//===- llvm/BasicBlock.h - Represent a basic block in the VM ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the BasicBlock class. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_BASICBLOCK_H #define LLVM_IR_BASICBLOCK_H #include "llvm-c/Types.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/SymbolTableListTraits.h" #include "llvm/IR/Value.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include <cassert> #include <cstddef> #include <iterator> namespace llvm { class CallInst; class Function; class LandingPadInst; class LLVMContext; class Module; class PHINode; class TerminatorInst; class ValueSymbolTable; /// \brief LLVM Basic Block Representation /// /// This represents a single basic block in LLVM. A basic block is simply a /// container of instructions that execute sequentially. Basic blocks are Values /// because they are referenced by instructions such as branches and switch /// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block /// represents a label to which a branch can jump. /// /// A well formed basic block is formed of a list of non-terminating /// instructions followed by a single TerminatorInst instruction. /// TerminatorInst's may not occur in the middle of basic blocks, and must /// terminate the blocks. The BasicBlock class allows malformed basic blocks to /// occur because it may be useful in the intermediate stage of constructing or /// modifying a program. However, the verifier will ensure that basic blocks /// are "well formed". class BasicBlock final : public Value, // Basic blocks are data objects also public ilist_node_with_parent<BasicBlock, Function> { public: using InstListType = SymbolTableList<Instruction>; private: friend class BlockAddress; friend class SymbolTableListTraits<BasicBlock>; InstListType InstList; Function *Parent; void setParent(Function *parent); /// \brief Constructor. /// /// If the function parameter is specified, the basic block is automatically /// inserted at either the end of the function (if InsertBefore is null), or /// before the specified basic block. explicit BasicBlock(LLVMContext &C, const Twine &Name = "", Function *Parent = nullptr, BasicBlock *InsertBefore = nullptr); public: BasicBlock(const BasicBlock &) = delete; BasicBlock &operator=(const BasicBlock &) = delete; ~BasicBlock(); /// \brief Get the context in which this basic block lives. LLVMContext &getContext() const; /// Instruction iterators... using iterator = InstListType::iterator; using const_iterator = InstListType::const_iterator; using reverse_iterator = InstListType::reverse_iterator; using const_reverse_iterator = InstListType::const_reverse_iterator; /// \brief Creates a new BasicBlock. /// /// If the Parent parameter is specified, the basic block is automatically /// inserted at either the end of the function (if InsertBefore is 0), or /// before the specified basic block. static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "", Function *Parent = nullptr, BasicBlock *InsertBefore = nullptr) { return new BasicBlock(Context, Name, Parent, InsertBefore); } /// \brief Return the enclosing method, or null if none. const Function *getParent() const { return Parent; } Function *getParent() { return Parent; } /// \brief Return the module owning the function this basic block belongs to, /// or nullptr it the function does not have a module. /// /// Note: this is undefined behavior if the block does not have a parent. const Module *getModule() const; Module *getModule() { return const_cast<Module *>( static_cast<const BasicBlock *>(this)->getModule()); } /// \brief Returns the terminator instruction if the block is well formed or /// null if the block is not well formed. const TerminatorInst *getTerminator() const LLVM_READONLY; TerminatorInst *getTerminator() { return const_cast<TerminatorInst *>( static_cast<const BasicBlock *>(this)->getTerminator()); } /// \brief Returns the call instruction calling @llvm.experimental.deoptimize /// prior to the terminating return instruction of this basic block, if such a /// call is present. Otherwise, returns null. const CallInst *getTerminatingDeoptimizeCall() const; CallInst *getTerminatingDeoptimizeCall() { return const_cast<CallInst *>( static_cast<const BasicBlock *>(this)->getTerminatingDeoptimizeCall()); } /// \brief Returns the call instruction marked 'musttail' prior to the /// terminating return instruction of this basic block, if such a call is /// present. Otherwise, returns null. const CallInst *getTerminatingMustTailCall() const; CallInst *getTerminatingMustTailCall() { return const_cast<CallInst *>( static_cast<const BasicBlock *>(this)->getTerminatingMustTailCall()); } /// \brief Returns a pointer to the first instruction in this block that is /// not a PHINode instruction. /// /// When adding instructions to the beginning of the basic block, they should /// be added before the returned value, not before the first instruction, /// which might be PHI. Returns 0 is there's no non-PHI instruction. const Instruction* getFirstNonPHI() const; Instruction* getFirstNonPHI() { return const_cast<Instruction *>( static_cast<const BasicBlock *>(this)->getFirstNonPHI()); } /// \brief Returns a pointer to the first instruction in this block that is not /// a PHINode or a debug intrinsic. const Instruction* getFirstNonPHIOrDbg() const; Instruction* getFirstNonPHIOrDbg() { return const_cast<Instruction *>( static_cast<const BasicBlock *>(this)->getFirstNonPHIOrDbg()); } /// \brief Returns a pointer to the first instruction in this block that is not /// a PHINode, a debug intrinsic, or a lifetime intrinsic. const Instruction* getFirstNonPHIOrDbgOrLifetime() const; Instruction* getFirstNonPHIOrDbgOrLifetime() { return const_cast<Instruction *>( static_cast<const BasicBlock *>(this)->getFirstNonPHIOrDbgOrLifetime()); } /// \brief Returns an iterator to the first instruction in this block that is /// suitable for inserting a non-PHI instruction. /// /// In particular, it skips all PHIs and LandingPad instructions. const_iterator getFirstInsertionPt() const; iterator getFirstInsertionPt() { return static_cast<const BasicBlock *>(this) ->getFirstInsertionPt().getNonConst(); } /// \brief Unlink 'this' from the containing function, but do not delete it. void removeFromParent(); /// \brief Unlink 'this' from the containing function and delete it. /// // \returns an iterator pointing to the element after the erased one. SymbolTableList<BasicBlock>::iterator eraseFromParent(); /// \brief Unlink this basic block from its current function and insert it /// into the function that \p MovePos lives in, right before \p MovePos. void moveBefore(BasicBlock *MovePos); /// \brief Unlink this basic block from its current function and insert it /// right after \p MovePos in the function \p MovePos lives in. void moveAfter(BasicBlock *MovePos); /// \brief Insert unlinked basic block into a function. /// /// Inserts an unlinked basic block into \c Parent. If \c InsertBefore is /// provided, inserts before that basic block, otherwise inserts at the end. /// /// \pre \a getParent() is \c nullptr. void insertInto(Function *Parent, BasicBlock *InsertBefore = nullptr); /// \brief Return the predecessor of this block if it has a single predecessor /// block. Otherwise return a null pointer. const BasicBlock *getSinglePredecessor() const; BasicBlock *getSinglePredecessor() { return const_cast<BasicBlock *>( static_cast<const BasicBlock *>(this)->getSinglePredecessor()); } /// \brief Return the predecessor of this block if it has a unique predecessor /// block. Otherwise return a null pointer. /// /// Note that unique predecessor doesn't mean single edge, there can be /// multiple edges from the unique predecessor to this block (for example a /// switch statement with multiple cases having the same destination). const BasicBlock *getUniquePredecessor() const; BasicBlock *getUniquePredecessor() { return const_cast<BasicBlock *>( static_cast<const BasicBlock *>(this)->getUniquePredecessor()); } /// \brief Return the successor of this block if it has a single successor. /// Otherwise return a null pointer. /// /// This method is analogous to getSinglePredecessor above. const BasicBlock *getSingleSuccessor() const; BasicBlock *getSingleSuccessor() { return const_cast<BasicBlock *>( static_cast<const BasicBlock *>(this)->getSingleSuccessor()); } /// \brief Return the successor of this block if it has a unique successor. /// Otherwise return a null pointer. /// /// This method is analogous to getUniquePredecessor above. const BasicBlock *getUniqueSuccessor() const; BasicBlock *getUniqueSuccessor() { return const_cast<BasicBlock *>( static_cast<const BasicBlock *>(this)->getUniqueSuccessor()); } //===--------------------------------------------------------------------===// /// Instruction iterator methods /// inline iterator begin() { return InstList.begin(); } inline const_iterator begin() const { return InstList.begin(); } inline iterator end () { return InstList.end(); } inline const_iterator end () const { return InstList.end(); } inline reverse_iterator rbegin() { return InstList.rbegin(); } inline const_reverse_iterator rbegin() const { return InstList.rbegin(); } inline reverse_iterator rend () { return InstList.rend(); } inline const_reverse_iterator rend () const { return InstList.rend(); } inline size_t size() const { return InstList.size(); } inline bool empty() const { return InstList.empty(); } inline const Instruction &front() const { return InstList.front(); } inline Instruction &front() { return InstList.front(); } inline const Instruction &back() const { return InstList.back(); } inline Instruction &back() { return InstList.back(); } /// Iterator to walk just the phi nodes in the basic block. template <typename PHINodeT = PHINode, typename BBIteratorT = iterator> class phi_iterator_impl : public iterator_facade_base<phi_iterator_impl<PHINodeT, BBIteratorT>, std::forward_iterator_tag, PHINodeT> { friend BasicBlock; PHINodeT *PN; phi_iterator_impl(PHINodeT *PN) : PN(PN) {} public: // Allow default construction to build variables, but this doesn't build // a useful iterator. phi_iterator_impl() = default; // Allow conversion between instantiations where valid. template <typename PHINodeU, typename BBIteratorU> phi_iterator_impl(const