//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes an abstract interface used to get information about a // target machines register file. This information is used for a variety of // purposed, especially register allocation. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETREGISTERINFO_H #define LLVM_TARGET_TARGETREGISTERINFO_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/IR/CallingConv.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Printable.h" #include <cassert> #include <functional> namespace llvm { class BitVector; class MachineFunction; class RegScavenger; template<class T> class SmallVectorImpl; class VirtRegMap; class raw_ostream; class LiveRegMatrix; class TargetRegisterClass { public: typedef const MCPhysReg* iterator; typedef const MCPhysReg* const_iterator; typedef const TargetRegisterClass* const * sc_iterator; // Instance variables filled by tablegen, do not use! const MCRegisterClass *MC; const uint16_t SpillSize, SpillAlignment; const MVT::SimpleValueType *VTs; const uint32_t *SubClassMask; const uint16_t *SuperRegIndices; const LaneBitmask LaneMask; /// Classes with a higher priority value are assigned first by register /// allocators using a greedy heuristic. The value is in the range [0,63]. const uint8_t AllocationPriority; /// Whether the class supports two (or more) disjunct subregister indices. const bool HasDisjunctSubRegs; /// Whether a combination of subregisters can cover every register in the /// class. See also the CoveredBySubRegs description in Target.td. const bool CoveredBySubRegs; const sc_iterator SuperClasses; ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); /// Return the register class ID number. unsigned getID() const { return MC->getID(); } /// begin/end - Return all of the registers in this class. /// iterator begin() const { return MC->begin(); } iterator end() const { return MC->end(); } /// Return the number of registers in this class. unsigned getNumRegs() const { return MC->getNumRegs(); } iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator> getRegisters() const { return make_range(MC->begin(), MC->end()); } /// Return the specified register in the class. unsigned getRegister(unsigned i) const { return MC->getRegister(i); } /// Return true if the specified register is included in this register class. /// This does not include virtual registers. bool contains(unsigned Reg) const { return MC->contains(Reg); } /// Return true if both registers are in this class. bool contains(unsigned Reg1, unsigned Reg2) const { return MC->contains(Reg1, Reg2); } /// Return the cost of copying a value between two registers in this class. /// A negative number means the register class is very expensive /// to copy e.g. status flag register classes. int getCopyCost() const { return MC->getCopyCost(); } /// Return true if this register class may be used to create virtual /// registers. bool isAllocatable() const { return MC->isAllocatable(); } /// Return true if the specified TargetRegisterClass /// is a proper sub-class of this TargetRegisterClass. bool hasSubClass(const TargetRegisterClass *RC) const { return RC != this && hasSubClassEq(RC); } /// Returns true if RC is a sub-class of or equal to this class. bool hasSubClassEq(const TargetRegisterClass *RC) const { unsigned ID = RC->getID(); return (SubClassMask[ID / 32] >> (ID % 32)) & 1; } /// Return true if the specified TargetRegisterClass is a /// proper super-class of this TargetRegisterClass. bool hasSuperClass(const TargetRegisterClass *RC) const { return RC->hasSubClass(this); } /// Returns true if RC is a super-class of or equal to this class. bool hasSuperClassEq(const TargetRegisterClass *RC) const { return RC->hasSubClassEq(this); } /// Returns a bit vector of subclasses, including this one. /// The vector is indexed by class IDs. /// /// To use it, consider the returned array as a chunk of memory that /// contains an array of bits of size NumRegClasses. Each 32-bit chunk /// contains a bitset of the ID of the subclasses in big-endian style. /// I.e., the representation of the memory from left to right at the /// bit level looks like: /// [31 30 ... 1 0] [ 63 62 ... 33 32] ... /// [ XXX NumRegClasses NumRegClasses - 1 ... ] /// Where the number represents the class ID and XXX bits that /// should be ignored. /// /// See the implementation of hasSubClassEq for an example of how it /// can be used. const uint32_t *getSubClassMask() const { return SubClassMask; } /// Returns a 0-terminated list of sub-register indices that project some /// super-register class into this register class. The list has an entry for /// each Idx such that: /// /// There exists SuperRC where: /// For all Reg in SuperRC: /// this->contains(Reg:Idx) /// const uint16_t *getSuperRegIndices() const { return SuperRegIndices; } /// Returns a NULL-terminated list of super-classes. The /// classes are ordered by ID which is also a topological ordering from large /// to small classes. The list does NOT include the current class. sc_iterator getSuperClasses() const { return SuperClasses; } /// Return true if this TargetRegisterClass is a subset /// class of at least