#!/usr/bin/python # # Copyright 2017 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=g-bad-todo,g-bad-file-header,wildcard-import from errno import * # pylint: disable=wildcard-import import os import itertools from scapy import all as scapy from socket import * # pylint: disable=wildcard-import import subprocess import threading import unittest import multinetwork_base import net_test from tun_twister import TapTwister import xfrm import xfrm_base # List of encryption algorithms for use in ParamTests. CRYPT_ALGOS = [ xfrm.XfrmAlgo((xfrm.XFRM_EALG_CBC_AES, 128)), xfrm.XfrmAlgo((xfrm.XFRM_EALG_CBC_AES, 192)), xfrm.XfrmAlgo((xfrm.XFRM_EALG_CBC_AES, 256)), ] # List of auth algorithms for use in ParamTests. AUTH_ALGOS = [ # RFC 4868 specifies that the only supported truncation length is half the # hash size. xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_MD5, 128, 96)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA1, 160, 96)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA256, 256, 128)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA384, 384, 192)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA512, 512, 256)), # Test larger truncation lengths for good measure. xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_MD5, 128, 128)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA1, 160, 160)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA256, 256, 256)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA384, 384, 384)), xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA512, 512, 512)), ] # List of aead algorithms for use in ParamTests. AEAD_ALGOS = [ # RFC 4106 specifies that key length must be 128, 192 or 256 bits, # with an additional 4 bytes (32 bits) of salt. The salt must be unique # for each new SA using the same key. # RFC 4106 specifies that ICV length must be 8, 12, or 16 bytes xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 128+32, 8*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 128+32, 12*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 128+32, 16*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 192+32, 8*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 192+32, 12*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 192+32, 16*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 256+32, 8*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 256+32, 12*8)), xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 256+32, 16*8)), ] def InjectTests(): XfrmAlgorithmTest.InjectTests() class XfrmAlgorithmTest(xfrm_base.XfrmLazyTest): @classmethod def InjectTests(cls): """Inject parameterized test cases into this class. Because a library for parameterized testing is not availble in net_test.rootfs.20150203, this does a minimal parameterization. This finds methods named like "ParamTestFoo" and replaces them with several "testFoo(*)" methods taking different parameter dicts. A set of test parameters is generated from every combination of encryption, authentication, IP version, and TCP/UDP. The benefit of this approach is that an individually failing tests have a clearly separated stack trace, and one failed test doesn't prevent the rest from running. """ param_test_names = [ name for name in dir(cls) if name.startswith("ParamTest") ] VERSIONS = (4, 6) TYPES = (SOCK_DGRAM, SOCK_STREAM) # Tests all combinations of auth & crypt. Mutually exclusive with aead. for crypt, auth, version, proto, name in itertools.product( CRYPT_ALGOS, AUTH_ALGOS, VERSIONS, TYPES, param_test_names): XfrmAlgorithmTest.InjectSingleTest(name, version, proto, crypt=crypt, auth=auth) # Tests all combinations of aead. Mutually exclusive with auth/crypt. for aead, version, proto, name in itertools.product( AEAD_ALGOS, VERSIONS, TYPES, param_test_names): XfrmAlgorithmTest.InjectSingleTest(name, version, proto, aead=aead) @classmethod def InjectSingleTest(cls, name, version, proto, crypt=None, auth=None, aead=None): func = getattr(cls, name) def TestClosure(self): func(self, {"crypt": crypt, "auth": auth, "aead": aead, "version": version, "proto": proto}) # Produce a unique and readable name for each test. e.g. # testSocketPolicySimple_cbc-aes_256_hmac-sha512_512_256_IPv6_UDP param_string = "" if crypt is not None: param_string += "%s_%d_" % (crypt.name, crypt.key_len) if auth is not None: param_string += "%s_%d_%d_" % (auth.name, auth.key_len, auth.trunc_len) if aead is not None: param_string += "%s_%d_%d_" % (aead.name, aead.key_len, aead.icv_len) param_string += "%s_%s" % ("IPv4" if version == 4 else "IPv6", "UDP" if proto == SOCK_DGRAM else "TCP") new_name = "%s_%s" % (func.