//===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SparseMultiSet class, which adds multiset behavior to // the SparseSet. // // A sparse multiset holds a small number of objects identified by integer keys // from a moderately sized universe. The sparse multiset uses more memory than // other containers in order to provide faster operations. Any key can map to // multiple values. A SparseMultiSetNode class is provided, which serves as a // convenient base class for the contents of a SparseMultiSet. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SPARSEMULTISET_H #define LLVM_ADT_SPARSEMULTISET_H #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseSet.h" #include <cassert> #include <cstdint> #include <cstdlib> #include <iterator> #include <limits> #include <utility> namespace llvm { /// Fast multiset implementation for objects that can be identified by small /// unsigned keys. /// /// SparseMultiSet allocates memory proportional to the size of the key /// universe, so it is not recommended for building composite data structures. /// It is useful for algorithms that require a single set with fast operations. /// /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time /// fast clear() as fast as a vector. The find(), insert(), and erase() /// operations are all constant time, and typically faster than a hash table. /// The iteration order doesn't depend on numerical key values, it only depends /// on the order of insert() and erase() operations. Iteration order is the /// insertion order. Iteration is only provided over elements of equivalent /// keys, but iterators are bidirectional. /// /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but /// offers constant-time clear() and size() operations as well as fast iteration /// independent on the size of the universe. /// /// SparseMultiSet contains a dense vector holding all the objects and a sparse /// array holding indexes into the dense vector. Most of the memory is used by /// the sparse array which is the size of the key universe. The SparseT template /// parameter provides a space/speed tradeoff for sets holding many elements. /// /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the /// sparse array uses 4 x Universe bytes. /// /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache /// lines, but the sparse array is 4x smaller. N is the number of elements in /// the set. /// /// For sets that may grow to thousands of elements, SparseT should be set to /// uint16_t or uint32_t. /// /// Multiset behavior is provided by providing doubly linked lists for values /// that are inlined in the dense vector. SparseMultiSet is a good choice when /// one desires a growable number of entries per key, as it will retain the /// SparseSet algorithmic properties despite being growable. Thus, it is often a /// better choice than a SparseSet of growable containers or a vector of /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided /// the iterators don't point to the element erased), allowing for more /// intuitive and fast removal. /// /// @tparam ValueT The type of objects in the set. /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. /// @tparam SparseT An unsigned integer type. See above. /// template<typename ValueT, typename KeyFunctorT = identity<unsigned>, typename SparseT = uint8_t> class SparseMultiSet { static_assert(std::numeric_limits<SparseT>::is_integer && !std::numeric_limits<SparseT>::is_signed, "SparseT must be an unsigned integer type"); /// The actual data that's stored, as a doubly-linked list implemented via /// indices into the DenseVector. The doubly linked list is implemented /// circular in Prev indices, and INVALID-terminated in Next indices. This /// provides efficient access to list tails. These nodes can also be /// tombstones, in which case they are actually nodes in a single-linked /// freelist of recyclable slots. struct SMSNode { static const unsigned INVALID = ~0U; ValueT Data; unsigned Prev; unsigned Next; SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {} /// List tails have invalid Nexts. bool isTail() const { return Next == INVALID; } /// Whether this node is a tombstone node, and thus is in our freelist. bool isTombstone() const { return Prev == INVALID; } /// Since the list is circular in Prev, all non-tombstone nodes have a valid /// Prev. bool isValid() const { return Prev != INVALID; } }; using KeyT = typename KeyFunctorT::argument_type; using DenseT = SmallVector<SMSNode, 8>; DenseT Dense; SparseT *Sparse = nullptr; unsigned Universe = 0; KeyFunctorT KeyIndexOf; SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; /// We have a built-in recycler for reusing tombstone slots. This recycler /// puts a singly-linked free list into tombstone slots, allowing us quick /// erasure, iterator preservation, and dense size. unsigned FreelistIdx = SMSNode::INVALID; unsigned NumFree = 0; unsigned sparseIndex(const ValueT &Val) const { assert(ValIndexOf(Val) < Universe && "Invalid key in set. Did object mutate?"); return ValIndexOf(Val); } unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } /// Whether the given entry is the head of the list. List heads's previous /// pointers are to the tail of the list, allowing for efficient access to the /// list