one other TargetRegisterClass. bool isASubClass() const { return SuperClasses[0] != nullptr; } /// Returns the preferred order for allocating registers from this register /// class in MF. The raw order comes directly from the .td file and may /// include reserved registers that are not allocatable. /// Register allocators should also make sure to allocate /// callee-saved registers only after all the volatiles are used. The /// RegisterClassInfo class provides filtered allocation orders with /// callee-saved registers moved to the end. /// /// The MachineFunction argument can be used to tune the allocatable /// registers based on the characteristics of the function, subtarget, or /// other criteria. /// /// By default, this method returns all registers in the class. /// ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); } /// Returns the combination of all lane masks of register in this class. /// The lane masks of the registers are the combination of all lane masks /// of their subregisters. Returns 1 if there are no subregisters. LaneBitmask getLaneMask() const { return LaneMask; } }; /// Extra information, not in MCRegisterDesc, about registers. /// These are used by codegen, not by MC. struct TargetRegisterInfoDesc { unsigned CostPerUse; // Extra cost of instructions using register. bool inAllocatableClass; // Register belongs to an allocatable regclass. }; /// Each TargetRegisterClass has a per register weight, and weight /// limit which must be less than the limits of its pressure sets. struct RegClassWeight { unsigned RegWeight; unsigned WeightLimit; }; /// TargetRegisterInfo base class - We assume that the target defines a static /// array of TargetRegisterDesc objects that represent all of the machine /// registers that the target has. As such, we simply have to track a pointer /// to this array so that we can turn register number into a register /// descriptor. /// class TargetRegisterInfo : public MCRegisterInfo { public: typedef const TargetRegisterClass * const * regclass_iterator; typedef const MVT::SimpleValueType* vt_iterator; private: const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen const char *const *SubRegIndexNames; // Names of subreg indexes. // Pointer to array of lane masks, one per sub-reg index. const LaneBitmask *SubRegIndexLaneMasks; regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses LaneBitmask CoveringLanes; protected: TargetRegisterInfo(const TargetRegisterInfoDesc *ID, regclass_iterator RegClassBegin, regclass_iterator RegClassEnd, const char *const *SRINames, const LaneBitmask *SRILaneMasks, LaneBitmask CoveringLanes); virtual ~TargetRegisterInfo(); public: // Register numbers can represent physical registers, virtual registers, and // sometimes stack slots. The unsigned values are divided into these ranges: // // 0 Not a register, can be used as a sentinel. // [1;2^30) Physical registers assigned by TableGen. // [2^30;2^31) Stack slots. (Rarely used.) // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. // // Further sentinels can be allocated from the small negative integers. // DenseMapInfo<unsigned> uses -1u and -2u. /// isStackSlot - Sometimes it is useful the be able to store a non-negative /// frame index in a variable that normally holds a register. isStackSlot() /// returns true if Reg is in the range used for stack slots. /// /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack /// slots, so if a variable may contains a stack slot, always check /// isStackSlot() first. /// static bool isStackSlot(unsigned Reg) { return int(Reg) >= (1 << 30); } /// Compute the frame index from a register value representing a stack slot. static int stackSlot2Index(unsigned Reg) { assert(isStackSlot(Reg) && "Not a stack slot"); return int(Reg - (1u << 30)); } /// Convert a non-negative frame index to a stack slot register value. static unsigned index2StackSlot(int FI) { assert(FI >= 0 && "Cannot hold a negative frame index."); return FI + (1u << 30); } /// Return true if the specified register number is in /// the physical register namespace. static bool isPhysicalRegister(unsigned Reg) { assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); return int(Reg) > 0; } /// Return true if the specified register number is in /// the virtual register namespace. static bool isVirtualRegister(unsigned Reg) { assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); return int(Reg) < 0; } /// Convert a virtual register number to a 0-based index. /// The first virtual register in a function will get the index 0. static unsigned virtReg2Index(unsigned Reg) { assert(isVirtualRegister(Reg) && "Not a virtual register"); return Reg & ~(1u << 31); } /// Convert a 0-based index to a virtual register number. /// This is the inverse operation of VirtReg2IndexFunctor below. static unsigned index2VirtReg(unsigned Index) { return Index | (1u << 31); } /// Return the size in bits of a register from class RC. unsigned getRegSizeInBits(const TargetRegisterClass &RC) const { return RC.SpillSize * 8; } /// Return the size in bytes of the stack slot allocated to hold a spilled /// copy of a register from class RC. unsigned