//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This file provides a helper that implements much of the TTI interface in /// terms of the target-independent code generator and TargetLowering /// interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_BASICTTIIMPL_H #define LLVM_CODEGEN_BASICTTIIMPL_H #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/TargetTransformInfoImpl.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <algorithm> #include <cassert> #include <cstdint> #include <limits> #include <utility> namespace llvm { class Function; class GlobalValue; class LLVMContext; class ScalarEvolution; class SCEV; class TargetMachine; extern cl::opt<unsigned> PartialUnrollingThreshold; /// \brief Base class which can be used to help build a TTI implementation. /// /// This class provides as much implementation of the TTI interface as is /// possible using the target independent parts of the code generator. /// /// In order to subclass it, your class must implement a getST() method to /// return the subtarget, and a getTLI() method to return the target lowering. /// We need these methods implemented in the derived class so that this class /// doesn't have to duplicate storage for them. template <typename T> class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> { private: using BaseT = TargetTransformInfoImplCRTPBase<T>; using TTI = TargetTransformInfo; /// Estimate a cost of shuffle as a sequence of extract and insert /// operations. unsigned getPermuteShuffleOverhead(Type *Ty) { assert(Ty->isVectorTy() && "Can only shuffle vectors"); unsigned Cost = 0; // Shuffle cost is equal to the cost of extracting element from its argument // plus the cost of inserting them onto the result vector. // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from // index 0 of first vector, index 1 of second vector,index 2 of first // vector and finally index 3 of second vector and insert them at index // <0,1,2,3> of result vector. for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { Cost += static_cast<T *>(this) ->getVectorInstrCost(Instruction::InsertElement, Ty, i); Cost += static_cast<T *>(this) ->getVectorInstrCost(Instruction::ExtractElement, Ty, i); } return Cost; } /// \brief Local query method delegates up to T which *must* implement this! const TargetSubtargetInfo *getST() const { return static_cast<const T *>(this)->getST(); } /// \brief Local query method delegates up to T which *must* implement this! const TargetLoweringBase *getTLI() const { return static_cast<const T *>(this)->getTLI(); } protected: explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL) : BaseT(DL) {} using TargetTransformInfoImplBase::DL; public: /// \name Scalar TTI Implementations /// @{ bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast) const { EVT E = EVT::getIntegerVT(Context, BitWidth); return getTLI()->allowsMisalignedMemoryAccesses(E, AddressSpace, Alignment, Fast); } bool hasBranchDivergence() { return false; } bool isSourceOfDivergence(const Value *V) { return false; } bool isAlwaysUniform(const Value *V) { return false; } unsigned getFlatAddressSpace() { // Return an invalid address space. return -1; } bool isLegalAddImmediate(int64_t imm) { return getTLI()->isLegalAddImmediate(imm); } bool isLegalICmpImmediate(int64_t imm) { return getTLI()->isLegalICmpImmediate(imm); } bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I = nullptr) { TargetLoweringBase::AddrMode AM; AM.BaseGV = BaseGV; AM.BaseOffs = BaseOffset; AM.HasBaseReg = HasBaseReg; AM.Scale = Scale; return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I); } bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) { return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); } int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) { TargetLoweringBase::AddrMode AM; AM.BaseGV = BaseGV; AM.BaseOffs = BaseOffset; AM.HasBaseReg = HasBaseReg; AM.Scale = Scale; return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace); } bool isTruncateFree(Type *Ty1, Type *Ty2) { return getTLI()->isTruncateFree(Ty1, Ty2); } bool isProfitableToHoist(Instruction *I) { return getTLI()->isProfitableToHoist(I); } bool isTypeLegal(Type *Ty) { EVT VT = getTLI()->getValueType(DL, Ty); return getTLI()->isTypeLegal(VT); } int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef<const Value *> Operands) { return BaseT::getGEPCost(PointeeType, Ptr, Operands); } int getExtCost(const Instruction *I, const Value *Src) { if (getTLI()->isExtFree(I)) return TargetTransformInfo::TCC_Free; if (isa<ZExtInst>(I) || isa<SExtInst>(I)) if (const LoadInst *LI = dyn_cast<LoadInst>(Src)) if (getTLI()->isExtLoad(LI, I, DL)) return TargetTransformInfo::TCC_Free; return TargetTransformInfo::TCC_Basic; } unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) { return BaseT::getIntrinsicCost(IID, RetTy, Arguments); } unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) { if (IID == Intrinsic::cttz) { if (getTLI()->isCheapToSpeculateCttz()) return