tail. D must be a valid entry node. bool isHead(const SMSNode &D) const { assert(D.isValid() && "Invalid node for head"); return Dense[D.Prev].isTail(); } /// Whether the given entry is a singleton entry, i.e. the only entry with /// that key. bool isSingleton(const SMSNode &N) const { assert(N.isValid() && "Invalid node for singleton"); // Is N its own predecessor? return &Dense[N.Prev] == &N; } /// Add in the given SMSNode. Uses a free entry in our freelist if /// available. Returns the index of the added node. unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { if (NumFree == 0) { Dense.push_back(SMSNode(V, Prev, Next)); return Dense.size() - 1; } // Peel off a free slot unsigned Idx = FreelistIdx; unsigned NextFree = Dense[Idx].Next; assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); Dense[Idx] = SMSNode(V, Prev, Next); FreelistIdx = NextFree; --NumFree; return Idx; } /// Make the current index a new tombstone. Pushes it onto the freelist. void makeTombstone(unsigned Idx) { Dense[Idx].Prev = SMSNode::INVALID; Dense[Idx].Next = FreelistIdx; FreelistIdx = Idx; ++NumFree; } public: using value_type = ValueT; using reference = ValueT &; using const_reference = const ValueT &; using pointer = ValueT *; using const_pointer = const ValueT *; using size_type = unsigned; SparseMultiSet() = default; SparseMultiSet(const SparseMultiSet &) = delete; SparseMultiSet &operator=(const SparseMultiSet &) = delete; ~SparseMultiSet() { free(Sparse); } /// Set the universe size which determines the largest key the set can hold. /// The universe must be sized before any elements can be added. /// /// @param U Universe size. All object keys must be less than U. /// void setUniverse(unsigned U) { // It's not hard to resize the universe on a non-empty set, but it doesn't // seem like a likely use case, so we can add that code when we need it. assert(empty() && "Can only resize universe on an empty map"); // Hysteresis prevents needless reallocations. if (U >= Universe/4 && U <= Universe) return; free(Sparse); // The Sparse array doesn't actually need to be initialized, so malloc // would be enough here, but that will cause tools like valgrind to // complain about branching on uninitialized data. Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT))); Universe = U; } /// Our iterators are iterators over the collection of objects that share a /// key. template<typename SMSPtrTy> class iterator_base : public std::iterator<std::bidirectional_iterator_tag, ValueT> { friend class SparseMultiSet; SMSPtrTy SMS; unsigned Idx; unsigned SparseIdx; iterator_base(SMSPtrTy P, unsigned I, unsigned SI) : SMS(P), Idx(I), SparseIdx(SI) {} /// Whether our iterator has fallen outside our dense vector. bool isEnd() const { if (Idx == SMSNode::INVALID) return true; assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); return false; } /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid bool isKeyed() const { return SparseIdx < SMS->Universe; } unsigned Prev() const { return SMS->Dense[Idx].Prev; } unsigned Next() const { return SMS->Dense[Idx].Next; } void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } public: using super = std::iterator<std::bidirectional_iterator_tag, ValueT>; using value_type = typename super::value_type; using difference_type = typename super::difference_type; using pointer = typename super::pointer; using reference = typename super::reference; reference operator*() const { assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && "Dereferencing iterator of invalid key or index"); return SMS->Dense[Idx].Data; } pointer operator->() const { return &operator*(); } /// Comparison operators bool operator==(const iterator_base &RHS) const { // end compares equal if (SMS == RHS.SMS && Idx == RHS.Idx) { assert((isEnd() || SparseIdx == RHS.SparseIdx) && "Same dense entry, but different keys?"); return true; } return false; } bool operator!=(const iterator_base &RHS) const { return !operator==(RHS); } /// Increment and decrement operators iterator_base &operator--() { // predecrement - Back up assert(isKeyed() && "Decrementing an invalid iterator"); assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && "Decrementing head of list"); // If we're at the end, then issue a new find() if (isEnd()) Idx = SMS->findIndex(SparseIdx).Prev(); else Idx = Prev(); return *this; } iterator_base &operator++() { // preincrement - Advance assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); Idx = Next(); return *this; } iterator_base operator--(int) { // postdecrement iterator_base I(*this); --*this; return I; } iterator_base operator++(int) { // postincrement iterator_base I(*this); ++*this; return I; } }; using iterator = iterator_base<SparseMultiSet *>; using const_iterator = iterator_base<const SparseMultiSet *>; // Convenience types using RangePair = std::pair<iterator, iterator>; /// Returns an iterator past this container. Note that such an iterator cannot /// be decremented, but will compare equal to other end iterators. iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } const_iterator end() const { return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); } /// Returns true if the set is empty. /// /// This is not the same as BitVector::empty(). /// bool