__name__.replace("ParamTest", "test"), param_string) new_name = new_name.replace("(", "-").replace(")", "") # remove parens setattr(cls, new_name, TestClosure) def ParamTestSocketPolicySimple(self, params): """Test two-way traffic using transport mode and socket policies.""" def AssertEncrypted(packet): # This gives a free pass to ICMP and ICMPv6 packets, which show up # nondeterministically in tests. self.assertEquals(None, packet.getlayer(scapy.UDP), "UDP packet sent in the clear") self.assertEquals(None, packet.getlayer(scapy.TCP), "TCP packet sent in the clear") # We create a pair of sockets, "left" and "right", that will talk to each # other using transport mode ESP. Because of TapTwister, both sockets # perceive each other as owning "remote_addr". netid = self.RandomNetid() family = net_test.GetAddressFamily(params["version"]) local_addr = self.MyAddress(params["version"], netid) remote_addr = self.GetRemoteSocketAddress(params["version"]) crypt_left = (xfrm.XfrmAlgo(( params["crypt"].name, params["crypt"].key_len)), os.urandom(params["crypt"].key_len / 8)) if params["crypt"] else None crypt_right = (xfrm.XfrmAlgo(( params["crypt"].name, params["crypt"].key_len)), os.urandom(params["crypt"].key_len / 8)) if params["crypt"] else None auth_left = (xfrm.XfrmAlgoAuth(( params["auth"].name, params["auth"].key_len, params["auth"].trunc_len)), os.urandom(params["auth"].key_len / 8)) if params["auth"] else None auth_right = (xfrm.XfrmAlgoAuth(( params["auth"].name, params["auth"].key_len, params["auth"].trunc_len)), os.urandom(params["auth"].key_len / 8)) if params["auth"] else None aead_left = (xfrm.XfrmAlgoAead(( params["aead"].name, params["aead"].key_len, params["aead"].icv_len)), os.urandom(params["aead"].key_len / 8)) if params["aead"] else None aead_right = (xfrm.XfrmAlgoAead(( params["aead"].name, params["aead"].key_len, params["aead"].icv_len)), os.urandom(params["aead"].key_len / 8)) if params["aead"] else None spi_left = 0xbeefface spi_right = 0xcafed00d req_ids = [100, 200, 300, 400] # Used to match templates and SAs. # Left outbound SA self.xfrm.AddSaInfo( src=local_addr, dst=remote_addr, spi=spi_right, mode=xfrm.XFRM_MODE_TRANSPORT, reqid=req_ids[0], encryption=crypt_right, auth_trunc=auth_right, aead=aead_right, encap=None, mark=None, output_mark=None) # Right inbound SA self.xfrm.AddSaInfo( src=remote_addr, dst=local_addr, spi=spi_right, mode=xfrm.XFRM_MODE_TRANSPORT, reqid=req_ids[1], encryption=crypt_right, auth_trunc=auth_right, aead=aead_right, encap=None, mark=None, output_mark=None) # Right outbound SA self.xfrm.AddSaInfo( src=local_addr, dst=remote_addr, spi=spi_left, mode=xfrm.XFRM_MODE_TRANSPORT, reqid=req_ids[2], encryption=crypt_left, auth_trunc=auth_left, aead=aead_left, encap=None, mark=None, output_mark=None) # Left inbound SA self.xfrm.AddSaInfo( src=remote_addr, dst=local_addr, spi=spi_left, mode=xfrm.XFRM_MODE_TRANSPORT, reqid=req_ids[3], encryption=crypt_left, auth_trunc=auth_left, aead=aead_left, encap=None, mark=None, output_mark=None) # Make two sockets. sock_left = socket(family, params["proto"], 0) sock_left.settimeout(2.0) sock_left.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) self.SelectInterface(sock_left, netid, "mark") sock_right = socket(family, params["proto"], 0) sock_right.settimeout(2.0) sock_right.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) self.SelectInterface(sock_right, netid, "mark") # For UDP, set SO_LINGER to 0, to prevent TCP sockets from hanging around # in a TIME_WAIT state. if params["proto"] == SOCK_STREAM: net_test.DisableFinWait(sock_left) net_test.DisableFinWait(sock_right) # Apply the left outbound socket policy. xfrm_base.ApplySocketPolicy(sock_left, family, xfrm.XFRM_POLICY_OUT, spi_right, req_ids[0], None) # Apply right inbound socket policy. xfrm_base.ApplySocketPolicy(sock_right, family, xfrm.XFRM_POLICY_IN, spi_right, req_ids[1], None) # Apply right outbound socket policy. xfrm_base.ApplySocketPolicy(sock_right, family, xfrm.XFRM_POLICY_OUT, spi_left, req_ids[2], None) # Apply left inbound socket policy. xfrm_base.ApplySocketPolicy(sock_left, family, xfrm.XFRM_POLICY_IN, spi_left, req_ids[3], None) server_ready = threading.Event() server_error = None # Save exceptions thrown by the server. def TcpServer(sock, client_port): try: sock.listen(1) server_ready.set() accepted, peer = sock.accept() self.assertEquals(remote_addr, peer[0]) self.assertEquals(client_port, peer[1]) data = accepted.recv(2048) self.assertEquals("hello request", data) accepted.send("hello response") except Exception as e: server_error = e finally: sock.close() def UdpServer(sock, client_port): try: server_ready.set() data, peer = sock.recvfrom(2048) self.assertEquals(remote_addr, peer[0]) self.assertEquals(client_port, peer[1]) self.assertEquals("hello request", data) sock.sendto("hello response", peer) except Exception as e: server_error = e finally: sock.close() # Server and client need to know each other's port numbers in advance. wildcard_addr = net_test.GetWildcardAddress(params["version"]) sock_left.bind((wildcard_addr, 0)) sock_right.bind((wildcard_addr, 0)) left_port = sock_left.getsockname()[1] right_port = sock_right.getsockname()[1] # Start the appropriate server type on sock_right. target = TcpServer if params["proto"] == SOCK_STREAM else UdpServer server = threading.Thread( target=target, args=(sock_right, left_port), name="SocketServer") server.start() # Wait for server to be ready before attempting to connect. TCP retries # hide this problem, but UDP will fail outright if the server socket has # not bound when we send. self.assertTrue(server_ready.wait(2.0), "Timed out waiting for server thread") with TapTwister(fd=self.tuns[netid].fileno(), validator=AssertEncrypted): sock_left.connect((remote_addr, right_port)) sock_left.send("hello request") data = sock_left.recv(2048) self.assertEquals("hello response", data) sock_left.close() server.join() if server_error: raise server_error if __name__ == "__main__": XfrmAlgorithmTest.InjectTests() unittest.main()