phi_iterator_impl<PHINodeU, BBIteratorU> &Arg) : PN(Arg.PN) {} bool operator==(const phi_iterator_impl &Arg) const { return PN == Arg.PN; } PHINodeT &operator*() const { return *PN; } using phi_iterator_impl::iterator_facade_base::operator++; phi_iterator_impl &operator++() { assert(PN && "Cannot increment the end iterator!"); PN = dyn_cast<PHINodeT>(std::next(BBIteratorT(PN))); return *this; } }; using phi_iterator = phi_iterator_impl<>; using const_phi_iterator = phi_iterator_impl<const PHINode, BasicBlock::const_iterator>; /// Returns a range that iterates over the phis in the basic block. /// /// Note that this cannot be used with basic blocks that have no terminator. iterator_range<const_phi_iterator> phis() const { return const_cast<BasicBlock *>(this)->phis(); } iterator_range<phi_iterator> phis(); /// \brief Return the underlying instruction list container. /// /// Currently you need to access the underlying instruction list container /// directly if you want to modify it. const InstListType &getInstList() const { return InstList; } InstListType &getInstList() { return InstList; } /// \brief Returns a pointer to a member of the instruction list. static InstListType BasicBlock::*getSublistAccess(Instruction*) { return &BasicBlock::InstList; } /// \brief Returns a pointer to the symbol table if one exists. ValueSymbolTable *getValueSymbolTable(); /// \brief Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() == Value::BasicBlockVal; } /// \brief Cause all subinstructions to "let go" of all the references that /// said subinstructions are maintaining. /// /// This allows one to 'delete' a whole class at a time, even though there may /// be circular references... first all references are dropped, and all use /// counts go to zero. Then everything is delete'd for real. Note that no /// operations are valid on an object that has "dropped all references", /// except operator delete. void dropAllReferences(); /// \brief Notify the BasicBlock that the predecessor \p Pred is no longer /// able to reach it. /// /// This is actually not used to update the Predecessor list, but is actually /// used to update the PHI nodes that reside in the block. Note that this /// should be called while the predecessor still refers to this block. void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false); bool canSplitPredecessors() const; /// \brief Split the basic block into two basic blocks at the specified /// instruction. /// /// Note that all instructions BEFORE the specified iterator stay as part of /// the original basic block, an unconditional branch is added to the original /// BB, and the rest of the instructions in the BB are moved to the new BB, /// including the old terminator. The newly formed BasicBlock is returned. /// This function invalidates the specified iterator. /// /// Note that this only works on well formed basic blocks (must have a /// terminator), and 'I' must not be the end of instruction list (which would /// cause a degenerate basic block to be formed, having a terminator inside of /// the basic block). /// /// Also note that this doesn't preserve any passes. To split blocks while /// keeping loop information consistent, use the SplitBlock utility function. BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = ""); BasicBlock *splitBasicBlock(Instruction *I, const Twine &BBName = "") { return splitBasicBlock(I->getIterator(), BBName); } /// \brief Returns true if there are any uses of this basic block other than /// direct branches, switches, etc. to it. bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; } /// \brief Update all phi nodes in this basic block's successors to refer to /// basic block \p New instead of to it. void replaceSuccessorsPhiUsesWith(BasicBlock *New); /// \brief Return true if this basic block is an exception handling block. bool isEHPad() const { return getFirstNonPHI()->isEHPad(); } /// \brief Return true if this basic block is a landing pad. /// /// Being a ``landing pad'' means that the basic block is the destination of /// the 'unwind' edge of an invoke instruction. bool isLandingPad() const; /// \brief Return the landingpad instruction associated with the landing pad. const LandingPadInst *getLandingPadInst() const; LandingPadInst *getLandingPadInst() { return const_cast<LandingPadInst *>( static_cast<const BasicBlock *>(this)->getLandingPadInst()); } /// \brief Return true if it is legal to hoist instructions into this block. bool isLegalToHoistInto() const; private: /// \brief Increment the internal refcount of the number of BlockAddresses /// referencing this BasicBlock by \p Amt. /// /// This is almost always 0, sometimes one possibly, but almost never 2, and /// inconceivably 3 or more. void AdjustBlockAddressRefCount(int Amt) { setValueSubclassData(getSubclassDataFromValue()+Amt); assert((int)(signed char)getSubclassDataFromValue() >= 0 && "Refcount wrap-around"); } /// \brief Shadow Value::setValueSubclassData with a private forwarding method /// so that any future subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef) } // end namespace llvm #endif // LLVM_IR_BASICBLOCK_H