empty() const { return size() == 0; } /// Returns the number of elements in the set. /// /// This is not the same as BitVector::size() which returns the size of the /// universe. /// size_type size() const { assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); return Dense.size() - NumFree; } /// Clears the set. This is a very fast constant time operation. /// void clear() { // Sparse does not need to be cleared, see find(). Dense.clear(); NumFree = 0; FreelistIdx = SMSNode::INVALID; } /// Find an element by its index. /// /// @param Idx A valid index to find. /// @returns An iterator to the element identified by key, or end(). /// iterator findIndex(unsigned Idx) { assert(Idx < Universe && "Key out of range"); const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { const unsigned FoundIdx = sparseIndex(Dense[i]); // Check that we're pointing at the correct entry and that it is the head // of a valid list. if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) return iterator(this, i, Idx); // Stride is 0 when SparseT >= unsigned. We don't need to loop. if (!Stride) break; } return end(); } /// Find an element by its key. /// /// @param Key A valid key to find. /// @returns An iterator to the element identified by key, or end(). /// iterator find(const KeyT &Key) { return findIndex(KeyIndexOf(Key)); } const_iterator find(const KeyT &Key) const { iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); } /// Returns the number of elements identified by Key. This will be linear in /// the number of elements of that key. size_type count(const KeyT &Key) const { unsigned Ret = 0; for (const_iterator It = find(Key); It != end(); ++It) ++Ret; return Ret; } /// Returns true if this set contains an element identified by Key. bool contains(const KeyT &Key) const { return find(Key) != end(); } /// Return the head and tail of the subset's list, otherwise returns end(). iterator getHead(const KeyT &Key) { return find(Key); } iterator getTail(const KeyT &Key) { iterator I = find(Key); if (I != end()) I = iterator(this, I.Prev(), KeyIndexOf(Key)); return I; } /// The bounds of the range of items sharing Key K. First member is the head /// of the list, and the second member is a decrementable end iterator for /// that key. RangePair equal_range(const KeyT &K) { iterator B = find(K); iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); return make_pair(B, E); } /// Insert a new element at the tail of the subset list. Returns an iterator /// to the newly added entry. iterator insert(const ValueT &Val) { unsigned Idx = sparseIndex(Val); iterator I = findIndex(Idx); unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); if (I == end()) { // Make a singleton list Sparse[Idx] = NodeIdx; Dense[NodeIdx].Prev = NodeIdx; return iterator(this, NodeIdx, Idx); } // Stick it at the end. unsigned HeadIdx = I.Idx; unsigned TailIdx = I.Prev(); Dense[TailIdx].Next = NodeIdx; Dense[HeadIdx].Prev = NodeIdx; Dense[NodeIdx].Prev = TailIdx; return iterator(this, NodeIdx, Idx); } /// Erases an existing element identified by a valid iterator. /// /// This invalidates iterators pointing at the same entry, but erase() returns /// an iterator pointing to the next element in the subset's list. This makes /// it possible to erase selected elements while iterating over the subset: /// /// tie(I, E) = Set.equal_range(Key); /// while (I != E) /// if (test(*I)) /// I = Set.erase(I); /// else /// ++I; /// /// Note that if the last element in the subset list is erased, this will /// return an end iterator which can be decremented to get the new tail (if it /// exists): /// /// tie(B, I) = Set.equal_range(Key); /// for (bool isBegin = B == I; !isBegin; /* empty */) { /// isBegin = (--I) == B; /// if (test(I)) /// break; /// I = erase(I); /// } iterator erase(iterator I) { assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && "erasing invalid/end/tombstone iterator"); // First, unlink the node from its list. Then swap the node out with the // dense vector's last entry iterator NextI = unlink(Dense[I.Idx]); // Put in a tombstone. makeTombstone(I.Idx); return NextI; } /// Erase all elements with the given key. This invalidates all /// iterators of that key. void eraseAll(const KeyT &K) { for (iterator I = find(K); I != end(); /* empty */) I = erase(I); } private: /// Unlink the node from its list. Returns the next node in the list. iterator unlink(const SMSNode &N) { if (isSingleton(N)) { // Singleton is already unlinked assert(N.Next == SMSNode::INVALID && "Singleton has next?"); return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); } if (isHead(N)) { // If we're the head, then update the sparse array and our next. Sparse[sparseIndex(N)] = N.Next; Dense[N.Next].Prev = N.Prev; return iterator(this, N.Next, ValIndexOf(N.Data)); } if (N.isTail()) { // If we're the tail, then update our head and our previous. findIndex(sparseIndex(N)).setPrev(N.Prev); Dense[N.Prev].Next = N.Next; // Give back an end iterator that can be decremented iterator I(this, N.Prev, ValIndexOf(N.Data)); return ++I; } // Otherwise, just drop us Dense[N.Next].Prev = N.Prev; Dense[N.Prev].Next = N.Next; return iterator(this, N.Next, ValIndexOf(N.Data)); } }; } // end namespace llvm #endif // LLVM_ADT_SPARSEMULTISET_H