TargetTransformInfo::TCC_Basic; return TargetTransformInfo::TCC_Expensive; } if (IID == Intrinsic::ctlz) { if (getTLI()->isCheapToSpeculateCtlz()) return TargetTransformInfo::TCC_Basic; return TargetTransformInfo::TCC_Expensive; } return BaseT::getIntrinsicCost(IID, RetTy, ParamTys); } unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JumpTableSize) { /// Try to find the estimated number of clusters. Note that the number of /// clusters identified in this function could be different from the actural /// numbers found in lowering. This function ignore switches that are /// lowered with a mix of jump table / bit test / BTree. This function was /// initially intended to be used when estimating the cost of switch in /// inline cost heuristic, but it's a generic cost model to be used in other /// places (e.g., in loop unrolling). unsigned N = SI.getNumCases(); const TargetLoweringBase *TLI = getTLI(); const DataLayout &DL = this->getDataLayout(); JumpTableSize = 0; bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent()); // Early exit if both a jump table and bit test are not allowed. if (N < 1 || (!IsJTAllowed && DL.getPointerSizeInBits() < N)) return N; APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue(); APInt MinCaseVal = MaxCaseVal; for (auto CI : SI.cases()) { const APInt &CaseVal = CI.getCaseValue()->getValue(); if (CaseVal.sgt(MaxCaseVal)) MaxCaseVal = CaseVal; if (CaseVal.slt(MinCaseVal)) MinCaseVal = CaseVal; } // Check if suitable for a bit test if (N <= DL.getPointerSizeInBits()) { SmallPtrSet<const BasicBlock *, 4> Dests; for (auto I : SI.cases()) Dests.insert(I.getCaseSuccessor()); if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal, DL)) return 1; } // Check if suitable for a jump table. if (IsJTAllowed) { if (N < 2 || N < TLI->getMinimumJumpTableEntries()) return N; uint64_t Range = (MaxCaseVal - MinCaseVal) .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1; // Check whether a range of clusters is dense enough for a jump table if (TLI->isSuitableForJumpTable(&SI, N, Range)) { JumpTableSize = Range; return 1; } } return N; } unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); } unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); } bool shouldBuildLookupTables() { const TargetLoweringBase *TLI = getTLI(); return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other); } bool haveFastSqrt(Type *Ty) { const TargetLoweringBase *TLI = getTLI(); EVT VT = TLI->getValueType(DL, Ty); return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); } unsigned getFPOpCost(Type *Ty) { // By default, FP instructions are no more expensive since they are // implemented in HW. Target specific TTI can override this. return TargetTransformInfo::TCC_Basic; } unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) { const TargetLoweringBase *TLI = getTLI(); switch (Opcode) { default: break; case Instruction::Trunc: if (TLI->isTruncateFree(OpTy, Ty)) return TargetTransformInfo::TCC_Free; return TargetTransformInfo::TCC_Basic; case Instruction::ZExt: if (TLI->isZExtFree(OpTy, Ty)) return TargetTransformInfo::TCC_Free; return TargetTransformInfo::TCC_Basic; } return BaseT::getOperationCost(Opcode, Ty, OpTy); } unsigned getInliningThresholdMultiplier() { return 1; } void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP) { // This unrolling functionality is target independent, but to provide some // motivation for its intended use, for x86: // According to the Intel 64 and IA-32 Architectures Optimization Reference // Manual, Intel Core models and later have a loop stream detector (and // associated uop queue) that can benefit from partial unrolling. // The relevant requirements are: // - The loop must have no more than 4 (8 for Nehalem and later) branches // taken, and none of them may be calls. // - The loop can have no more than 18 (28 for Nehalem and later) uops. // According to the Software Optimization Guide for AMD Family 15h // Processors, models 30h-4fh (Steamroller and later) have a loop predictor // and loop buffer which can benefit from partial unrolling. // The relevant requirements are: // - The loop must have fewer than 16 branches // - The loop must have less than 40 uops in all executed loop branches // The number of taken branches in a loop is hard to estimate here, and // benchmarking has revealed that it is better not to be conservative when // estimating the branch count. As a result, we'll ignore the branch limits // until someone finds a case where it matters in practice. unsigned MaxOps; const TargetSubtargetInfo *ST = getST(); if (PartialUnrollingThreshold.getNumOccurrences() > 0) MaxOps = PartialUnrollingThreshold; else if (ST->getSchedModel().LoopMicroOpBufferSize > 0) MaxOps = ST->getSchedModel().LoopMicroOpBufferSize; else return; // Scan the loop: don't unroll loops with calls. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J) if (isa<CallInst>(J) || isa<InvokeInst>(J)) { ImmutableCallSite CS(&*J); if (const Function *F = CS.getCalledFunction()) { if (!static_cast<T *>(this)->isLoweredToCall(F)) continue; } return; } } // Enable runtime and partial unrolling up to the specified size. // Enable using trip count upper bound to unroll loops. UP.Partial = UP.Runtime = UP.UpperBound = true; UP.PartialThreshold = MaxOps; // Avoid unrolling when optimizing for size. UP.OptSizeThreshold = 0; UP.PartialOptSizeThreshold = 0; // Set number of instructions optimized when "back edge" // becomes "fall through" to default value of 2. UP.BEInsns = 2; } int getInstructionLatency(const Instruction *I) { if (isa<LoadInst>(I)) return getST()->getSchedModel().DefaultLoadLatency; return BaseT::getInstructionLatency(I); } /// @} /// \name Vector TTI Implementations /// @{ unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; } unsigned getRegisterBitWidth(bool Vector) const { return 32; } /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the result needs to be inserted and/or extracted from vectors. unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) { assert(Ty->isVectorTy() && "Can only scalarize vectors"); unsigned Cost = 0; for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { if (Insert) Cost += static_cast<T *>(this) ->getVectorInstrCost(Instruction::InsertElement, Ty, i); if (Extract) Cost += static_cast<T *>(this) ->getVectorInstrCost(Instruction::ExtractElement, Ty, i); } return Cost; } /// Estimate the overhead of scalarizing an instructions unique /// non-constant operands. The types of the arguments are ordinarily /// scalar, in which case the costs are multiplied with VF. unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, unsigned VF) { unsigned Cost = 0; SmallPtrSet<const Value*, 4> UniqueOperands; for (const Value *A : Args) { if (!isa<Constant>(A) && UniqueOperands.insert(A).second) { Type *VecTy = nullptr; if (A->getType()->isVectorTy()) { VecTy = A->getType(); // If A is a vector operand, VF should be 1 or correspond to A. assert((VF == 1 || VF == VecTy->getVectorNumElements()) && "Vector argument does not match VF"); } else VecTy = VectorType::get(A->getType(), VF); Cost += getScalarizationOverhead(VecTy, false, true); } } return Cost; } unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) { assert(VecTy->isVectorTy()); unsigned Cost = 0; Cost += getScalarizationOverhead(VecTy, true, false); if (!Args.empty()) Cost += getOperandsScalarizationOverhead(Args, VecTy->getVectorNumElements()); else // When no information on arguments is provided, we add the cost // associated with one argument as a heuristic. Cost += getScalarizationOverhead(VecTy, false, true); return Cost; } unsigned getMaxInterleaveFactor(unsigned VF) { return 1; } unsigned getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue, TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue, TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None, TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None, ArrayRef<const Value *> Args = ArrayRef<const Value *>()) { // Check if any of the operands are vector operands. const TargetLoweringBase *TLI = getTLI(); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); bool IsFloat = Ty->isFPOrFPVectorTy(); // Assume that floating point arithmetic operations cost twice as much as // integer operations. unsigned OpCost = (IsFloat ? 2 : 1); if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { // The operation is legal. Assume it costs 1. // TODO: Once we have extract/insert subvector cost we need to use them. return LT.first * OpCost; } if (!TLI->isOperationExpand(ISD, LT.second)) { // If the operation is custom lowered, then assume that the code is twice // as expensive. return LT.first * 2 * OpCost; } // Else, assume that we need to scalarize this op. // TODO: If one of the types get legalized by splitting, handle this // similarly to what getCastInstrCost() does. if (Ty->isVectorTy()) { unsigned Num = Ty->getVectorNumElements(); unsigned Cost = static_cast<T *>(this) ->getArithmeticInstrCost(Opcode, Ty->getScalarType()); // Return the cost of multiple scalar invocation plus the cost of // inserting and extracting the values. return getScalarizationOverhead(Ty, Args) + Num * Cost; } // We don't know anything about this scalar instruction. return OpCost; } unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) { if (Kind == TTI::SK_Alternate || Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) { return getPermuteShuffleOverhead(Tp); } return 1; } unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I = nullptr) { const TargetLoweringBase *TLI = getTLI(); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src); std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst); // Check for NOOP conversions. if (SrcLT.first == DstLT.first && SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { // Bitcast between types that are legalized to the same type are free. if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) return 0; } if (Opcode == Instruction::Trunc && TLI->isTruncateFree(SrcLT.second, DstLT.second)) return 