/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "android.hardware.neuralnetworks@1.0-impl-hvx" #include "HexagonUtils.h" #include <hidlmemory/mapping.h> #include <algorithm> #include <numeric> #include <vector> #include "OperationsUtils.h" namespace android { namespace hardware { namespace neuralnetworks { namespace V1_0 { namespace implementation { namespace hexagon { bool isHexagonAvailable() { int version = -1; Controller::getInstance().version(&version); if (version != 92) { LOG(INFO) << "ATTEMPTING TO RESTART NNLIB"; Controller::getInstance().resetNnlib(); Controller::getInstance().version(&version); } return version == 92; } hexagon_nn_padding_type getPadding(uint32_t pad) { switch (pad) { case ::android::nn::kPaddingSame: return NN_PAD_SAME; case ::android::nn::kPaddingValid: return NN_PAD_VALID; case ::android::nn::kPaddingUnknown: default: return NN_PAD_NA; }; } hexagon_nn_padding_type getPadding(int32_t inWidth, int32_t inHeight, int32_t strideWidth, int32_t strideHeight, int32_t filterWidth, int32_t filterHeight, int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom) { return getPadding(::android::nn::getPaddingScheme(inWidth, inHeight, strideWidth, strideHeight, filterWidth, filterHeight, paddingLeft, paddingRight, paddingTop, paddingBottom)); } op_type getFloatActivationFunction(FusedActivationFunc act) { switch (act) { case FusedActivationFunc::RELU: return OP_Relu_f; case FusedActivationFunc::RELU1: return OP_Clamp_f; case FusedActivationFunc::RELU6: return OP_ReluX_f; case FusedActivationFunc::NONE: FALLTHROUGH_INTENDED; default: return OP_Nop; }; } op_type getQuantizedActivationFunction(FusedActivationFunc act) { switch (act) { case FusedActivationFunc::RELU: return OP_QuantizedRelu_8; case FusedActivationFunc::RELU1: return OP_QuantizedClamp_8; case FusedActivationFunc::RELU6: return OP_QuantizedReluX_8; case FusedActivationFunc::NONE: FALLTHROUGH_INTENDED; default: return OP_Nop; }; } uint32_t getSize(OperandType type) { static const uint32_t sizes[] = { 4, // FLOAT32 4, // INT32 4, // UINT32 4, // TENSOR_FLOAT32 4, // TENSOR_INT32 1, // TENSOR_SYMMETRICAL_QUANT8 }; HEXAGON_SOFT_ASSERT(static_cast<uint32_t>(type) < sizeof(sizes) / sizeof(*sizes), "Error: type exceeds max enum value"); return sizes[static_cast<uint32_t>(type)]; } std::vector<uint32_t> getAlignedDimensions(const std::vector<uint32_t>& dims, uint32_t N) { HEXAGON_SOFT_ASSERT_GE( N, dims.size(), "Error: constant data dimensions " << dims.size() << " exceeds alignment of " << N); std::vector<uint32_t> dimensions(N - dims.size(), 1); dimensions.insert(dimensions.end(), dims.begin(), dims.end()); return dimensions; } std::vector<RunTimePoolInfo> mapPools(const hidl_vec<hidl_memory>& pools) { std::vector<RunTimePoolInfo> poolInfos; poolInfos.reserve(pools.size()); bool fail = false; for (const auto& pool : pools) { poolInfos.emplace_back(pool, &fail); } HEXAGON_SOFT_ASSERT(!fail, "Error setting pools"); return poolInfos; } std::unordered_set<uint32_t> getPoolIndexes(const std::vector<RequestArgument>& inputsOutputs) { std::unordered_set<uint32_t> indexes; for (const RequestArgument& inputOutput : inputsOutputs) { indexes.insert(inputOutput.location.poolIndex); } return indexes; } namespace { const uint8_t* getDataFromBlock(const hidl_vec<uint8_t>& block, uint32_t offset, uint32_t length) { HEXAGON_SOFT_ASSERT_LE(offset + length, block.size(), "Error: trying to copy data from outside of block bounds"); return block.data() + offset; } const uint8_t* getDataFromPool(const RunTimePoolInfo& pool, uint32_t offset, [[maybe_unused]] uint32_t length) { // HEXAGON_SOFT_ASSERT_LE(offset + length, pool->getSize(), // "Error: trying to copy data from outside of pool bounds"); return pool.getBuffer() + offset; } } // anonymous namespace const uint8_t* getData(const Operand& operand, const hidl_vec<uint8_t>& block, const std::vector<RunTimePoolInfo>& pools) { switch (operand.lifetime) { case OperandLifeTime::TEMPORARY_VARIABLE: return nullptr; case OperandLifeTime::MODEL_INPUT: case OperandLifeTime::MODEL_OUTPUT: HEXAGON_SOFT_ASSERT(false, "Error: trying to retrieve data that is only known at runtime"); case OperandLifeTime::CONSTANT_COPY: return getDataFromBlock(block, operand.location.offset, operand.location.length); case OperandLifeTime::CONSTANT_REFERENCE: return getDataFromPool(pools[operand.location.poolIndex], operand.location.offset, operand.location.length); default: HEXAGON_SOFT_ASSERT(false, "Error: unrecognized operand lifetime"); } } bool operator==(const hexagon_nn_input& lhs, const hexagon_nn_input& rhs) { return lhs.src_id == rhs.src_id && lhs.output_idx == rhs.output_idx; } bool operator!