getSpillSize(const TargetRegisterClass &RC) const { return RC.SpillSize; } /// Return the minimum required alignment for a spill slot for a register /// of this class. unsigned getSpillAlignment(const TargetRegisterClass &RC) const { return RC.SpillAlignment; } /// Return true if the given TargetRegisterClass has the ValueType T. bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const { for (int i = 0; RC.VTs[i] != MVT::Other; ++i) if (MVT(RC.VTs[i]) == T) return true; return false; } /// Loop over all of the value types that can be represented by values // in the given register class. vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const { return RC.VTs; } vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const { vt_iterator I = RC.VTs; while (*I != MVT::Other) ++I; return I; } /// Returns the Register Class of a physical register of the given type, /// picking the most sub register class of the right type that contains this /// physreg. const TargetRegisterClass * getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const; /// Return the maximal subclass of the given register class that is /// allocatable or NULL. const TargetRegisterClass * getAllocatableClass(const TargetRegisterClass *RC) const; /// Returns a bitset indexed by register number indicating if a register is /// allocatable or not. If a register class is specified, returns the subset /// for the class. BitVector getAllocatableSet(const MachineFunction &MF, const TargetRegisterClass *RC = nullptr) const; /// Return the additional cost of using this register instead /// of other registers in its class. unsigned getCostPerUse(unsigned RegNo) const { return InfoDesc[RegNo].CostPerUse; } /// Return true if the register is in the allocation of any register class. bool isInAllocatableClass(unsigned RegNo) const { return InfoDesc[RegNo].inAllocatableClass; } /// Return the human-readable symbolic target-specific /// name for the specified SubRegIndex. const char *getSubRegIndexName(unsigned SubIdx) const { assert(SubIdx && SubIdx < getNumSubRegIndices() && "This is not a subregister index"); return SubRegIndexNames[SubIdx-1]; } /// Return a bitmask representing the parts of a register that are covered by /// SubIdx \see LaneBitmask. /// /// SubIdx == 0 is allowed, it has the lane mask ~0u. LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); return SubRegIndexLaneMasks[SubIdx]; } /// The lane masks returned by getSubRegIndexLaneMask() above can only be /// used to determine if sub-registers overlap - they can't be used to /// determine if a set of sub-registers completely cover another /// sub-register. /// /// The X86 general purpose registers have two lanes corresponding to the /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the /// sub_32bit sub-register. /// /// On the other hand, the ARM NEON lanes fully cover their registers: The /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. /// This is related to the CoveredBySubRegs property on register definitions. /// /// This function returns a bit mask of lanes that completely cover their /// sub-registers. More precisely, given: /// /// Covering = getCoveringLanes(); /// MaskA = getSubRegIndexLaneMask(SubA); /// MaskB = getSubRegIndexLaneMask(SubB); /// /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by /// SubB. LaneBitmask getCoveringLanes() const { return CoveringLanes; } /// Returns true if the two registers are equal or alias each other. /// The registers may be virtual registers. bool regsOverlap(unsigned regA, unsigned regB) const { if (regA == regB) return true; if (isVirtualRegister(regA) || isVirtualRegister(regB)) return false; // Regunits are numerically ordered. Find a common unit. MCRegUnitIterator RUA(regA, this); MCRegUnitIterator RUB(regB, this); do { if (*RUA == *RUB) return true; if (*RUA < *RUB) ++RUA; else ++RUB; } while (RUA.isValid() && RUB.isValid()); return false; } /// Returns true if Reg contains RegUnit. bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) if (*Units == RegUnit) return true; return false; } /// Return a null-terminated list of all of the callee-saved registers on /// this target. The register should be in the order of desired callee-save /// stack frame offset. The first register is closest to the incoming stack /// pointer if stack grows down, and vice versa. /// Notice: This function does not take into account disabled CSRs. /// In most cases you will want to use instead the function /// getCalleeSavedRegs that is implemented in MachineRegisterInfo. virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF) const = 0; /// Return a mask of call-preserved registers for the given calling convention /// on the current function. The mask should include all call-preserved /// aliases. This is used by the register allocator to determine which /// registers can be live across a call. /// /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. /// A set bit indicates that all bits of the corresponding register are /// preserved across the function call. The bit mask is expected to be /// sub-register complete, i.e. if A is preserved, so are all its /// sub-registers. /// /// Bits