//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file builds on the ADT/GraphTraits.h file to build a generic graph // post order iterator. This should work over any graph type that has a // GraphTraits specialization. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_POSTORDERITERATOR_H #define LLVM_ADT_POSTORDERITERATOR_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/iterator_range.h" #include <iterator> #include <set> #include <utility> #include <vector> namespace llvm { // The po_iterator_storage template provides access to the set of already // visited nodes during the po_iterator's depth-first traversal. // // The default implementation simply contains a set of visited nodes, while // the External=true version uses a reference to an external set. // // It is possible to prune the depth-first traversal in several ways: // // - When providing an external set that already contains some graph nodes, // those nodes won't be visited again. This is useful for restarting a // post-order traversal on a graph with nodes that aren't dominated by a // single node. // // - By providing a custom SetType class, unwanted graph nodes can be excluded // by having the insert() function return false. This could for example // confine a CFG traversal to blocks in a specific loop. // // - Finally, by specializing the po_iterator_storage template itself, graph // edges can be pruned by returning false in the insertEdge() function. This // could be used to remove loop back-edges from the CFG seen by po_iterator. // // A specialized po_iterator_storage class can observe both the pre-order and // the post-order. The insertEdge() function is called in a pre-order, while // the finishPostorder() function is called just before the po_iterator moves // on to the next node. /// Default po_iterator_storage implementation with an internal set object. template<class SetType, bool External> class po_iterator_storage { SetType Visited; public: // Return true if edge destination should be visited. template <typename NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) { return Visited.insert(To).second; } // Called after all children of BB have been visited. template <typename NodeRef> void finishPostorder(NodeRef BB) {} }; /// Specialization of po_iterator_storage that references an external set. template<class SetType> class po_iterator_storage<SetType, true> { SetType &Visited; public: po_iterator_storage(SetType &VSet) : Visited(VSet) {} po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {} // Return true if edge destination should be visited, called with From = 0 for // the root node. // Graph edges can be pruned by specializing this function. template <class NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) { return Visited.insert(To).second; } // Called after all children of BB have been visited. template <class NodeRef> void finishPostorder(NodeRef BB) {} }; template <class GraphT, class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>, bool ExtStorage = false, class GT = GraphTraits<GraphT>> class po_iterator : public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>, public po_iterator_storage<SetType, ExtStorage> { using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>; using NodeRef = typename GT::NodeRef; using ChildItTy = typename GT::ChildIteratorType; // VisitStack - Used to maintain the ordering. Top = current block // First element is basic block pointer, second is the 'next child' to visit std::vector<std::pair<NodeRef, ChildItTy>> VisitStack; po_iterator(NodeRef BB) { this->insertEdge(Optional<NodeRef>(), BB); VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); traverseChild(); } po_iterator() = default; // End is when stack is empty. po_iterator(NodeRef BB, SetType &S) : po_iterator_storage<SetType, ExtStorage>(S) { if (this->insertEdge(Optional<NodeRef>(), BB)) { VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); traverseChild(); } } po_iterator(SetType &S) : po_iterator_storage<SetType, ExtStorage>(S) { } // End is when stack is empty. void traverseChild() { while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) { NodeRef BB = *VisitStack.back().second++; if (this->insertEdge(Optional<NodeRef>(VisitStack.back().first), BB)) { // If the block is not visited... VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB))); } } } public: using pointer = typename super::pointer; // Provide static "constructors"... static po_iterator begin(GraphT G) { return po_iterator(GT::getEntryNode(G)); } static po_iterator end(GraphT G) { return po_iterator(); } static po_iterator begin(GraphT G, SetType &S) { return po_iterator(GT::getEntryNode(G), S); } static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); } bool operator==(const po_iterator &x) const { return VisitStack == x.VisitStack; } bool operator!=(const po_iterator &x) const { return !(*this == x); } const NodeRef &operator*() const { return VisitStack.back().first; } // This is a nonstandard operator-> that dereferences the pointer an extra // time... so that you can actually call methods ON the BasicBlock, because // the contained type is a pointer. This allows BBIt->getTerminator() f.e. // NodeRef operator->() const { return **this; } po_iterator &operator++() { // Preincrement this->finishPostorder(VisitStack.back().first); VisitStack.pop_back(); if (!VisitStack.empty()) traverseChild(); return *this; } po_iterator operator++(int) { // Postincrement po_iterator tmp = *this; ++*this; return tmp; } }; // Provide global constructors that automatically figure out correct types... // template <class T> po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); } template <class T> po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); } template <class T> iterator_range<po_iterator<T>> post_order(const T &G) { return make_range(po_begin(G), po_end(G)); } // Provide global definitions of external postorder iterators... template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>> struct po_ext_iterator : public po_iterator<T, SetType, true> { po_ext_iterator(const po_iterator<T, SetType, true> &V) : po_iterator<T, SetType, true>(V) {} }; template<class T, class SetType> po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) { return po_ext_iterator<T, SetType>::begin(G, S); } template<class T, class SetType> po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) { return po_ext_iterator<T, SetType>::end(G, S); } template <class T, class SetType> iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) { return make_range(po_ext_begin(G, S), po_ext_end(G, S)); } // Provide global definitions of inverse post order iterators... template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>, bool External = false> struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> { ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) : po_iterator<Inverse<T>, SetType, External> (V) {} }; template <class T> ipo_iterator<T> ipo_begin(const T &G) { return ipo_iterator<T>::begin(G); } template <class T> ipo_iterator<T> ipo_end(const T &G){ return ipo_iterator<T>::end(G); } template <class T> iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) { return make_range(ipo_begin(G), ipo_end(G)); } // Provide global definitions of external inverse postorder iterators... template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>> struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> { ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) : ipo_iterator<T, SetType, true>(V) {} ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) : ipo_iterator<T, SetType, true>(V) {} }; template <class T, class SetType> ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) { return ipo_ext_iterator<T, SetType>::begin(G, S); } template <class T, class SetType> ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) { return ipo_ext_iterator<T, SetType>::end(G, S); } template <class T, class SetType> iterator_range<ipo_ext_iterator<T, SetType>> inverse_post_order_ext(const T &G, SetType &S) { return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S)); } //===--------------------------------------------------------------------===// // Reverse Post Order CFG iterator code //===--------------------------------------------------------------------===// // // This is used to visit basic blocks in a method in reverse post order. This // class is awkward to use because I don't know a good incremental algorithm to // computer RPO from a graph. Because of this, the construction of the // ReversePostOrderTraversal object is expensive (it must walk the entire graph // with a postorder iterator to build the data structures). The moral of this // story is: Don't create more ReversePostOrderTraversal classes than necessary. // // Because it does the traversal in its constructor, it won't invalidate when // BasicBlocks are removed, *but* it may contain erased blocks. Some places // rely on this behavior (i.e. GVN). // // This class should be used like this: // { // ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { // ... // } // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { // ... // } // } // template<class GraphT, class GT = GraphTraits<GraphT>> class ReversePostOrderTraversal { using NodeRef = typename GT::NodeRef; std::vector<NodeRef> Blocks; // Block list in normal PO order void Initialize(NodeRef BB) { std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks)); } public: using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator; ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); } // Because we want a reverse post order, use reverse iterators from the vector rpo_iterator begin() { return Blocks.rbegin(); } rpo_iterator end() { return Blocks.rend(); } }; } // end namespace llvm #endif // LLVM_ADT_POSTORDERITERATOR_H