0; if (Opcode == Instruction::ZExt && TLI->isZExtFree(SrcLT.second, DstLT.second)) return 0; if (Opcode == Instruction::AddrSpaceCast && TLI->isNoopAddrSpaceCast(Src->getPointerAddressSpace(), Dst->getPointerAddressSpace())) return 0; // If this is a zext/sext of a load, return 0 if the corresponding // extending load exists on target. if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && I && isa<LoadInst>(I->getOperand(0))) { EVT ExtVT = EVT::getEVT(Dst); EVT LoadVT = EVT::getEVT(Src); unsigned LType = ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD); if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT)) return 0; } // If the cast is marked as legal (or promote) then assume low cost. if (SrcLT.first == DstLT.first && TLI->isOperationLegalOrPromote(ISD, DstLT.second)) return 1; // Handle scalar conversions. if (!Src->isVectorTy() && !Dst->isVectorTy()) { // Scalar bitcasts are usually free. if (Opcode == Instruction::BitCast) return 0; // Just check the op cost. If the operation is legal then assume it costs // 1. if (!TLI->isOperationExpand(ISD, DstLT.second)) return 1; // Assume that illegal scalar instruction are expensive. return 4; } // Check vector-to-vector casts. if (Dst->isVectorTy() && Src->isVectorTy()) { // If the cast is between same-sized registers, then the check is simple. if (SrcLT.first == DstLT.first && SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { // Assume that Zext is done using AND. if (Opcode == Instruction::ZExt) return 1; // Assume that sext is done using SHL and SRA. if (Opcode == Instruction::SExt) return 2; // Just check the op cost. If the operation is legal then assume it // costs // 1 and multiply by the type-legalization overhead. if (!TLI->isOperationExpand(ISD, DstLT.second)) return SrcLT.first * 1; } // If we are legalizing by splitting, query the concrete TTI for the cost // of casting the original vector twice. We also need to factor int the // cost of the split itself. Count that as 1, to be consistent with // TLI->getTypeLegalizationCost(). if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) == TargetLowering::TypeSplitVector) || (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) == TargetLowering::TypeSplitVector)) { Type *SplitDst = VectorType::get(Dst->getVectorElementType(), Dst->getVectorNumElements() / 2); Type *SplitSrc = VectorType::get(Src->getVectorElementType(), Src->getVectorNumElements() / 2); T *TTI = static_cast<T *>(this); return TTI->getVectorSplitCost() + (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I)); } // In other cases where the source or destination are illegal, assume // the operation will get scalarized. unsigned Num = Dst->getVectorNumElements(); unsigned Cost = static_cast<T *>(this)->getCastInstrCost( Opcode, Dst->getScalarType(), Src->getScalarType(), I); // Return the cost of multiple scalar invocation plus the cost of // inserting and extracting the values. return getScalarizationOverhead(Dst, true, true) + Num * Cost; } // We already handled vector-to-vector and scalar-to-scalar conversions. // This // is where we handle bitcast between vectors and scalars. We need to assume // that the conversion is scalarized in one way or another. if (Opcode == Instruction::BitCast) // Illegal bitcasts are done by storing and loading from a stack slot. return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true) : 0) + (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false) : 0); llvm_unreachable("Unhandled cast"); } unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) { return static_cast<T *>(this)->getVectorInstrCost( Instruction::ExtractElement, VecTy, Index) + static_cast<T *>(this)->getCastInstrCost(Opcode, Dst, VecTy->getElementType()); } unsigned getCFInstrCost(unsigned Opcode) { // Branches are assumed to be predicted. return 0; } unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I) { const TargetLoweringBase *TLI = getTLI(); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Selects on vectors are actually vector selects. if (ISD == ISD::SELECT) { assert(CondTy && "CondTy must exist"); if (CondTy->isVectorTy()) ISD = ISD::VSELECT; } std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); if (!(ValTy->isVectorTy() && !LT.second.isVector()) && !TLI->isOperationExpand(ISD, LT.second)) { // The operation is legal. Assume it costs 1. Multiply // by the type-legalization overhead. return LT.first * 1; } // Otherwise, assume that the cast is scalarized. // TODO: If one of the types get legalized by splitting, handle this // similarly to what getCastInstrCost() does. if (ValTy->isVectorTy()) { unsigned Num = ValTy->getVectorNumElements(); if (CondTy) CondTy = CondTy->getScalarType(); unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost( Opcode, ValTy->getScalarType(), CondTy, I); // Return the cost of multiple scalar invocation plus the cost of // inserting and extracting the values. return getScalarizationOverhead(ValTy, true, false) + Num * Cost; } // Unknown scalar