are numbered from the LSB, so the bit for physical register Reg can /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. /// /// A NULL pointer means that no register mask will be used, and call /// instructions should use implicit-def operands to indicate call clobbered /// registers. /// virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const { // The default mask clobbers everything. All targets should override. return nullptr; } /// Return a register mask that clobbers everything. virtual const uint32_t *getNoPreservedMask() const { llvm_unreachable("target does not provide no preserved mask"); } /// Return true if all bits that are set in mask \p mask0 are also set in /// \p mask1. bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const; /// Return all the call-preserved register masks defined for this target. virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; virtual ArrayRef<const char *> getRegMaskNames() const = 0; /// Returns a bitset indexed by physical register number indicating if a /// register is a special register that has particular uses and should be /// considered unavailable at all times, e.g. stack pointer, return address. /// A reserved register: /// - is not allocatable /// - is considered always live /// - is ignored by liveness tracking /// It is often necessary to reserve the super registers of a reserved /// register as well, to avoid them getting allocated indirectly. You may use /// markSuperRegs() and checkAllSuperRegsMarked() in this case. virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; /// Returns true if PhysReg is unallocatable and constant throughout the /// function. Used by MachineRegisterInfo::isConstantPhysReg(). virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; } /// Physical registers that may be modified within a function but are /// guaranteed to be restored before any uses. This is useful for targets that /// have call sequences where a GOT register may be updated by the caller /// prior to a call and is guaranteed to be restored (also by the caller) /// after the call. virtual bool isCallerPreservedPhysReg(unsigned PhysReg, const MachineFunction &MF) const { return false; } /// Prior to adding the live-out mask to a stackmap or patchpoint /// instruction, provide the target the opportunity to adjust it (mainly to /// remove pseudo-registers that should be ignored). virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { } /// Return a super-register of the specified register /// Reg so its sub-register of index SubIdx is Reg. unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, const TargetRegisterClass *RC) const { return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); } /// Return a subclass of the specified register /// class A so that each register in it has a sub-register of the /// specified sub-register index which is in the specified register class B. /// /// TableGen will synthesize missing A sub-classes. virtual const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const; // For a copy-like instruction that defines a register of class DefRC with // subreg index DefSubReg, reading from another source with class SrcRC and // subregister SrcSubReg return true if this is a preferable copy // instruction or an earlier use should be used. virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) const; /// Returns the largest legal sub-class of RC that /// supports the sub-register index Idx. /// If no such sub-class exists, return NULL. /// If all registers in RC already have an Idx sub-register, return RC. /// /// TableGen generates a version of this function that is good enough in most /// cases. Targets can override if they have constraints that TableGen /// doesn't understand. For example, the x86 sub_8bit sub-register index is /// supported by the full GR32 register class in 64-bit mode, but only by the /// GR32_ABCD regiister class in 32-bit mode. /// /// TableGen will synthesize missing RC sub-classes. virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { assert(Idx == 0 && "Target has no sub-registers"); return RC; } /// Return the subregister index you get from composing /// two subregister indices. /// /// The special null sub-register index composes as the identity. /// /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) /// returns c. Note that composeSubRegIndices does not tell you about illegal /// compositions. If R does not have a subreg a, or R:a does not have a subreg /// b, composeSubRegIndices doesn't tell you. /// /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has /// ssub_0:S0 - ssub_3:S3 subregs. /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. /// unsigned composeSubRegIndices(unsigned a, unsigned b) const { if (!a) return b; if (!b) return a; return composeSubRegIndicesImpl(a, b); } /// Transforms a LaneMask computed for one subregister to the lanemask that /// would have been computed when composing the subsubregisters with IdxA /// first. @sa composeSubRegIndices() LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, LaneBitmask Mask) const { if (!IdxA) return Mask; return