//===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file builds on the ADT/GraphTraits.h file to build generic depth // first graph iterator. This file exposes the following functions/types: // // df_begin/df_end/df_iterator // * Normal depth-first iteration - visit a node and then all of its children. // // idf_begin/idf_end/idf_iterator // * Depth-first iteration on the 'inverse' graph. // // df_ext_begin/df_ext_end/df_ext_iterator // * Normal depth-first iteration - visit a node and then all of its children. // This iterator stores the 'visited' set in an external set, which allows // it to be more efficient, and allows external clients to use the set for // other purposes. // // idf_ext_begin/idf_ext_end/idf_ext_iterator // * Depth-first iteration on the 'inverse' graph. // This iterator stores the 'visited' set in an external set, which allows // it to be more efficient, and allows external clients to use the set for // other purposes. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H #define LLVM_ADT_DEPTHFIRSTITERATOR_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/iterator_range.h" #include <iterator> #include <set> #include <utility> #include <vector> namespace llvm { // df_iterator_storage - A private class which is used to figure out where to // store the visited set. template<class SetType, bool External> // Non-external set class df_iterator_storage { public: SetType Visited; }; template<class SetType> class df_iterator_storage<SetType, true> { public: df_iterator_storage(SetType &VSet) : Visited(VSet) {} df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {} SetType &Visited; }; // The visited stated for the iteration is a simple set augmented with // one more method, completed, which is invoked when all children of a // node have been processed. It is intended to distinguish of back and // cross edges in the spanning tree but is not used in the common case. template <typename NodeRef, unsigned SmallSize=8> struct df_iterator_default_set : public SmallPtrSet<NodeRef, SmallSize> { using BaseSet = SmallPtrSet<NodeRef, SmallSize>; using iterator = typename BaseSet::iterator; std::pair<iterator,bool> insert(NodeRef N) { return BaseSet::insert(N); } template <typename IterT> void insert(IterT Begin, IterT End) { BaseSet::insert(Begin,End); } void completed(NodeRef) {} }; // Generic Depth First Iterator template <class GraphT, class SetType = df_iterator_default_set<typename GraphTraits<GraphT>::NodeRef>, bool ExtStorage = false, class GT = GraphTraits<GraphT>> class df_iterator : public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>, public df_iterator_storage<SetType, ExtStorage> { using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>; using NodeRef = typename GT::NodeRef; using ChildItTy = typename GT::ChildIteratorType; // First element is node reference, second is the 'next child' to visit. // The second child is initialized lazily to pick up graph changes during the // DFS. using StackElement = std::pair<NodeRef, Optional<ChildItTy>>; // VisitStack - Used to maintain the ordering. Top = current block std::vector<StackElement> VisitStack; private: inline df_iterator(NodeRef Node) { this->Visited.insert(Node); VisitStack.push_back(StackElement(Node, None)); } inline df_iterator() = default; // End is when stack is empty inline df_iterator(NodeRef Node, SetType &S) : df_iterator_storage<SetType, ExtStorage>(S) { if (this->Visited.insert(Node).second) VisitStack.push_back(StackElement(Node, None)); } inline df_iterator(SetType &S) : df_iterator_storage<SetType, ExtStorage>(S) { // End is when stack is empty } inline void toNext() { do { NodeRef Node = VisitStack.back().first; Optional<ChildItTy> &Opt = VisitStack.back().second; if (!Opt) Opt.emplace(GT::child_begin(Node)); // Notice that we directly mutate *Opt here, so that // VisitStack.back().second actually gets updated as the iterator // increases. while (*Opt != GT::child_end(Node)) { NodeRef Next = *(*Opt)++; // Has our next sibling been visited? if (this->Visited.insert(Next).second) { // No, do it now. VisitStack.push_back(StackElement(Next, None)); return; } } this->Visited.completed(Node); // Oops, ran out of successors... go up a level on the stack. VisitStack.pop_back(); } while (!VisitStack.empty()); } public: using pointer = typename super::pointer; // Provide static begin and end methods as our public "constructors" static df_iterator begin(const GraphT &G) { return df_iterator(GT::getEntryNode(G)); } static df_iterator end(const GraphT &G) { return df_iterator(); } // Static begin and end methods as our public ctors for external iterators static df_iterator begin(const GraphT &G, SetType &S) { return df_iterator(GT::getEntryNode(G), S); } static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); } bool operator==(const df_iterator &x) const { return VisitStack == x.VisitStack; } bool operator!