opcode. return 1; } unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Val->getScalarType()); return LT.first; } unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace, const Instruction *I = nullptr) { assert(!Src->isVoidTy() && "Invalid type"); std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src); // Assuming that all loads of legal types cost 1. unsigned Cost = LT.first; if (Src->isVectorTy() && Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) { // This is a vector load that legalizes to a larger type than the vector // itself. Unless the corresponding extending load or truncating store is // legal, then this will scalarize. TargetLowering::LegalizeAction LA = TargetLowering::Expand; EVT MemVT = getTLI()->getValueType(DL, Src); if (Opcode == Instruction::Store) LA = getTLI()->getTruncStoreAction(LT.second, MemVT); else LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT); if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) { // This is a vector load/store for some illegal type that is scalarized. // We must account for the cost of building or decomposing the vector. Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store, Opcode == Instruction::Store); } } return Cost; } unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, unsigned Alignment, unsigned AddressSpace) { VectorType *VT = dyn_cast<VectorType>(VecTy); assert(VT && "Expect a vector type for interleaved memory op"); unsigned NumElts = VT->getNumElements(); assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); unsigned NumSubElts = NumElts / Factor; VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts); // Firstly, the cost of load/store operation. unsigned Cost = static_cast<T *>(this)->getMemoryOpCost( Opcode, VecTy, Alignment, AddressSpace); // Legalize the vector type, and get the legalized and unlegalized type // sizes. MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; unsigned VecTySize = static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy); unsigned VecTyLTSize = VecTyLT.getStoreSize(); // Return the ceiling of dividing A by B. auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; // Scale the cost of the memory operation by the fraction of legalized // instructions that will actually be used. We shouldn't account for the // cost of dead instructions since they will be removed. // // E.g., An interleaved load of factor 8: // %vec = load <16 x i64>, <16 x i64>* %ptr // %v0 = shufflevector %vec, undef, <0, 8> // // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be // used (those corresponding to elements [0:1] and [8:9] of the unlegalized // type). The other loads are unused. // // We only scale the cost of loads since interleaved store groups aren't // allowed to have gaps. if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) { // The number of loads of a legal type it will take to represent a load // of the unlegalized vector type. unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize); // The number of elements of the unlegalized type that correspond to a // single legal instruction. unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts); // Determine which legal instructions will be used. BitVector UsedInsts(NumLegalInsts, false); for (unsigned Index : Indices) for (unsigned Elt = 0; Elt < NumSubElts; ++Elt) UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst); // Scale the cost of the load by the fraction of legal instructions that // will be used. Cost *= UsedInsts.count() / NumLegalInsts; } // Then plus the cost of interleave operation. if (Opcode == Instruction::Load) { // The interleave cost is similar to extract sub vectors' elements // from the wide vector, and insert them into sub vectors. // // E.g. An interleaved load of factor 2 (with one member of index 0): // %vec = load <8 x i32>, <8 x i32>* %ptr // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0 // The cost is estimated as extract elements at 0, 2, 4, 6 from the // <8 x i32> vector and insert them into a <4 x i32> vector. assert(Indices.size() <= Factor && "Interleaved memory op has too many members"); for (unsigned Index : Indices) { assert(Index < Factor && "Invalid index for interleaved memory op"); // Extract elements from loaded vector for each sub vector. for (unsigned i = 0; i < NumSubElts; i++) Cost += static_cast<T *>(this)->getVectorInstrCost( Instruction::ExtractElement, VT, Index + i * Factor); } unsigned InsSubCost = 0; for (unsigned i = 0; i < NumSubElts; i++) InsSubCost += static_cast<T *>(this)->getVectorInstrCost( Instruction::InsertElement, SubVT, i); Cost += Indices.size() * InsSubCost; } else { // The interleave cost is extract all elements from sub vectors, and // insert them into the wide vector. // // E.g. An interleaved store of factor 2: // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7> // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr // The cost is estimated as extract all elements from both <4 x i32> // vectors and insert into the <8 x