composeSubRegIndexLaneMaskImpl(IdxA, Mask); } /// Transform a lanemask given for a virtual register to the corresponding /// lanemask before using subregister with index \p IdxA. /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a /// valie lane mask (no invalid bits set) the following holds: /// X0 = composeSubRegIndexLaneMask(Idx, Mask) /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0) /// => X1 == Mask LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, LaneBitmask LaneMask) const { if (!IdxA) return LaneMask; return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask); } /// Debugging helper: dump register in human readable form to dbgs() stream. static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0, const TargetRegisterInfo* TRI = nullptr); protected: /// Overridden by TableGen in targets that have sub-registers. virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { llvm_unreachable("Target has no sub-registers"); } /// Overridden by TableGen in targets that have sub-registers. virtual LaneBitmask composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { llvm_unreachable("Target has no sub-registers"); } virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { llvm_unreachable("Target has no sub-registers"); } public: /// Find a common super-register class if it exists. /// /// Find a register class, SuperRC and two sub-register indices, PreA and /// PreB, such that: /// /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and /// /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and /// /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). /// /// SuperRC will be chosen such that no super-class of SuperRC satisfies the /// requirements, and there is no register class with a smaller spill size /// that satisfies the requirements. /// /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. /// /// Either of the PreA and PreB sub-register indices may be returned as 0. In /// that case, the returned register class will be a sub-class of the /// corresponding argument register class. /// /// The function returns NULL if no register class can be found. /// const TargetRegisterClass* getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, const TargetRegisterClass *RCB, unsigned SubB, unsigned &PreA, unsigned &PreB) const; //===--------------------------------------------------------------------===// // Register Class Information // /// Register class iterators /// regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_iterator regclass_end() const { return RegClassEnd; } iterator_range<regclass_iterator> regclasses() const { return make_range(regclass_begin(), regclass_end()); } unsigned getNumRegClasses() const { return (unsigned)(regclass_end()-regclass_begin()); } /// Returns the register class associated with the enumeration value. /// See class MCOperandInfo. const TargetRegisterClass *getRegClass(unsigned i) const { assert(i < getNumRegClasses() && "Register Class ID out of range"); return RegClassBegin[i]; } /// Returns the name of the register class. const char *getRegClassName(const TargetRegisterClass *Class) const { return MCRegisterInfo::getRegClassName(Class->MC); } /// Find the largest common subclass of A and B. /// Return NULL if there is no common subclass. /// The common subclass should contain /// simple value type SVT if it is not the Any type. const TargetRegisterClass * getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B, const MVT::SimpleValueType SVT = MVT::SimpleValueType::Any) const; /// Returns a TargetRegisterClass used for pointer values. /// If a target supports multiple different pointer register classes, /// kind specifies which one is indicated. virtual const TargetRegisterClass * getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { llvm_unreachable("Target didn't implement getPointerRegClass!"); } /// Returns a legal register class to copy a register in the specified class /// to or from. If it is possible to copy the register directly without using /// a cross register class copy, return the specified RC. Returns NULL if it /// is not possible to copy between two registers of the specified class. virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const { return RC; } /// Returns the largest super class of RC that is legal to use in the current /// sub-target and has the same spill size. /// The returned register class can be used to create virtual registers which /// means that all its registers can be copied and spilled. virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &) const { /// The default implementation is very conservative and doesn't allow the /// register allocator to inflate register classes. return RC; } /// Return the register pressure "high water mark" for the specific register /// class. The scheduler is in high register pressure mode (for the specific /// register class) if it goes over the limit. /// /// Note: this is the old register pressure model that relies on a manually /// specified representative register class per value type. virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const { return 0; } /// Return a heuristic for the machine