// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Lowering arithmetic (AddPtr x y) -> (ADDL x y) (Add32 x y) -> (ADDL x y) (Add16 x y) -> (ADDL x y) (Add8 x y) -> (ADDL x y) (Add32F x y) -> (ADDSS x y) (Add64F x y) -> (ADDSD x y) (Add32carry x y) -> (ADDLcarry x y) (Add32withcarry x y c) -> (ADCL x y c) (SubPtr x y) -> (SUBL x y) (Sub32 x y) -> (SUBL x y) (Sub16 x y) -> (SUBL x y) (Sub8 x y) -> (SUBL x y) (Sub32F x y) -> (SUBSS x y) (Sub64F x y) -> (SUBSD x y) (Sub32carry x y) -> (SUBLcarry x y) (Sub32withcarry x y c) -> (SBBL x y c) (Mul32 x y) -> (MULL x y) (Mul16 x y) -> (MULL x y) (Mul8 x y) -> (MULL x y) (Mul32F x y) -> (MULSS x y) (Mul64F x y) -> (MULSD x y) (Mul32uhilo x y) -> (MULLQU x y) (Avg32u x y) -> (AVGLU x y) (Div32F x y) -> (DIVSS x y) (Div64F x y) -> (DIVSD x y) (Div32 x y) -> (DIVL x y) (Div32u x y) -> (DIVLU x y) (Div16 x y) -> (DIVW x y) (Div16u x y) -> (DIVWU x y) (Div8 x y) -> (DIVW (SignExt8to16 x) (SignExt8to16 y)) (Div8u x y) -> (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)) (Hmul32 x y) -> (HMULL x y) (Hmul32u x y) -> (HMULLU x y) (Mod32 x y) -> (MODL x y) (Mod32u x y) -> (MODLU x y) (Mod16 x y) -> (MODW x y) (Mod16u x y) -> (MODWU x y) (Mod8 x y) -> (MODW (SignExt8to16 x) (SignExt8to16 y)) (Mod8u x y) -> (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y)) (And32 x y) -> (ANDL x y) (And16 x y) -> (ANDL x y) (And8 x y) -> (ANDL x y) (Or32 x y) -> (ORL x y) (Or16 x y) -> (ORL x y) (Or8 x y) -> (ORL x y) (Xor32 x y) -> (XORL x y) (Xor16 x y) -> (XORL x y) (Xor8 x y) -> (XORL x y) (Neg32 x) -> (NEGL x) (Neg16 x) -> (NEGL x) (Neg8 x) -> (NEGL x) (Neg32F x) && !config.use387 -> (PXOR x (MOVSSconst <typ.Float32> [f2i(math.Copysign(0, -1))])) (Neg64F x) && !config.use387 -> (PXOR x (MOVSDconst <typ.Float64> [f2i(math.Copysign(0, -1))])) (Neg32F x) && config.use387 -> (FCHS x) (Neg64F x) && config.use387 -> (FCHS x) (Com32 x) -> (NOTL x) (Com16 x) -> (NOTL x) (Com8 x) -> (NOTL x) // Lowering boolean ops (AndB x y) -> (ANDL x y) (OrB x y) -> (ORL x y) (Not x) -> (XORLconst [1] x) // Lowering pointer arithmetic (OffPtr [off] ptr) -> (ADDLconst [off] ptr) (Bswap32 x) -> (BSWAPL x) (Sqrt x) -> (SQRTSD x) // Lowering extension (SignExt8to16 x) -> (MOVBLSX x) (SignExt8to32 x) -> (MOVBLSX x) (SignExt16to32 x) -> (MOVWLSX x) (ZeroExt8to16 x) -> (MOVBLZX x) (ZeroExt8to32 x) -> (MOVBLZX x) (ZeroExt16to32 x) -> (MOVWLZX x) (Signmask x) -> (SARLconst x [31]) (Zeromask <t> x) -> (XORLconst [-1] (SBBLcarrymask <t> (CMPLconst x [1]))) (Slicemask <t> x) -> (SARLconst (NEGL <t> x) [31]) // Lowering truncation // Because we ignore high parts of registers, truncates are just copies. (Trunc16to8 x) -> x (Trunc32to8 x) -> x (Trunc32to16 x) -> x // Lowering float <-> int (Cvt32to32F x) -> (CVTSL2SS x) (Cvt32to64F x) -> (CVTSL2SD x) (Cvt32Fto32 x) -> (CVTTSS2SL x) (Cvt64Fto32 x) -> (CVTTSD2SL x) (Cvt32Fto64F x) -> (CVTSS2SD x) (Cvt64Fto32F x) -> (CVTSD2SS x) (Round32F x) -> x (Round64F x) -> x // Lowering shifts // Unsigned shifts need to return 0 if shift amount is >= width of shifted value. // result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff) (Lsh32x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) (Lsh32x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) (Lsh32x8 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) (Lsh16x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) (Lsh16x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) (Lsh16x8 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) (Lsh8x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) (Lsh8x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) (Lsh8x8 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) (Rsh32Ux32 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) (Rsh32Ux16 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) (Rsh32Ux8 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) (Rsh16Ux32 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPLconst y [16]))) (Rsh16Ux16 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPWconst y [16]))) (Rsh16Ux8 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPBconst y [16]))) (Rsh8Ux32 <t> x y) -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPLconst y [8]))) (Rsh8Ux16 <t> x y) -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPWconst y [8]))) (Rsh8Ux8 <t> x y) -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPBconst y [8]))) // Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value. // We implement this by setting the shift value to -1 (all ones) if the shift value is >= width. (Rsh32x32 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [32]))))) (Rsh32x16 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [32]))))) (Rsh32x8 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [32]))))) (Rsh16x32 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [16]))))) (Rsh16x16 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [16]))))) (Rsh16x8 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [16]))))) (Rsh8x32 <t> x y) -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [8]))))) (Rsh8x16 <t> x y) -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [8]))))) (Rsh8x8 <t> x y) -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [8]))))) // constant shifts // generic opt rewrites all constant shifts to shift by Const64 (Lsh32x64 x (Const64 [c])) && uint64(c) < 32 -> (SHLLconst x [c]) (Rsh32x64 x (Const64 [c])) && uint64(c) < 32 -> (SARLconst x [c]) (Rsh32Ux64 x (Const64 [c])) && uint64(c) < 32 -> (SHRLconst x [c]) (Lsh16x64 x (Const64 [c])) && uint64(c) < 16 -> (SHLLconst x [c]) (Rsh16x64 x (Const64 [c])) && uint64(c) < 16 -> (SARWconst x [c]) (Rsh16Ux64 x (Const64 [c])) && uint64(c) < 16 -> (SHRWconst x [c]) (Lsh8x64 x (Const64 [c])) && uint64(c) < 8 -> (SHLLconst x [c]) (Rsh8x64 x (Const64 [c])) && uint64(c) < 8 -> (SARBconst x [c]) (Rsh8Ux64 x (Const64 [c])) && uint64(c) < 8 -> (SHRBconst x [c]) // large constant shifts (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) // large constant signed right shift, we leave the sign bit (Rsh32x64 x (Const64 [c])) && uint64(c) >= 32 -> (SARLconst x [31]) (Rsh16x64 x (Const64 [c])) && uint64(c) >= 16 -> (SARWconst x [15]) (Rsh8x64 x (Const64 [c])) && uint64(c) >= 8 -> (SARBconst x [7]) // Lowering comparisons (Less32 x y) -> (SETL (CMPL x y)) (Less16 x y) -> (SETL (CMPW x y)) (Less8 x y) -> (SETL (CMPB x y)) (Less32U x y) -> (SETB (CMPL x y)) (Less16U x y) -> (SETB (CMPW x y)) (Less8U x y) -> (SETB (CMPB x y)) // Use SETGF with reversed operands to dodge NaN case (Less64F x y) -> (SETGF (UCOMISD y x)) (Less32F x y) -> (SETGF (UCOMISS y x)) (Leq32 x y) -> (SETLE (CMPL x y)) (Leq16 x y) -> (SETLE (CMPW x y)) (Leq8 x y) -> (SETLE (CMPB x y)) (Leq32U x y) -> (SETBE (CMPL x y)) (Leq16U x y) -> (SETBE (CMPW x y)) (Leq8U x y) -> (SETBE (CMPB x y)) // Use SETGEF with reversed operands to dodge NaN case (Leq64F x y) -> (SETGEF (UCOMISD y x)) (Leq32F x y) -> (SETGEF (UCOMISS y x)) (Greater32 x y) -> (SETG (CMPL x y)) (Greater16 x y) -> (SETG (CMPW x y)) (Greater8 x y) -> (SETG (CMPB x y)) (Greater32U x y) -> (SETA (CMPL x y)) (Greater16U x y) -> (SETA (CMPW x y)) (Greater8U x y) -> (SETA (CMPB x y)) // Note Go assembler gets UCOMISx operand order wrong, but it is right here // Bug is accommodated at generation of assembly language. (Greater64F x y) -> (SETGF (UCOMISD x y)) (Greater32F x y) -> (SETGF (UCOMISS x y)) (Geq32 x y) -> (SETGE (CMPL x y)) (Geq16 x y) -> (SETGE (CMPW x y)) (Geq8 x y) -> (SETGE (CMPB x y)) (Geq32U x y) -> (SETAE (CMPL x y)) (Geq16U x y) -> (SETAE (CMPW x y)) (Geq8U x y) -> (SETAE (CMPB x y)) // Note Go assembler gets UCOMISx operand order wrong, but it is right here // Bug is accommodated at generation of assembly language. (Geq64F x y) -> (SETGEF (UCOMISD x y)) (Geq32F x y) -> (SETGEF (UCOMISS x y)) (Eq32 x y) -> (SETEQ (CMPL x y)) (Eq16 x y) -> (SETEQ (CMPW x y)) (Eq8 x y) -> (SETEQ (CMPB x y)) (EqB x y) -> (SETEQ (CMPB x y)) (EqPtr x y) -> (SETEQ (CMPL x y)) (Eq64F x y) -> (SETEQF (UCOMISD x y)) (Eq32F x y) -> (SETEQF (UCOMISS x y)) (Neq32 x y) -> (SETNE (CMPL x y)) (Neq16 x y) -> (SETNE (CMPW x y)) (Neq8 x y) -> (SETNE (CMPB x y)) (NeqB x y) -> (SETNE (CMPB x y)) (NeqPtr x y) -> (SETNE (CMPL x y)) (Neq64F x y) -> (SETNEF (UCOMISD x y)) (Neq32F x y) -> (SETNEF (UCOMISS x y)) // Lowering loads (Load <t> ptr mem) && (is32BitInt(t) || isPtr(t)) -> (MOVLload ptr mem) (Load <t> ptr mem) && is16BitInt(t) -> (MOVWload ptr mem) (Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) -> (MOVBload ptr mem) (Load <t> ptr mem) && is32BitFloat(t) -> (MOVSSload ptr mem) (Load <t> ptr mem) && is64BitFloat(t) -> (MOVSDload ptr mem) // Lowering stores // These more-specific FP versions of Store pattern should come first. (Store {t} ptr val mem) && t.(*types.Type).Size() == 8 && is64BitFloat(val.Type) -> (MOVSDstore ptr val mem) (Store {t} ptr val mem) && t.(*types.Type).Size() == 4 && is32BitFloat(val.Type) -> (MOVSSstore ptr val mem) (Store {t} ptr val mem) && t.(*types.Type).Size() == 4 -> (MOVLstore ptr val mem) (Store {t} ptr val mem) && t.(*types.Type).Size() == 2 -> (MOVWstore ptr val mem) (Store {t} ptr val mem) && t.(*types.Type).Size() == 1 -> (MOVBstore ptr val mem) // Lowering moves (Move [0] _ _ mem) -> mem (Move [1] dst src mem) -> (MOVBstore dst (MOVBload src mem) mem) (Move [2] dst src mem) -> (MOVWstore dst (MOVWload src mem) mem) (Move [4] dst src mem) -> (MOVLstore dst (MOVLload src mem) mem) (Move [3] dst src mem) -> (MOVBstore [2] dst (MOVBload [2] src mem) (MOVWstore dst (MOVWload src mem) mem)) (Move [5] dst src mem) -> (MOVBstore [4] dst (MOVBload [4] src mem) (MOVLstore dst (MOVLload src mem) mem)) (Move [6] dst src mem) -> (MOVWstore [4] dst (MOVWload [4] src mem) (MOVLstore dst (MOVLload src mem) mem)) (Move [7] dst src mem) -> (MOVLstore [3] dst (MOVLload [3] src mem) (MOVLstore dst (MOVLload src mem) mem)) (Move [8] dst src mem) -> (MOVLstore [4] dst (MOVLload [4] src mem) (MOVLstore dst (MOVLload src mem) mem)) // Adjust moves to be a multiple of 4 bytes. (Move [s] dst src mem) && s > 8 && s%4 != 0 -> (Move [s-s%4] (ADDLconst <dst.Type> dst [s%4]) (ADDLconst <src.Type> src [s%4]) (MOVLstore dst (MOVLload src mem) mem)) // Medium copying uses a duff device. (Move [s] dst src mem) && s > 8 && s <= 4*128 && s%4 == 0 && !config.noDuffDevice -> (DUFFCOPY [10*(128-s/4)] dst src mem) // 10 and 128 are magic constants. 