// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package pprof import ( "bytes" "encoding/json" "fmt" "io/ioutil" "reflect" "runtime" "runtime/pprof/internal/profile" "strings" "testing" ) // translateCPUProfile parses binary CPU profiling stack trace data // generated by runtime.CPUProfile() into a profile struct. // This is only used for testing. Real conversions stream the // data into the profileBuilder as it becomes available. func translateCPUProfile(data []uint64) (*profile.Profile, error) { var buf bytes.Buffer b := newProfileBuilder(&buf) if err := b.addCPUData(data, nil); err != nil { return nil, err } b.build() return profile.Parse(&buf) } // fmtJSON returns a pretty-printed JSON form for x. // It works reasonbly well for printing protocol-buffer // data structures like profile.Profile. func fmtJSON(x interface{}) string { js, _ := json.MarshalIndent(x, "", "\t") return string(js) } func TestConvertCPUProfileEmpty(t *testing.T) { // A test server with mock cpu profile data. var buf bytes.Buffer b := []uint64{3, 0, 500} // empty profile at 500 Hz (2ms sample period) p, err := translateCPUProfile(b) if err != nil { t.Fatalf("translateCPUProfile: %v", err) } if err := p.Write(&buf); err != nil { t.Fatalf("writing profile: %v", err) } p, err = profile.Parse(&buf) if err != nil { t.Fatalf("profile.Parse: %v", err) } // Expected PeriodType and SampleType. periodType := &profile.ValueType{Type: "cpu", Unit: "nanoseconds"} sampleType := []*profile.ValueType{ {Type: "samples", Unit: "count"}, {Type: "cpu", Unit: "nanoseconds"}, } checkProfile(t, p, 2000*1000, periodType, sampleType, nil) } func f1() { f1() } func f2() { f2() } // testPCs returns two PCs and two corresponding memory mappings // to use in test profiles. func testPCs(t *testing.T) (addr1, addr2 uint64, map1, map2 *profile.Mapping) { switch runtime.GOOS { case "linux", "android", "netbsd": // Figure out two addresses from /proc/self/maps. mmap, err := ioutil.ReadFile("/proc/self/maps") if err != nil { t.Fatal(err) } mprof := &profile.Profile{} if err = mprof.ParseMemoryMap(bytes.NewReader(mmap)); err != nil { t.Fatalf("parsing /proc/self/maps: %v", err) } if len(mprof.Mapping) < 2 { // It is possible for a binary to only have 1 executable // region of memory. t.Skipf("need 2 or more mappings, got %v", len(mprof.Mapping)) } addr1 = mprof.Mapping[0].Start map1 = mprof.Mapping[0] map1.BuildID, _ = elfBuildID(map1.File) addr2 = mprof.Mapping[1].Start map2 = mprof.Mapping[1] map2.BuildID, _ = elfBuildID(map2.File) default: addr1 = uint64(funcPC(f1)) addr2 = uint64(funcPC(f2)) } return } func TestConvertCPUProfile(t *testing.T) { addr1, addr2, map1, map2 := testPCs(t) b := []uint64{ 3, 0, 500, // hz = 500 5, 0, 10, uint64(addr1), uint64(addr1 + 2), // 10 samples in addr1 5, 0, 40, uint64(addr2), uint64(addr2 + 2), // 40 samples in addr2 5, 0, 10, uint64(addr1), uint64(addr1 + 2), // 10 samples in addr1 } p, err := translateCPUProfile(b) if err != nil { t.Fatalf("translating profile: %v", err) } period := int64(2000 * 1000) periodType := &profile.ValueType{Type: "cpu", Unit: "nanoseconds"} sampleType := []*profile.ValueType{ {Type: "samples", Unit: "count"}, {Type: "cpu", Unit: "nanoseconds"}, } samples := []*profile.Sample{ {Value: []int64{20, 20 * 2000 * 1000}, Location: []*profile.Location{ {ID: 1, Mapping: map1, Address: addr1}, {ID: 2, Mapping: map1, Address: addr1 + 1}, }}, {Value: []int64{40, 40 * 2000 * 1000}, Location: []*profile.Location{ {ID: 3, Mapping: map2, Address: addr2}, {ID: 4, Mapping: map2, Address: addr2 + 1}, }}, } checkProfile(t, p, period, periodType, sampleType, samples) } func