i32> vector. unsigned ExtSubCost = 0; for (unsigned i = 0; i < NumSubElts; i++) ExtSubCost += static_cast<T *>(this)->getVectorInstrCost( Instruction::ExtractElement, SubVT, i); Cost += ExtSubCost * Factor; for (unsigned i = 0; i < NumElts; i++) Cost += static_cast<T *>(this) ->getVectorInstrCost(Instruction::InsertElement, VT, i); } return Cost; } /// Get intrinsic cost based on arguments. unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF = 1) { unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1); assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type"); switch (IID) { default: { // Assume that we need to scalarize this intrinsic. SmallVector<Type *, 4> Types; for (Value *Op : Args) { Type *OpTy = Op->getType(); assert(VF == 1 || !OpTy->isVectorTy()); Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF)); } if (VF > 1 && !RetTy->isVoidTy()) RetTy = VectorType::get(RetTy, VF); // Compute the scalarization overhead based on Args for a vector // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while // CostModel will pass a vector RetTy and VF is 1. unsigned ScalarizationCost = std::numeric_limits<unsigned>::max(); if (RetVF > 1 || VF > 1) { ScalarizationCost = 0; if (!RetTy->isVoidTy()) ScalarizationCost += getScalarizationOverhead(RetTy, true, false); ScalarizationCost += getOperandsScalarizationOverhead(Args, VF); } return static_cast<T *>(this)-> getIntrinsicInstrCost(IID, RetTy, Types, FMF, ScalarizationCost); } case Intrinsic::masked_scatter: { assert(VF == 1 && "Can't vectorize types here."); Value *Mask = Args[3]; bool VarMask = !isa<Constant>(Mask); unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue(); return static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Store, Args[0]->getType(), Args[1], VarMask, Alignment); } case Intrinsic::masked_gather: { assert(VF == 1 && "Can't vectorize types here."); Value *Mask = Args[2]; bool VarMask = !isa<Constant>(Mask); unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue(); return static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0], VarMask, Alignment); } } } /// Get intrinsic cost based on argument types. /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the /// cost of scalarizing the arguments and the return value will be computed /// based on types. unsigned getIntrinsicInstrCost( Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF, unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) { SmallVector<unsigned, 2> ISDs; unsigned SingleCallCost = 10; // Library call cost. Make it expensive. switch (IID) { default: { // Assume that we need to scalarize this intrinsic. unsigned ScalarizationCost = ScalarizationCostPassed; unsigned ScalarCalls = 1; Type *ScalarRetTy = RetTy; if (RetTy->isVectorTy()) { if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) ScalarizationCost = getScalarizationOverhead(RetTy, true, false); ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); ScalarRetTy = RetTy->getScalarType(); } SmallVector<Type *, 4> ScalarTys; for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { Type *Ty = Tys[i]; if (Ty->isVectorTy()) { if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) ScalarizationCost += getScalarizationOverhead(Ty, false, true); ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements()); Ty = Ty->getScalarType(); } ScalarTys.push_back(Ty); } if (ScalarCalls == 1) return 1; // Return cost of a scalar intrinsic. Assume it to be cheap. unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost( IID, ScalarRetTy, ScalarTys, FMF); return ScalarCalls * ScalarCost + ScalarizationCost; } // Look for intrinsics that can be lowered directly or turned into a scalar // intrinsic call. case Intrinsic::sqrt: ISDs.push_back(ISD::FSQRT); break; case Intrinsic::sin: ISDs.push_back(ISD::FSIN); break; case Intrinsic::cos: ISDs.push_back(ISD::FCOS); break; case Intrinsic::exp: ISDs.push_back(ISD::FEXP); break; case Intrinsic::exp2: ISDs.push_back(ISD::FEXP2); break; case Intrinsic::log: ISDs.push_back(ISD::FLOG); break; case Intrinsic::log10: ISDs.push_back(ISD::FLOG10); break; case Intrinsic::log2: ISDs.push_back(ISD::FLOG2); break; case Intrinsic::fabs: ISDs.push_back(ISD::FABS); break; case Intrinsic::minnum: ISDs.push_back(ISD::FMINNUM); if (FMF.noNaNs()) ISDs.push_back(ISD::FMINNAN); break; case Intrinsic::maxnum: ISDs.push_back(ISD::FMAXNUM); if (FMF.noNaNs()) ISDs.push_back(ISD::FMAXNAN); break; case Intrinsic::copysign: ISDs.push_back(ISD::FCOPYSIGN); break; case Intrinsic::floor: ISDs.push_back(ISD::FFLOOR); break; case Intrinsic::ceil: ISDs.push_back(ISD::FCEIL); break; case Intrinsic::trunc: ISDs.push_back(ISD::FTRUNC); break; case Intrinsic::nearbyint: ISDs.push_back(ISD::FNEARBYINT); break; case Intrinsic::rint: ISDs.push_back(ISD::FRINT); break; case Intrinsic::round: ISDs.push_back(ISD::FROUND); break; case Intrinsic::pow: ISDs.push_back(ISD::FPOW); break; case Intrinsic::fma: ISDs.push_back(ISD::FMA); break; case Intrinsic::fmuladd: ISDs.push_back(ISD::FMA); break; // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free. case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: return 0; case Intrinsic::masked_store: return static_cast<T *>(this) ->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0); case Intrinsic::masked_load: return static_cast<T *>(this) ->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0); case Intrinsic::ctpop: ISDs.push_back(ISD::CTPOP); // In case of legalization use TCC_Expensive. This is cheaper than a // library call but still not a cheap instruction. SingleCallCost = TargetTransformInfo::TCC_Expensive; break; // FIXME: ctlz, cttz, ... } const TargetLoweringBase *TLI = getTLI(); std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); SmallVector<unsigned, 2> LegalCost; SmallVector<unsigned, 2> CustomCost; for (unsigned ISD : ISDs) { if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { if (IID == Intrinsic::fabs && TLI->isFAbsFree(LT.second)) { return 0; } // The operation is legal. Assume it costs 1. // If the type is split to multiple registers, assume that there is some // overhead to this. // TODO: Once we have extract/insert subvector cost we need to use them. if (LT.first > 1) LegalCost.push_back(LT.first * 2); else LegalCost.push_back(LT.first * 1); } else if (!TLI->isOperationExpand(ISD, LT.second)) { // If the operation is custom lowered then assume // that the code is twice as expensive. CustomCost.push_back(LT.first * 2); } } auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end()); if (MinLegalCostI != LegalCost.end()) return *MinLegalCostI; auto MinCustomCostI = std::min_element(CustomCost.begin(), CustomCost.end()); if (MinCustomCostI != CustomCost.end()) return *MinCustomCostI; // If we can't lower fmuladd into an FMA estimate the cost as a floating // point mul followed by an add. if (IID == Intrinsic::fmuladd) return static_cast<T *>(this) ->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) + static_cast<T *>(this) ->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy); // Else, assume that we need to scalarize this intrinsic. For math builtins // this will emit a costly libcall, adding call overhead and spills. Make it // very expensive. if (RetTy->isVectorTy()) { unsigned ScalarizationCost = ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max()) ? ScalarizationCostPassed : getScalarizationOverhead(RetTy, true, false)); unsigned ScalarCalls = RetTy->getVectorNumElements(); SmallVector<Type *, 4> ScalarTys; for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { Type *Ty = Tys[i]; if (Ty->isVectorTy()) Ty = Ty->getScalarType(); ScalarTys.push_back(Ty); } unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost( IID, RetTy->getScalarType(), ScalarTys, FMF); for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { if (Tys[i]->isVectorTy()) { if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements()); } } return ScalarCalls * ScalarCost + ScalarizationCost; } // This is going to be turned into a library call, make it expensive. return SingleCallCost; } /// \brief Compute a cost of the given call instruction. /// /// Compute the cost of calling function F with return type RetTy and /// argument types Tys. F might be nullptr, in this case the cost of an /// arbitrary call with the specified signature will be returned. /// This is used, for instance, when we estimate call of a vector /// counterpart of the given function. /// \param F Called function, might be nullptr. /// \param RetTy Return value types. /// \param Tys Argument types. /// \returns The cost of Call instruction. unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) { return 10; } unsigned getNumberOfParts(Type *Tp) { std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp); return LT.first; } unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *, const SCEV *) { return 0; } /// Try to calculate arithmetic and shuffle op costs for reduction operations. /// We're assuming that reduction operation are performing the following way: /// 1. Non-pairwise reduction /// %val1 = shufflevector<n x t> %val, <n x t> %undef, /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef> /// \----------------v-------------/ \----------v------------/ /// n/2 elements n/2 elements /// %red1 = op <n x t> %val, <n x t> val1 /// After this operation we have a vector %red1 where only the first n/2 /// elements are meaningful, the second n/2 elements are undefined and can be /// dropped. All other operations are actually working with the vector of /// length n/2, not n, though the real vector length is still n. /// %val2 = shufflevector<n x t> %red1, <n x t> %undef, /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef> /// \----------------v-------------/ \----------v------------/ /// n/4 elements 3*n/4 elements /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of /// length n/2, the resulting vector has length n/4 etc. /// 2. Pairwise reduction: /// Everything is the same except for an additional shuffle operation which /// is used to produce operands for pairwise kind of reductions. /// %val1 = shufflevector<n x t> %val, <n x t> %undef, /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef> /// \-------------v----------/ \----------v------------/ /// n/2 elements n/2 elements /// %val2 = shufflevector<n x t> %val, <n x t> %undef, /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef> /// \-------------v----------/ \----------v------------/ /// n/2 elements n/2 elements /// %red1 = op <n x t> %val1, <n x t> val2 /// Again, the operation is performed on <n x t> vector, but the resulting /// vector %red1 is <n/2 x t> vector. /// /// The cost model should take into account that the actual length of the /// vector is reduced on each iteration. unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty, bool IsPairwise) { assert(Ty->isVectorTy() && "Expect a vector type"); Type *ScalarTy = Ty->getVectorElementType(); unsigned NumVecElts = Ty->getVectorNumElements(); unsigned NumReduxLevels = Log2_32(NumVecElts); unsigned ArithCost = 0; unsigned ShuffleCost = 0; auto *ConcreteTTI = static_cast<T *>(this); std::pair<unsigned, MVT> LT = ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty); unsigned LongVectorCount = 0; unsigned MVTLen = LT.second.isVector() ? LT.second.getVectorNumElements() : 1; while (NumVecElts > MVTLen) { NumVecElts /= 2; // Assume the pairwise shuffles add a cost. ShuffleCost += (IsPairwise + 1) * ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, Ty); ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, Ty); Ty = VectorType::get(ScalarTy, NumVecElts); ++LongVectorCount; } // The minimal length of the vector is limited by the real length of vector // operations performed on the current platform. That's why several final // reduction operations are performed on the vectors with the same // architecture-dependent length. ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) * ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, Ty); ArithCost += (NumReduxLevels - LongVectorCount) * ConcreteTTI->getArithmeticInstrCost(Opcode, Ty); return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true); } /// Try to calculate op costs for min/max reduction operations. /// \param CondTy Conditional type for the Select instruction. unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise, bool) { assert(Ty->isVectorTy() && "Expect a vector type"); Type *ScalarTy = Ty->getVectorElementType(); Type *ScalarCondTy = CondTy->getVectorElementType(); unsigned NumVecElts = Ty->getVectorNumElements(); unsigned NumReduxLevels = Log2_32(NumVecElts); unsigned CmpOpcode; if (Ty->isFPOrFPVectorTy()) { CmpOpcode = Instruction::FCmp; } else { assert(Ty->isIntOrIntVectorTy() && "expecting floating point or integer type for min/max reduction"); CmpOpcode = Instruction::ICmp; } unsigned MinMaxCost = 0; unsigned ShuffleCost = 0; auto *ConcreteTTI = static_cast<T *>(this); std::pair<unsigned, MVT> LT = ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty); unsigned LongVectorCount = 0; unsigned MVTLen = LT.second.isVector() ? LT.second.getVectorNumElements() : 1; while (NumVecElts > MVTLen) { NumVecElts /= 2; // Assume the pairwise shuffles add a cost. ShuffleCost += (IsPairwise + 1) * ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, Ty); MinMaxCost += ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) + ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy, nullptr); Ty = VectorType::get(ScalarTy, NumVecElts); CondTy = VectorType::get(ScalarCondTy, NumVecElts); ++LongVectorCount; } // The minimal length of the vector is limited by the real length of vector // operations performed on the current platform. That's why several final // reduction opertions are perfomed on the vectors with the same // architecture-dependent length. ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) * ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, Ty); MinMaxCost += (NumReduxLevels - LongVectorCount) * (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) + ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy, nullptr)); // Need 3 extractelement instructions for scalarization + an additional // scalar select instruction. return ShuffleCost + MinMaxCost + 3 * getScalarizationOverhead(Ty, /*Insert=*/false, /*Extract=*/true) + ConcreteTTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, ScalarCondTy, nullptr); } unsigned getVectorSplitCost() { return 1; } /// @} }; /// \brief Concrete BasicTTIImpl that can be used if no further customization /// is needed. class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> { using BaseT = BasicTTIImplBase<BasicTTIImpl>; friend class BasicTTIImplBase<BasicTTIImpl>; const TargetSubtargetInfo *ST; const TargetLoweringBase *TLI; const TargetSubtargetInfo *getST() const { return ST; } const TargetLoweringBase *getTLI() const { return TLI; } public: explicit BasicTTIImpl(const TargetMachine *ST, const Function &F); }; } // end namespace llvm #endif // LLVM_CODEGEN_BASICTTIIMPL_H