10 is the number of bytes to encode: // MOVL (SI), CX // ADDL $4, SI // MOVL CX, (DI) // ADDL $4, DI // and 128 is the number of such blocks. See src/runtime/duff_386.s:duffcopy. // Large copying uses REP MOVSL. (Move [s] dst src mem) && (s > 4*128 || config.noDuffDevice) && s%4 == 0 -> (REPMOVSL dst src (MOVLconst [s/4]) mem) // Lowering Zero instructions (Zero [0] _ mem) -> mem (Zero [1] destptr mem) -> (MOVBstoreconst [0] destptr mem) (Zero [2] destptr mem) -> (MOVWstoreconst [0] destptr mem) (Zero [4] destptr mem) -> (MOVLstoreconst [0] destptr mem) (Zero [3] destptr mem) -> (MOVBstoreconst [makeValAndOff(0,2)] destptr (MOVWstoreconst [0] destptr mem)) (Zero [5] destptr mem) -> (MOVBstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [0] destptr mem)) (Zero [6] destptr mem) -> (MOVWstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [0] destptr mem)) (Zero [7] destptr mem) -> (MOVLstoreconst [makeValAndOff(0,3)] destptr (MOVLstoreconst [0] destptr mem)) // Strip off any fractional word zeroing. (Zero [s] destptr mem) && s%4 != 0 && s > 4 -> (Zero [s-s%4] (ADDLconst destptr [s%4]) (MOVLstoreconst [0] destptr mem)) // Zero small numbers of words directly. (Zero [8] destptr mem) -> (MOVLstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [0] destptr mem)) (Zero [12] destptr mem) -> (MOVLstoreconst [makeValAndOff(0,8)] destptr (MOVLstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [0] destptr mem))) (Zero [16] destptr mem) -> (MOVLstoreconst [makeValAndOff(0,12)] destptr (MOVLstoreconst [makeValAndOff(0,8)] destptr (MOVLstoreconst [makeValAndOff(0,4)] destptr (MOVLstoreconst [0] destptr mem)))) // Medium zeroing uses a duff device. (Zero [s] destptr mem) && s > 16 && s <= 4*128 && s%4 == 0 && !config.noDuffDevice -> (DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem) // 1 and 128 are magic constants. 1 is the number of bytes to encode STOSL. // 128 is the number of STOSL instructions in duffzero. // See src/runtime/duff_386.s:duffzero. // Large zeroing uses REP STOSQ. (Zero [s] destptr mem) && (s > 4*128 || (config.noDuffDevice && s > 16)) && s%4 == 0 -> (REPSTOSL destptr (MOVLconst [s/4]) (MOVLconst [0]) mem) // Lowering constants (Const8 [val]) -> (MOVLconst [val]) (Const16 [val]) -> (MOVLconst [val]) (Const32 [val]) -> (MOVLconst [val]) (Const32F [val]) -> (MOVSSconst [val]) (Const64F [val]) -> (MOVSDconst [val]) (ConstNil) -> (MOVLconst [0]) (ConstBool [b]) -> (MOVLconst [b]) // Lowering calls (StaticCall [argwid] {target} mem) -> (CALLstatic [argwid] {target} mem) (ClosureCall [argwid] entry closure mem) -> (CALLclosure [argwid] entry closure mem) (InterCall [argwid] entry mem) -> (CALLinter [argwid] entry mem) // Miscellaneous (Convert <t> x mem) -> (MOVLconvert <t> x mem) (IsNonNil p) -> (SETNE (TESTL p p)) (IsInBounds idx len) -> (SETB (CMPL idx len)) (IsSliceInBounds idx len) -> (SETBE (CMPL idx len)) (NilCheck ptr mem) -> (LoweredNilCheck ptr mem) (GetG mem) -> (LoweredGetG mem) (GetClosurePtr) -> (LoweredGetClosurePtr) (GetCallerPC) -> (LoweredGetCallerPC) (GetCallerSP) -> (LoweredGetCallerSP) (Addr {sym} base) -> (LEAL {sym} base) // block rewrites (If (SETL cmp) yes no) -> (LT cmp yes no) (If (SETLE cmp) yes no) -> (LE cmp yes no) (If (SETG cmp) yes no) -> (GT cmp yes no) (If (SETGE cmp) yes no) -> (GE cmp yes no) (If (SETEQ cmp) yes no) -> (EQ cmp yes no) (If (SETNE cmp) yes no) -> (NE cmp yes no) (If (SETB cmp) yes no) -> (ULT cmp yes no) (If (SETBE cmp) yes no) -> (ULE cmp yes no) (If (SETA cmp) yes no) -> (UGT cmp yes no) (If (SETAE cmp) yes no) -> (UGE cmp yes no) // Special case for floating point - LF/LEF not generated (If (SETGF cmp) yes no) -> (UGT cmp yes no) (If (SETGEF cmp) yes no) -> (UGE cmp yes no) (If (SETEQF cmp) yes no) -> (EQF cmp yes no) (If (SETNEF cmp) yes no) -> (NEF cmp yes no) (If cond yes no) -> (NE (TESTB cond cond) yes no) // *************************** // Above: lowering rules // Below: optimizations // *************************** // TODO: Should the optimizations be a separate pass? // Fold boolean tests into blocks (NE (TESTB (SETL cmp) (SETL cmp)) yes no) -> (LT cmp yes no) (NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) -> (LE cmp yes no) (NE (TESTB (SETG cmp) (SETG cmp)) yes no) -> (GT cmp yes no) (NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) -> (GE cmp yes no) (NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) -> (EQ cmp yes no) (NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) -> (NE cmp yes no) (NE (TESTB (SETB cmp) (SETB cmp)) yes no) -> (ULT cmp yes no) (NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) -> (ULE cmp yes no) (NE (TESTB (SETA cmp) (SETA cmp)) yes no) -> (UGT cmp yes no) (NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) -> (UGE cmp yes no) // Special case for floating point - LF/LEF not generated (NE (TESTB (SETGF cmp) (SETGF cmp)) yes no) -> (UGT cmp yes no) (NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) -> (UGE cmp yes no) (NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) -> (EQF cmp yes no) (NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) -> (NEF cmp yes no) // fold constants into instructions (ADDL x (MOVLconst [c])) -> (ADDLconst [c] x) (ADDLcarry x (MOVLconst [c])) -> (ADDLconstcarry [c] x) (ADCL x (MOVLconst [c]) f) -> (ADCLconst [c] x f) (ADCL (MOVLconst [c]) x f) -> (ADCLconst [c] x f) (SUBL x (MOVLconst [c])) -> (SUBLconst x [c]) (SUBL (MOVLconst [c]) x) -> (NEGL (SUBLconst <v.Type> x [c])) (SUBLcarry x (MOVLconst [c])) -> (SUBLconstcarry [c] x) (SBBL x (MOVLconst [c]) f) -> (SBBLconst [c] x f) (MULL x (MOVLconst [c])) -> (MULLconst [c] x) (ANDL x (MOVLconst [c])) -> (ANDLconst [c] x) (ANDLconst [c] (ANDLconst [d] x)) -> (ANDLconst [c & d] x) (XORLconst [c] (XORLconst [d] x)) -> (XORLconst [c ^ d] x) (MULLconst [c] (MULLconst [d] x)) -> (MULLconst [int64(int32(c * d))] x) (ORL x (MOVLconst [c])) -> (ORLconst [c] x) (XORL x (MOVLconst [c])) -> (XORLconst [c] x) (SHLL x (MOVLconst [c])) -> (SHLLconst [c&31] x) (SHRL x (MOVLconst [c])) -> (SHRLconst [c&31] x) (SHRW x (MOVLconst [c])) && c&31 < 16 -> (SHRWconst [c&31] x) (SHRW _ (MOVLconst [c])) && c&31 >= 16 -> (MOVLconst [0]) (SHRB x (MOVLconst [c])) && c&31 < 8 -> (SHRBconst [c&31] x) (SHRB _ (MOVLconst [c])) && c&31 >= 8 -> (MOVLconst [0]) (SARL x (MOVLconst [c])) -> (SARLconst [c&31] x) (SARW x (MOVLconst [c])) -> (SARWconst [min(c&31,15)] x) (SARB x (MOVLconst [c])) -> (SARBconst [min(c&31,7)] x) (SARL x (ANDLconst [31] y)) -> (SARL x y) (SHLL x (ANDLconst [31] y)) -> (SHLL x y) (SHRL x (ANDLconst [31] y)) -> (SHRL x y) // Rotate instructions (ADDL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x) ( ORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x) (XORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x) (ADDL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c]) ( ORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c]) (XORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c]) (ADDL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c]) ( ORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c]) (XORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c]) (ROLLconst [c] (ROLLconst [d] x)) -> (ROLLconst [(c+d)&31] x) (ROLWconst [c] (ROLWconst [d] x)) -> (ROLWconst [(c+d)&15] x) (ROLBconst [c] (ROLBconst [d] x)) -> (ROLBconst [(c+d)& 7] x) // Constant shift simplifications (SHLLconst x [0]) -> x (SHRLconst x [0]) -> x (SARLconst x [0]) -> x (SHRWconst x [0]) -> x (SARWconst x [0]) -> x (SHRBconst x [0]) -> x (SARBconst x [0]) -> x (ROLLconst [0] x) -> x (ROLWconst [0] x) -> x (ROLBconst [0] x) -> x // Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits) // because the x86 instructions are defined to use all 5 bits of the shift even // for the small shifts. I don't think we'll ever generate a weird shift (e.g. // (SHRW x (MOVLconst [24])), but just in case. (CMPL x (MOVLconst [c])) -> (CMPLconst x [c]) (CMPL (MOVLconst [c]) x) -> (InvertFlags (CMPLconst x [c])) (CMPW x (MOVLconst [c])) -> (CMPWconst x [int64(int16(c))]) (CMPW (MOVLconst [c]) x) -> (InvertFlags (CMPWconst x [int64(int16(c))])) (CMPB x (MOVLconst [c])) -> (CMPBconst x [int64(int8(c))]) (CMPB (MOVLconst [c]) x) -> (InvertFlags (CMPBconst x [int64(int8(c))])) // strength reduction // Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf: // 1 - addq, shlq, leaq, negq // 3 - imulq // This limits the rewrites to two instructions. // TODO: 27, 81 (MULLconst [-1] x) -> (NEGL x) (MULLconst [0] _) -> (MOVLconst [0]) (MULLconst [1] x) -> x (MULLconst [3] x) -> (LEAL2 x x) (MULLconst [5] x) -> (LEAL4 x x) (MULLconst [7] x) -> (LEAL8 (NEGL <v.Type> x) x) (MULLconst [9] x) -> (LEAL8 x x) (MULLconst [11] x) -> (LEAL2 x (LEAL4 <v.Type> x x)) (MULLconst [13] x) -> (LEAL4 x (LEAL2 <v.Type> x x)) (MULLconst [21] x) -> (LEAL4 x (LEAL4 <v.Type> x x)) (MULLconst [25] x) -> (LEAL8 x (LEAL2 <v.Type> x x)) (MULLconst [37] x) -> (LEAL4 x (LEAL8 <v.Type> x x)) (MULLconst [41] x) -> (LEAL8 x (LEAL4 <v.Type> x x)) (MULLconst [73] x) -> (LEAL8 x (LEAL8 <v.Type> x x)) (MULLconst [c] x) && isPowerOfTwo(c+1) && c >= 15 -> (SUBL (SHLLconst <v.Type> [log2(c+1)] x) x) (MULLconst [c] x) && isPowerOfTwo(c-1) && c >= 17 -> (LEAL1 (SHLLconst <v.Type> [log2(c-1)] x) x) (MULLconst [c] x) && isPowerOfTwo(c-2) && c >= 34 -> (LEAL2 (SHLLconst <v.Type> [log2(c-2)] x) x) (MULLconst [c] x) && isPowerOfTwo(c-4) && c >= 68 -> (LEAL4 (SHLLconst <v.Type> [log2(c-4)] x) x) (MULLconst [c] x) && isPowerOfTwo(c-8) && c >= 136 -> (LEAL8 (SHLLconst <v.Type> [log2(c-8)] x) x) (MULLconst [c] x) && c%3 == 0 && isPowerOfTwo(c/3) -> (SHLLconst [log2(c/3)] (LEAL2 <v.Type> x x)) (MULLconst [c] x) && c%5 == 0 && isPowerOfTwo(c/5) -> (SHLLconst [log2(c/5)] (LEAL4 <v.Type> x x)) (MULLconst [c] x) && c%9 == 0 && isPowerOfTwo(c/9) -> (SHLLconst [log2(c/9)] (LEAL8 <v.Type> x x)) // combine add/shift into LEAL (ADDL x (SHLLconst [3] y)) -> (LEAL8 x y) (ADDL x (SHLLconst [2] y)) -> (LEAL4 x y) (ADDL x (SHLLconst [1] y)) -> (LEAL2 x y) (ADDL x (ADDL y y)) -> (LEAL2 x y) (ADDL x (ADDL x y)) -> (LEAL2 y x) // combine ADDL/ADDLconst into LEAL1 (ADDLconst [c] (ADDL x y)) -> (LEAL1 [c] x y) (ADDL (ADDLconst [c] x) y) -> (LEAL1 [c] x y) // fold ADDL into LEAL (ADDLconst [c] (LEAL [d] {s} x)) && is32Bit(c+d) -> (LEAL [c+d] {s} x) (LEAL [c] {s} (ADDLconst [d] x)) && is32Bit(c+d) -> (LEAL [c+d] {s} x) (LEAL [c] {s} (ADDL x y)) && x.Op != OpSB && y.Op != OpSB -> (LEAL1 [c] {s} x y) (ADDL x (LEAL [c] {s} y)) && x.Op != OpSB && y.Op != OpSB -> (LEAL1 [c] {s} x y) // fold ADDLconst into LEALx (ADDLconst [c] (LEAL1 [d] {s} x y)) && is32Bit(c+d) -> (LEAL1 [c+d] {s} x y) (ADDLconst [c] (LEAL2 [d] {s} x y)) && is32Bit(c+d) -> (LEAL2 [c+d] {s} x y) (ADDLconst [c] (LEAL4 [d] {s} x y)) && is32Bit(c+d) -> (LEAL4 [c+d] {s} x y) (ADDLconst [c] (LEAL8 [d] {s} x y)) && is32Bit(c+d) -> (LEAL8 [c+d] {s} x y) (LEAL1 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL1 [c+d] {s} x y) (LEAL2 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL2 [c+d] {s} x y) (LEAL2 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+2*d) && y.Op != OpSB -> (LEAL2 [c+2*d] {s} x y) (LEAL4 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL4 [c+d] {s} x y) (LEAL4 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+4*d) && y.Op != OpSB -> (LEAL4 [c+4*d] {s} x