scheduler to compare the profitability /// of increasing one register pressure set versus another. The scheduler /// will prefer increasing the register pressure of the set which returns /// the largest value for this function. virtual unsigned getRegPressureSetScore(const MachineFunction &MF, unsigned PSetID) const { return PSetID; } /// Get the weight in units of pressure for this register class. virtual const RegClassWeight &getRegClassWeight( const TargetRegisterClass *RC) const = 0; /// Get the weight in units of pressure for this register unit. virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; /// Get the number of dimensions of register pressure. virtual unsigned getNumRegPressureSets() const = 0; /// Get the name of this register unit pressure set. virtual const char *getRegPressureSetName(unsigned Idx) const = 0; /// Get the register unit pressure limit for this dimension. /// This limit must be adjusted dynamically for reserved registers. virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const = 0; /// Get the dimensions of register pressure impacted by this register class. /// Returns a -1 terminated array of pressure set IDs. virtual const int *getRegClassPressureSets( const TargetRegisterClass *RC) const = 0; /// Get the dimensions of register pressure impacted by this register unit. /// Returns a -1 terminated array of pressure set IDs. virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; /// Get a list of 'hint' registers that the register allocator should try /// first when allocating a physical register for the virtual register /// VirtReg. These registers are effectively moved to the front of the /// allocation order. /// /// The Order argument is the allocation order for VirtReg's register class /// as returned from RegisterClassInfo::getOrder(). The hint registers must /// come from Order, and they must not be reserved. /// /// The default implementation of this function can resolve /// target-independent hints provided to MRI::setRegAllocationHint with /// HintType == 0. Targets that override this function should defer to the /// default implementation if they have no reason to change the allocation /// order for VirtReg. There may be target-independent hints. virtual void getRegAllocationHints(unsigned VirtReg, ArrayRef<MCPhysReg> Order, SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF, const VirtRegMap *VRM = nullptr, const LiveRegMatrix *Matrix = nullptr) const; /// A callback to allow target a chance to update register allocation hints /// when a register is "changed" (e.g. coalesced) to another register. /// e.g. On ARM, some virtual registers should target register pairs, /// if one of pair is coalesced to another register, the allocation hint of /// the other half of the pair should be changed to point to the new register. virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg, MachineFunction &MF) const { // Do nothing. } /// Allow the target to reverse allocation order of local live ranges. This /// will generally allocate shorter local live ranges first. For targets with /// many registers, this could reduce regalloc compile time by a large /// factor. It is disabled by default for three reasons: /// (1) Top-down allocation is simpler and easier to debug for targets that /// don't benefit from reversing the order. /// (2) Bottom-up allocation could result in poor evicition decisions on some /// targets affecting the performance of compiled code. /// (3) Bottom-up allocation is no longer guaranteed to optimally color. virtual bool reverseLocalAssignment() const { return false; } /// Allow the target to override the cost of using a callee-saved register for /// the first time. Default value of 0 means we will use a callee-saved /// register if it is available. virtual unsigned getCSRFirstUseCost() const { return 0; } /// Returns true if the target requires (and can make use of) the register /// scavenger. virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { return false; } /// Returns true if the target wants to use frame pointer based accesses to /// spill to the scavenger emergency spill slot. virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { return true; } /// Returns true if the target requires post PEI scavenging of registers for /// materializing frame index constants. virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { return false; } /// Returns true if the target requires using the RegScavenger directly for /// frame elimination despite using requiresFrameIndexScavenging. virtual bool requiresFrameIndexReplacementScavenging( const MachineFunction &MF) const { return false; } /// Returns true if the target wants the LocalStackAllocation pass to be run /// and virtual base registers used for more efficient stack access. virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { return false; } /// Return true if target has reserved a spill slot in the stack frame of /// the given function for the specified register. e.g. On x86, if the frame /// register is required, the first fixed stack object is reserved as its /// spill slot. This tells PEI not to create a new stack frame /// object for the given register. It should be called only after /// determineCalleeSaves(). virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, int &FrameIdx) const { return false; } /// Returns true if the live-ins should be tracked after register allocation. virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { return false; } /// True if the stack can be realigned for the target. virtual bool canRealignStack(const MachineFunction &MF) const; /// True if storage within the function requires the stack pointer to be /// aligned more than the normal calling convention calls for. /// This cannot be overriden by the target, but canRealignStack can be /// overridden. bool needsStackRealignment(const MachineFunction &MF) const; /// Get the offset from the referenced frame index in the instruction, /// if there is one. virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const { return 0; } /// Returns true if the instruction's frame index reference would be better /// served by a base register other than FP or SP. /// Used by LocalStackFrameAllocation to determine which frame index /// references it should create new base registers for. virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { return false; } /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx /// before insertion point I. virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, unsigned BaseReg, int FrameIdx, int64_t Offset) const { llvm_unreachable("materializeFrameBaseRegister does not exist on this " "target"); } /// Resolve a frame index operand of an instruction /// to reference the indicated base register plus offset instead. virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg, int64_t Offset) const { llvm_unreachable("resolveFrameIndex does not exist on this target"); } /// Determine whether a given base register plus offset immediate is /// encodable to resolve a frame index. virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg, int64_t Offset) const { llvm_unreachable("isFrameOffsetLegal does not exist on this target"); } /// Spill the register so it can be used by the register scavenger. /// Return true if the register was spilled, false otherwise. /// If this function does not spill the register, the scavenger /// will instead spill it to the emergency spill slot. /// virtual bool saveScavengerRegister(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, MachineBasicBlock::iterator &UseMI, const TargetRegisterClass *RC, unsigned Reg) const { return false; } /// This method must be overriden to eliminate abstract frame indices from /// instructions which may use them. The instruction referenced by the /// iterator contains an MO_FrameIndex operand which must be eliminated by /// this method. This method may modify or replace the specified instruction, /// as long as it keeps the iterator pointing at the finished product. /// SPAdj is the SP adjustment due to call frame setup instruction. /// FIOperandNum is the FI operand number. virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj, unsigned FIOperandNum, RegScavenger *RS = nullptr) const = 0; /// Return the assembly name for \p Reg. virtual StringRef getRegAsmName(unsigned Reg) const { // FIXME: We are assuming that the assembly name is equal to the TableGen // name converted to lower case // // The TableGen name is the name of the definition for this register in the // target's tablegen files. For example, the TableGen name of // def EAX : Register <...>; is "EAX" return StringRef(getName(Reg)); } //===--------------------------------------------------------------------===// /// Subtarget Hooks /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true. virtual bool shouldCoalesce(MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC) const { return true; } //===--------------------------------------------------------------------===// /// Debug information queries. /// getFrameRegister - This method should return the register used as a base /// for values allocated in the current stack frame. virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; /// Mark a register and all its aliases as reserved in the given set. void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const; /// Returns true if for every register in the set all super registers are part /// of the set as well. bool checkAllSuperRegsMarked(const BitVector &RegisterSet, ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const; }; //===----------------------------------------------------------------------===// // SuperRegClassIterator //===----------------------------------------------------------------------===// // // Iterate over the possible super-registers for a given register class. The // iterator will visit a list of pairs (Idx, Mask) corresponding to the // possible classes of super-registers. // // Each bit mask will have at least one set bit, and each set bit in Mask // corresponds to a SuperRC such that: // // For all Reg in SuperRC: Reg:Idx is in RC. // // The iterator can include (O, RC->getSubClassMask()) as the first entry which // also satisfies the above requirement, assuming Reg:0 == Reg. // class