t *)self; if (!effect_exists(context)) return -EINVAL; if (descriptor == NULL) return -EINVAL; *descriptor = *context->desc; return 0; } /* effect_handle_t interface implementation for visualizer effect */ const struct effect_interface_s effect_interface = { effect_process, effect_command, effect_get_descriptor, NULL, }; __attribute__ ((visibility ("default"))) audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = { .tag = AUDIO_EFFECT_LIBRARY_TAG, .version = EFFECT_LIBRARY_API_VERSION, .name = "Visualizer Library", .implementor = "The Android Open Source Project", .create_effect = effect_lib_create, .release_effect = effect_lib_release, .get_descriptor = effect_lib_get_descriptor, };