checkProfile(t *testing.T, p *profile.Profile, period int64, periodType *profile.ValueType, sampleType []*profile.ValueType, samples []*profile.Sample) { if p.Period != period { t.Fatalf("p.Period = %d, want %d", p.Period, period) } if !reflect.DeepEqual(p.PeriodType, periodType) { t.Fatalf("p.PeriodType = %v\nwant = %v", fmtJSON(p.PeriodType), fmtJSON(periodType)) } if !reflect.DeepEqual(p.SampleType, sampleType) { t.Fatalf("p.SampleType = %v\nwant = %v", fmtJSON(p.SampleType), fmtJSON(sampleType)) } // Clear line info since it is not in the expected samples. // If we used f1 and f2 above, then the samples will have line info. for _, s := range p.Sample { for _, l := range s.Location { l.Line = nil } } if fmtJSON(p.Sample) != fmtJSON(samples) { // ignore unexported fields if len(p.Sample) == len(samples) { for i := range p.Sample { if !reflect.DeepEqual(p.Sample[i], samples[i]) { t.Errorf("sample %d = %v\nwant = %v\n", i, fmtJSON(p.Sample[i]), fmtJSON(samples[i])) } } if t.Failed() { t.FailNow() } } t.Fatalf("p.Sample = %v\nwant = %v", fmtJSON(p.Sample), fmtJSON(samples)) } } var profSelfMapsTests = ` 00400000-0040b000 r-xp 00000000 fc:01 787766 /bin/cat 0060a000-0060b000 r--p 0000a000 fc:01 787766 /bin/cat 0060b000-0060c000 rw-p 0000b000 fc:01 787766 /bin/cat 014ab000-014cc000 rw-p 00000000 00:00 0 [heap] 7f7d76af8000-7f7d7797c000 r--p 00000000 fc:01 1318064 /usr/lib/locale/locale-archive 7f7d7797c000-7f7d77b36000 r-xp 00000000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 7f7d77b36000-7f7d77d36000 ---p 001ba000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 7f7d77d36000-7f7d77d3a000 r--p 001ba000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 7f7d77d3a000-7f7d77d3c000 rw-p 001be000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 7f7d77d3c000-7f7d77d41000 rw-p 00000000 00:00 0 7f7d77d41000-7f7d77d64000 r-xp 00000000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so 7f7d77f3f000-7f7d77f42000 rw-p 00000000 00:00 0 7f7d77f61000-7f7d77f63000 rw-p 00000000 00:00 0 7f7d77f63000-7f7d77f64000 r--p 00022000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so 7f7d77f64000-7f7d77f65000 rw-p 00023000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so 7f7d77f65000-7f7d77f66000 rw-p 00000000 00:00 0 7ffc342a2000-7ffc342c3000 rw-p 00000000 00:00 0 [stack] 7ffc34343000-7ffc34345000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000090 00:00 0 [vsyscall] -> 00400000 0040b000 00000000 /bin/cat 7f7d7797c000 7f7d77b36000 00000000 /lib/x86_64-linux-gnu/libc-2.19.so 7f7d77d41000 7f7d77d64000 00000000 /lib/x86_64-linux-gnu/ld-2.19.so 7ffc34343000 7ffc34345000 00000000 [vdso] ffffffffff600000 ffffffffff601000 00000090 [vsyscall] 00400000-07000000 r-xp 00000000 00:00 0 07000000-07093000 r-xp 06c00000 00:2e 536754 /path/to/gobench_server_main 07093000-0722d000 rw-p 06c92000 00:2e 536754 /path/to/gobench_server_main 0722d000-07b21000 rw-p 00000000 00:00 0 c000000000-c000036000 rw-p 00000000 00:00 0 -> 07000000 07093000 06c00000 /path/to/gobench_server_main ` func TestProcSelfMaps(t *testing.T) { for tx, tt := range strings.Split(profSelfMapsTests, "\n\n") { i := strings.Index(tt, "->\n") if i < 0 { t.Fatal("malformed test case") } in, out := tt[:i], tt[i+len("->\n"):] if len(out) > 0 && out[len(out)-1] != '\n' { out += "\n" } var buf bytes.Buffer parseProcSelfMaps([]byte(in), func(lo, hi, offset uint64, file, buildID string) { fmt.Fprintf(&buf, "%08x %08x %08x %s\n", lo, hi, offset, file) }) if buf.String() != out { t.Errorf("#%d: have:\n%s\nwant:\n%s\n%q\n%q", tx, buf.String(), out, buf.String(), out) } } }