SuperRegClassIterator { const unsigned RCMaskWords; unsigned SubReg; const uint16_t *Idx; const uint32_t *Mask; public: /// Create a SuperRegClassIterator that visits all the super-register classes /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. SuperRegClassIterator(const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, bool IncludeSelf = false) : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), SubReg(0), Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) { if (!IncludeSelf) ++*this; } /// Returns true if this iterator is still pointing at a valid entry. bool isValid() const { return Idx; } /// Returns the current sub-register index. unsigned getSubReg() const { return SubReg; } /// Returns the bit mask of register classes that getSubReg() projects into /// RC. /// See TargetRegisterClass::getSubClassMask() for how to use it. const uint32_t *getMask() const { return Mask; } /// Advance iterator to the next entry. void operator++() { assert(isValid() && "Cannot move iterator past end."); Mask += RCMaskWords; SubReg = *Idx++; if (!SubReg) Idx = nullptr; } }; //===----------------------------------------------------------------------===// // BitMaskClassIterator //===----------------------------------------------------------------------===// /// This class encapuslates the logic to iterate over bitmask returned by /// the various RegClass related APIs. /// E.g., this class can be used to iterate over the subclasses provided by /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask. class BitMaskClassIterator { /// Total number of register classes. const unsigned NumRegClasses; /// Base index of CurrentChunk. /// In other words, the number of bit we read to get at the /// beginning of that chunck. unsigned Base; /// Adjust base index of CurrentChunk. /// Base index + how many bit we read within CurrentChunk. unsigned Idx; /// Current register class ID. unsigned ID; /// Mask we are iterating over. const uint32_t *Mask; /// Current chunk of the Mask we are traversing. uint32_t CurrentChunk; /// Move ID to the next set bit. void moveToNextID() { // If the current chunk of memory is empty, move to the next one, // while making sure we do not go pass the number of register // classes. while (!CurrentChunk) { // Move to the next chunk. Base += 32; if (Base >= NumRegClasses) { ID = NumRegClasses; return; } CurrentChunk = *++Mask; Idx = Base; } // Otherwise look for the first bit set from the right // (representation of the class ID is big endian). // See getSubClassMask for more details on the representation. unsigned Offset = countTrailingZeros(CurrentChunk); // Add the Offset to the adjusted base number of this chunk: Idx. // This is the ID of the register class. ID = Idx + Offset; // Consume the zeros, if any, and the bit we just read // so that we are at the right spot for the next call. // Do not do Offset + 1 because Offset may be 31 and 32 // will be UB for the shift, though in that case we could // have make the chunk being equal to 0, but that would // have introduced a if statement. moveNBits(Offset); moveNBits(1); } /// Move \p NumBits Bits forward in CurrentChunk. void moveNBits(unsigned NumBits) { assert(NumBits < 32 && "Undefined behavior spotted!"); // Consume the bit we read for the next call. CurrentChunk >>= NumBits; // Adjust the base for the chunk. Idx += NumBits; } public: /// Create a BitMaskClassIterator that visits all the register classes /// represented by \p Mask. /// /// \pre \p Mask != nullptr BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI) : NumRegClasses(TRI.getNumRegClasses()), Base(0), Idx(0), ID(0), Mask(Mask), CurrentChunk(*Mask) { // Move to the first ID. moveToNextID(); } /// Returns true if this iterator is still pointing at a valid entry. bool isValid() const { return getID() != NumRegClasses; } /// Returns the current register class ID. unsigned getID() const { return ID; } /// Advance iterator to the next entry. void operator++() { assert(isValid() && "Cannot move iterator past end."); moveToNextID(); } }; // This is useful when building IndexedMaps keyed on virtual registers struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> { unsigned operator()(unsigned Reg) const { return TargetRegisterInfo::virtReg2Index(Reg); } }; /// Prints virtual and physical registers with or without a TRI instance. /// /// The format is: /// %noreg - NoRegister /// %vreg5 - a virtual register. /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). /// %EAX - a physical register /// %physreg17 - a physical register when no TRI instance given. /// /// Usage: OS << PrintReg(Reg, TRI) << '\n'; Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr, unsigned SubRegIdx = 0); /// Create Printable object to print register units on a \ref raw_ostream. /// /// Register units are named after their root registers: /// /// AL - Single root. /// FP0~ST7 - Dual roots. /// /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); /// \brief Create Printable object to print virtual registers and physical /// registers on a \ref raw_ostream. Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); } // End llvm namespace #endif