=(const df_iterator &x) const { return !(*this == x); } const NodeRef &operator*() const { return VisitStack.back().first; } // This is a nonstandard operator-> that dereferences the pointer an extra // time... so that you can actually call methods ON the Node, because // the contained type is a pointer. This allows BBIt->getTerminator() f.e. // NodeRef operator->() const { return **this; } df_iterator &operator++() { // Preincrement toNext(); return *this; } /// \brief Skips all children of the current node and traverses to next node /// /// Note: This function takes care of incrementing the iterator. If you /// always increment and call this function, you risk walking off the end. df_iterator &skipChildren() { VisitStack.pop_back(); if (!VisitStack.empty()) toNext(); return *this; } df_iterator operator++(int) { // Postincrement df_iterator tmp = *this; ++*this; return tmp; } // nodeVisited - return true if this iterator has already visited the // specified node. This is public, and will probably be used to iterate over // nodes that a depth first iteration did not find: ie unreachable nodes. // bool nodeVisited(NodeRef Node) const { return this->Visited.count(Node) != 0; } /// getPathLength - Return the length of the path from the entry node to the /// current node, counting both nodes. unsigned getPathLength() const { return VisitStack.size(); } /// getPath - Return the n'th node in the path from the entry node to the /// current node. NodeRef getPath(unsigned n) const { return VisitStack[n].first; } }; // Provide global constructors that automatically figure out correct types... // template <class T> df_iterator<T> df_begin(const T& G) { return df_iterator<T>::begin(G); } template <class T> df_iterator<T> df_end(const T& G) { return df_iterator<T>::end(G); } // Provide an accessor method to use them in range-based patterns. template <class T> iterator_range<df_iterator<T>> depth_first(const T& G) { return make_range(df_begin(G), df_end(G)); } // Provide global definitions of external depth first iterators... template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>> struct df_ext_iterator : public df_iterator<T, SetTy, true> { df_ext_iterator(const df_iterator<T, SetTy, true> &V) : df_iterator<T, SetTy, true>(V) {} }; template <class T, class SetTy> df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) { return df_ext_iterator<T, SetTy>::begin(G, S); } template <class T, class SetTy> df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) { return df_ext_iterator<T, SetTy>::end(G, S); } template <class T, class SetTy> iterator_range<df_ext_iterator<T, SetTy>> depth_first_ext(const T& G, SetTy &S) { return make_range(df_ext_begin(G, S), df_ext_end(G, S)); } // Provide global definitions of inverse depth first iterators... template <class T, class SetTy = df_iterator_default_set<typename GraphTraits<T>::NodeRef>, bool External = false> struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> { idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V) : df_iterator<Inverse<T>, SetTy, External>(V) {} }; template <class T> idf_iterator<T> idf_begin(const T& G) { return idf_iterator<T>::begin(Inverse<T>(G)); } template <class T> idf_iterator<T> idf_end(const T& G){ return idf_iterator<T>::end(Inverse<T>(G)); } // Provide an accessor method to use them in range-based patterns. template <class T> iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) { return make_range(idf_begin(G), idf_end(G)); } // Provide global definitions of external inverse depth first iterators... template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>> struct idf_ext_iterator : public idf_iterator<T, SetTy, true> { idf_ext_iterator(const idf_iterator<T, SetTy, true> &V) : idf_iterator<T, SetTy, true>(V) {} idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V) : idf_iterator<T, SetTy, true>(V) {} }; template <class T, class SetTy> idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) { return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S); } template <class T, class SetTy> idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) { return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S); } template <class T, class SetTy> iterator_range<idf_ext_iterator<T, SetTy>> inverse_depth_first_ext(const T& G, SetTy &S) { return make_range(idf_ext_begin(G, S), idf_ext_end(G, S)); } } // end namespace llvm #endif // LLVM_ADT_DEPTHFIRSTITERATOR_H