=(const hexagon_nn_input& lhs, const hexagon_nn_input& rhs) { return !(lhs == rhs); } bool operator==(const hexagon_nn_output& lhs, const hexagon_nn_output& rhs) { return lhs.rank == rhs.rank && lhs.max_sizes[0] == rhs.max_sizes[0] && lhs.max_sizes[1] == rhs.max_sizes[1] && lhs.max_sizes[2] == rhs.max_sizes[2] && lhs.max_sizes[3] == rhs.max_sizes[3] && lhs.max_sizes[4] == rhs.max_sizes[4] && lhs.max_sizes[5] == rhs.max_sizes[5] && lhs.max_sizes[6] == rhs.max_sizes[6] && lhs.max_sizes[7] == rhs.max_sizes[7] && lhs.elementsize == rhs.elementsize && lhs.zero_offset == rhs.zero_offset && lhs.stepsize == rhs.stepsize; } bool operator!=(const hexagon_nn_output& lhs, const hexagon_nn_output& rhs) { return !(lhs == rhs); } hexagon_nn_output make_hexagon_nn_output(const std::vector<uint32_t>& dims, uint32_t size) { std::vector<uint32_t> alignedDims = getAlignedDimensions(dims, 4); hexagon_nn_output output = { .rank = std::min(8u, static_cast<uint32_t>(alignedDims.size())), .max_sizes = {0, 0, 0, 0, 0, 0, 0, 0}, .elementsize = size, .zero_offset = 0, .stepsize = 0.0f, }; for (size_t i = 0; i < alignedDims.size() && i < 8; ++i) { output.max_sizes[i] = alignedDims[i]; } return output; } // printers std::string toString(uint32_t val) { return std::to_string(val); } std::string toString(float val) { return std::to_string(val); } std::string toString(hexagon_nn_nn_id id) { return std::to_string(static_cast<int32_t>(id)); } std::string toString(op_type op) { static const char* opText[] = { #define DEF_OP(NAME, ...) "OP_" #NAME, #include "hexagon_nn_controller/ops.def" #undef DEF_OP }; return static_cast<size_t>(op) < sizeof(opText) / sizeof(char*) ? opText[static_cast<size_t>(op)] : "<invalid op_type>"; } std::string toString(hexagon_nn_padding_type padding) { static const char* paddingText[] = { "NN_PAD_NA", "NN_PAD_SAME", "NN_PAD_VALID", "NN_PAD_MIRROR_REFLECT", "NN_PAD_MIRROR_SYMMETRIC", "NN_PAD_SAME_CAFFE", }; return static_cast<size_t>(padding) < sizeof(paddingText) / sizeof(char*) ? paddingText[static_cast<size_t>(padding)] : "<invalid hexagon_nn_padding_type>"; } std::string toString(const hexagon_nn_input& input) { return "hexagon_nn_input{.src_id: " + std::to_string(input.src_id) + ", .output_idx: " + std::to_string(input.output_idx) + "}"; } std::string toString(const hexagon_nn_output& output) { return "hexagon_nn_output{.rank: " + std::to_string(output.rank) + ", .max_sizes: [" + std::to_string(output.max_sizes[0]) + ", " + std::to_string(output.max_sizes[1]) + ", " + std::to_string(output.max_sizes[2]) + ", " + std::to_string(output.max_sizes[3]) + ", " + std::to_string(output.max_sizes[4]) + ", " + std::to_string(output.max_sizes[5]) + ", " + std::to_string(output.max_sizes[6]) + ", " + std::to_string(output.max_sizes[7]) + "]" + ", .elementsize: " + std::to_string(output.elementsize) + ", .zero_offset: " + std::to_string(output.zero_offset) + ", .stepsize: " + std::to_string(output.stepsize) + "}"; } std::string toString(const hexagon_nn_tensordef& tensordef) { return "hexagon_nn_tensordef{.batches: " + std::to_string(tensordef.batches) + ", .height: " + std::to_string(tensordef.height) + ", .width: " + std::to_string(tensordef.width) + ", .depth: " + std::to_string(tensordef.depth) + ", .data: " + std::to_string(reinterpret_cast<uintptr_t>(tensordef.data)) + ", .dataLen: " + std::to_string(tensordef.dataLen) + ", .data_valid_len: " + std::to_string(tensordef.data_valid_len) + ", .unused: " + std::to_string(tensordef.unused) + "}"; } std::string toString(const hexagon_nn_perfinfo& perfinfo) { return "hexagon_nn_perfinfo{.node_id: " + std::to_string(perfinfo.node_id) + ", .executions: " + std::to_string(perfinfo.executions) + ", .counter_lo: " + std::to_string(perfinfo.counter_lo) + ", .counter_hi: " + std::to_string(perfinfo.counter_hi) + "}"; } std::string toString(const ::android::nn::Shape& shape) { return "Shape{.type: " + toString(shape.type) + ", .dimensions: " + toString(shape.dimensions.data(), shape.dimensions.size()) + ", .scale: " + std::to_string(shape.scale) + ", .zeroPoint: " + std::to_string(shape.offset) + "}"; } } // namespace hexagon } // namespace implementation } // namespace V1_0 } // namespace neuralnetworks } // namespace hardware } // namespace android