y) (LEAL8 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL8 [c+d] {s} x y) (LEAL8 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+8*d) && y.Op != OpSB -> (LEAL8 [c+8*d] {s} x y) // fold shifts into LEALx (LEAL1 [c] {s} x (SHLLconst [1] y)) -> (LEAL2 [c] {s} x y) (LEAL1 [c] {s} x (SHLLconst [2] y)) -> (LEAL4 [c] {s} x y) (LEAL1 [c] {s} x (SHLLconst [3] y)) -> (LEAL8 [c] {s} x y) (LEAL2 [c] {s} x (SHLLconst [1] y)) -> (LEAL4 [c] {s} x y) (LEAL2 [c] {s} x (SHLLconst [2] y)) -> (LEAL8 [c] {s} x y) (LEAL4 [c] {s} x (SHLLconst [1] y)) -> (LEAL8 [c] {s} x y) // reverse ordering of compare instruction (SETL (InvertFlags x)) -> (SETG x) (SETG (InvertFlags x)) -> (SETL x) (SETB (InvertFlags x)) -> (SETA x) (SETA (InvertFlags x)) -> (SETB x) (SETLE (InvertFlags x)) -> (SETGE x) (SETGE (InvertFlags x)) -> (SETLE x) (SETBE (InvertFlags x)) -> (SETAE x) (SETAE (InvertFlags x)) -> (SETBE x) (SETEQ (InvertFlags x)) -> (SETEQ x) (SETNE (InvertFlags x)) -> (SETNE x) // sign extended loads // Note: The combined instruction must end up in the same block // as the original load. If not, we end up making a value with // memory type live in two different blocks, which can lead to // multiple memory values alive simultaneously. // Make sure we don't combine these ops if the load has another use. // This prevents a single load from being split into multiple loads // which then might return different values. See test/atomicload.go. (MOVBLSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBLSXload <v.Type> [off] {sym} ptr mem) (MOVBLZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBload <v.Type> [off] {sym} ptr mem) (MOVWLSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWLSXload <v.Type> [off] {sym} ptr mem) (MOVWLZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWload <v.Type> [off] {sym} ptr mem) (MOVBLZX x:(MOVBloadidx1 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBloadidx1 <v.Type> [off] {sym} ptr idx mem) (MOVWLZX x:(MOVWloadidx1 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWloadidx1 <v.Type> [off] {sym} ptr idx mem) (MOVWLZX x:(MOVWloadidx2 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWloadidx2 <v.Type> [off] {sym} ptr idx mem) // replace load from same location as preceding store with zero/sign extension (or copy in case of full width) (MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVBLZX x) (MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVWLZX x) (MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> x (MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVBLSX x) (MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVWLSX x) // Fold extensions and ANDs together. (MOVBLZX (ANDLconst [c] x)) -> (ANDLconst [c & 0xff] x) (MOVWLZX (ANDLconst [c] x)) -> (ANDLconst [c & 0xffff] x) (MOVBLSX (ANDLconst [c] x)) && c & 0x80 == 0 -> (ANDLconst [c & 0x7f] x) (MOVWLSX (ANDLconst [c] x)) && c & 0x8000 == 0 -> (ANDLconst [c & 0x7fff] x) // Don't extend before storing (MOVWstore [off] {sym} ptr (MOVWLSX x) mem) -> (MOVWstore [off] {sym} ptr x mem) (MOVBstore [off] {sym} ptr (MOVBLSX x) mem) -> (MOVBstore [off] {sym} ptr x mem) (MOVWstore [off] {sym} ptr (MOVWLZX x) mem) -> (MOVWstore [off] {sym} ptr x mem) (MOVBstore [off] {sym} ptr (MOVBLZX x) mem) -> (MOVBstore [off] {sym} ptr x mem) // fold constants into memory operations // Note that this is not always a good idea because if not all the uses of // the ADDQconst get eliminated, we still have to compute the ADDQconst and we now // have potentially two live values (ptr and (ADDQconst [off] ptr)) instead of one. // Nevertheless, let's do it! (MOVLload [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(off1+off2) -> (MOVLload [off1+off2] {sym} ptr mem) (MOVWload [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(off1+off2) -> (MOVWload [off1+off2] {sym} ptr mem) (MOVBload [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(off1+off2) -> (MOVBload [off1+off2] {sym} ptr mem) (MOVSSload [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(off1+off2) -> (MOVSSload [off1+off2] {sym} ptr mem) (MOVSDload [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(off1+off2) -> (MOVSDload [off1+off2] {sym} ptr mem) (MOVLstore [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(off1+off2) -> (MOVLstore [off1+off2] {sym} ptr val mem) (MOVWstore [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(off1+off2) -> (MOVWstore [off1+off2] {sym} ptr val mem) (MOVBstore [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(off1+off2) -> (MOVBstore [off1+off2] {sym} ptr val mem) (MOVSSstore [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(off1+off2) -> (MOVSSstore [off1+off2] {sym} ptr val mem) (MOVSDstore [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(off1+off2) -> (MOVSDstore [off1+off2] {sym} ptr val mem) // Fold constants into stores. (MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) -> (MOVLstoreconst [makeValAndOff(int64(int32(c)),off)] {sym} ptr mem) (MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) -> (MOVWstoreconst [makeValAndOff(int64(int16(c)),off)] {sym} ptr mem) (MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) -> (MOVBstoreconst [makeValAndOff(int64(int8(c)),off)] {sym} ptr mem) // Fold address offsets into constant stores. (MOVLstoreconst [sc] {s} (ADDLconst [off] ptr) mem) && ValAndOff(sc).canAdd(off) -> (MOVLstoreconst [ValAndOff(sc).add(off)] {s} ptr mem) (MOVWstoreconst [sc] {s} (ADDLconst [off] ptr) mem) && ValAndOff(sc).canAdd(off) -> (MOVWstoreconst [ValAndOff(sc).add(off)] {s} ptr mem) (MOVBstoreconst [sc] {s} (ADDLconst [off] ptr) mem) && ValAndOff(sc).canAdd(off) -> (MOVBstoreconst [ValAndOff(sc).add(off)] {s} ptr mem) // We need to fold LEAQ into the MOVx ops so that the live variable analysis knows // what variables are being read/written by the ops. // Note: we turn off this merging for operations on globals when building // position-independent code (when Flag_shared is set). // PIC needs a spare register to load the PC into. Having the LEAL be // a separate instruction gives us that register. Having the LEAL be // a separate instruction also allows it to be CSEd (which is good because // it compiles to a thunk call). (MOVLload [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVLload [off1+off2] {mergeSym(sym1,sym2)} base mem) (MOVWload [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVWload [off1+off2] {mergeSym(sym1,sym2)} base mem) (MOVBload [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVBload [off1+off2] {mergeSym(sym1,sym2)} base mem) (MOVSSload [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVSSload [off1+off2] {mergeSym(sym1,sym2)} base mem) (MOVSDload [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVSDload [off1+off2] {mergeSym(sym1,sym2)} base mem) (MOVBLSXload [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVBLSXload [off1+off2] {mergeSym(sym1,sym2)} base mem) (MOVWLSXload [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVWLSXload [off1+off2] {mergeSym(sym1,sym2)} base mem) (MOVLstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVLstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) (MOVWstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVWstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) (MOVBstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVBstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) (MOVSSstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVSSstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) (MOVSDstore [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVSDstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) (MOVLstoreconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && ValAndOff(sc).canAdd(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVLstoreconst [ValAndOff(sc).add(off)] {mergeSym(sym1, sym2)} ptr mem) (MOVWstoreconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && ValAndOff(sc).canAdd(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVWstoreconst [ValAndOff(sc).add(off)] {mergeSym(sym1, sym2)} ptr mem) (MOVBstoreconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && ValAndOff(sc).canAdd(off) && (ptr.Op != OpSB || !config.ctxt.Flag_shared) -> (MOVBstoreconst [ValAndOff(sc).add(off)] {mergeSym(sym1, sym2)} ptr mem) // generating indexed loads and stores (MOVBload [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVBloadidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVWload [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVWloadidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVWload [off1] {sym1} (LEAL2 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVWloadidx2 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVLload [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVLloadidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVLload [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVLloadidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVSSload [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSSloadidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVSSload [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSSloadidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVSDload [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSDloadidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVSDload [off1] {sym1} (LEAL8 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSDloadidx8 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) (MOVBstore [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVBstoreidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVWstore [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVWstoreidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVWstore [off1] {sym1} (LEAL2 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVWstoreidx2 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVLstore [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVLstoreidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVLstore [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVLstoreidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVSSstore [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSSstoreidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVSSstore [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSSstoreidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVSDstore [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSDstoreidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVSDstore [off1] {sym1} (LEAL8 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (MOVSDstoreidx8 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) (MOVBload [off] {sym} (ADDL ptr idx) mem) && ptr.Op != OpSB -> (MOVBloadidx1 [off] {sym} ptr idx mem) (MOVWload [off] {sym} (ADDL ptr idx) mem) && ptr.Op != OpSB -> (MOVWloadidx1 [off] {sym} ptr idx mem) (MOVLload [off] {sym} (ADDL ptr idx) mem) && ptr.Op != OpSB -> (MOVLloadidx1 [off] {sym} ptr idx mem) (MOVSSload [off] {sym} (ADDL ptr idx) mem) && ptr.Op != OpSB -> (MOVSSloadidx1 [off] {sym} ptr idx mem) (MOVSDload [off] {sym} (ADDL ptr idx) mem) && ptr.Op != OpSB -> (MOVSDloadidx1 [off] {sym} ptr idx mem) (MOVBstore [off] {sym} (ADDL ptr idx) val mem) && ptr.Op != OpSB -> (MOVBstoreidx1 [off] {sym} ptr idx val mem) (MOVWstore [off] {sym} (ADDL ptr idx) val mem) && ptr.Op != OpSB -> (MOVWstoreidx1 [off] {sym} ptr idx val mem) (MOVLstore [off] {sym} (ADDL ptr idx) val mem) && ptr.Op != OpSB -> (MOVLstoreidx1 [off] {sym} ptr idx val mem) (MOVSSstore [off] {sym} (ADDL ptr idx) val mem) && ptr.Op != OpSB -> (MOVSSstoreidx1 [off] {sym} ptr idx val mem) (MOVSDstore [off] {sym} (ADDL ptr idx) val mem) && ptr.Op != OpSB -> (MOVSDstoreidx1 [off] {sym} ptr idx val mem) (MOVBstoreconst [x] {sym1} (LEAL1 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> (MOVBstoreconstidx1 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) (MOVWstoreconst [x] {sym1} (LEAL1 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> (MOVWstoreconstidx1 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) (MOVWstoreconst [x] {sym1} (LEAL2 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> (MOVWstoreconstidx2 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) (MOVLstoreconst [x] {sym1} (LEAL1 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> (MOVLstoreconstidx1 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) (MOVLstoreconst [x] {sym1} (LEAL4 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> (MOVLstoreconstidx4 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) (MOVBstoreconst [x] {sym} (ADDL ptr idx) mem) -> (MOVBstoreconstidx1 [x] {sym} ptr idx mem) (MOVWstoreconst [x] {sym} (ADDL ptr idx) mem) -> (MOVWstoreconstidx1 [x] {sym} ptr idx mem) (MOVLstoreconst [x] {sym} (ADDL ptr idx) mem) -> (MOVLstoreconstidx1 [x] {sym} ptr idx mem) // combine SHLL into indexed loads and stores (MOVWloadidx1 [c] {sym} ptr (SHLLconst [1] idx) mem) -> (MOVWloadidx2 [c] {sym} ptr idx mem) (MOVLloadidx1 [c] {sym} ptr (SHLLconst [2] idx) mem) -> (MOVLloadidx4 [c] {sym} ptr idx mem) (MOVWstoreidx1 [c] {sym} ptr (SHLLconst [1] idx) val mem) -> (MOVWstoreidx2 [c] {sym} ptr idx val mem) (MOVLstoreidx1 [c] {sym} ptr (SHLLconst [2] idx) val mem) -> (MOVLstoreidx4 [c] {sym} ptr idx val mem) (MOVWstoreconstidx1 [c] {sym} ptr (SHLLconst [1] idx) mem) -> (MOVWstoreconstidx2 [c] {sym} ptr idx mem) (MOVLstoreconstidx1 [c] {sym} ptr (SHLLconst [2] idx) mem) -> (MOVLstoreconstidx4 [c] {sym} ptr idx mem) // combine ADDL into indexed loads and stores (MOVBloadidx1 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVBloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVWloadidx1 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVWloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVWloadidx2 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVWloadidx2 [int64(int32(c+d))] {sym} ptr idx mem) (MOVLloadidx1 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVLloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVLloadidx4 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVLloadidx4 [int64(int32(c+d))] {sym} ptr idx mem) (MOVSSloadidx1 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVSSloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVSSloadidx4 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVSSloadidx4 [int64(int32(c+d))] {sym} ptr idx mem) (MOVSDloadidx1 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVSDloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVSDloadidx8 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVSDloadidx8 [int64(int32(c+d))] {sym} ptr idx mem) (MOVBstoreidx1 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVBstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVWstoreidx1 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVWstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVWstoreidx2 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVWstoreidx2 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVLstoreidx1 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVLstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVLstoreidx4 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVLstoreidx4 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVSSstoreidx1 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVSSstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVSSstoreidx4 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVSSstoreidx4 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVSDstoreidx1 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVSDstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVSDstoreidx8 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVSDstoreidx8 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVBloadidx1 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVBloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVWloadidx1 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVWloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVWloadidx2 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVWloadidx2 [int64(int32(c+2*d))] {sym} ptr idx mem) (MOVLloadidx1 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVLloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVLloadidx4 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVLloadidx4 [int64(int32(c+4*d))] {sym} ptr idx mem) (MOVSSloadidx1 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVSSloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVSSloadidx4 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVSSloadidx4 [int64(int32(c+4*d))] {sym} ptr idx mem) (MOVSDloadidx1 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVSDloadidx1 [int64(int32(c+d))] {sym} ptr idx mem) (MOVSDloadidx8 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVSDloadidx8 [int64(int32(c+8*d))] {sym} ptr idx mem) (MOVBstoreidx1 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVBstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVWstoreidx1 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVWstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVWstoreidx2 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVWstoreidx2 [int64(int32(c+2*d))] {sym} ptr idx val mem) (MOVLstoreidx1 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVLstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVLstoreidx4 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVLstoreidx4 [int64(int32(c+4*d))] {sym} ptr idx val mem) (MOVSSstoreidx1 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVSSstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVSSstoreidx4 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVSSstoreidx4 [int64(int32(c+4*d))] {sym} ptr idx val mem) (MOVSDstoreidx1 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVSDstoreidx1 [int64(int32(c+d))] {sym} ptr idx val mem) (MOVSDstoreidx8 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVSDstoreidx8 [int64(int32(c+8*d))] {sym} ptr idx val mem) (MOVBstoreconstidx1 [x] {sym} (ADDLconst [c] ptr) idx mem) -> (MOVBstoreconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVWstoreconstidx1 [x] {sym} (ADDLconst [c] ptr) idx mem) -> (MOVWstoreconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVWstoreconstidx2 [x] {sym} (ADDLconst [c] ptr) idx mem) -> (MOVWstoreconstidx2 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVLstoreconstidx1 [x] {sym} (ADDLconst [c] ptr) idx mem) -> (MOVLstoreconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVLstoreconstidx4 [x] {sym} (ADDLconst [c] ptr) idx mem) -> (MOVLstoreconstidx4 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVBstoreconstidx1 [x] {sym} ptr (ADDLconst [c] idx) mem) -> (MOVBstoreconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVWstoreconstidx1 [x] {sym} ptr (ADDLconst [c] idx) mem) -> (MOVWstoreconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVWstoreconstidx2 [x] {sym} ptr (ADDLconst [c] idx) mem) -> (MOVWstoreconstidx2 [ValAndOff(x).add(2*c)] {sym} ptr idx mem) (MOVLstoreconstidx1 [x] {sym} ptr (ADDLconst [c] idx) mem) -> (MOVLstoreconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) (MOVLstoreconstidx4 [x] {sym} ptr (ADDLconst [c] idx) mem) -> (MOVLstoreconstidx4 [ValAndOff(x).add(4*c)] {sym} ptr idx mem) // fold LEALs together (LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (LEAL [off1+off2] {mergeSym(sym1,sym2)} x) // LEAL into LEAL1 (LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) // LEAL1 into LEAL (LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) // LEAL into LEAL[248] (LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) (LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) (LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) // LEAL[248] into LEAL (LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) (LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) (LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) // Absorb InvertFlags into branches. (LT (InvertFlags cmp) yes no) -> (GT cmp yes no) (GT (InvertFlags cmp) yes no) -> (LT cmp yes no) (LE (InvertFlags cmp) yes no) -> (GE cmp yes no) (GE (InvertFlags cmp) yes no) -> (LE cmp yes no) (ULT (InvertFlags cmp) yes no) -> (UGT cmp yes no) (UGT (InvertFlags cmp) yes no) -> (ULT cmp yes no) (ULE (InvertFlags cmp) yes no) -> (UGE cmp yes no) (UGE (InvertFlags cmp) yes no) -> (ULE cmp yes no) (EQ (InvertFlags cmp) yes no) -> (EQ cmp yes no) (NE (InvertFlags cmp) yes no) -> (NE cmp yes no) // Constant comparisons. (CMPLconst (MOVLconst [x]) [y]) && int32(x)==int32(y) -> (FlagEQ) (CMPLconst (MOVLconst [x]) [y]) && int32(x)<int32(y) && uint32(x)<uint32(y) -> (FlagLT_ULT) (CMPLconst (MOVLconst [x]) [y]) && int32(x)<int32(y) && uint32(x)>uint32(y) -> (FlagLT_UGT) (CMPLconst (MOVLconst [x]) [y]) && int32(x)>int32(y) && uint32(x)<uint32(y) -> (FlagGT_ULT) (CMPLconst (MOVLconst [x]) [y]) && int32(x)>int32(y) && uint32(x)>uint32(y) -> (FlagGT_UGT) (CMPWconst (MOVLconst [x]) [y]) && int16(x)==int16(y) -> (FlagEQ) (CMPWconst (MOVLconst [x]) [y]) && int16(x)<int16(y) && uint16(x)<uint16(y) -> (FlagLT_ULT) (CMPWconst (MOVLconst [x]) [y]) && int16(x)<int16(y) && uint16(x)>uint16(y) -> (FlagLT_UGT) (CMPWconst (MOVLconst [x]) [y]) && int16(x)>int16(y) && uint16(x)<uint16(y) -> (FlagGT_ULT) (CMPWconst (MOVLconst [x]) [y]) && int16(x)>int16(y) && uint16(x)>uint16(y) -> (FlagGT_UGT) (CMPBconst (MOVLconst [x]) [y]) && int8(x)==int8(y) -> (FlagEQ) (CMPBconst (MOVLconst [x]) [y]) && int8(x)<int8(y) && uint8(x)<uint8(y) -> (FlagLT_ULT) (CMPBconst (MOVLconst [x]) [y]) && int8(x)<int8(y) && uint8(x)>uint8(y) -> (FlagLT_UGT) (CMPBconst (MOVLconst [x]) [y]) && int8(x)>int8(y) && uint8(x)<uint8(y) -> (FlagGT_ULT) (CMPBconst (MOVLconst [x]) [y]) && int8(x)>int8(y) && uint8(x)>uint8(y) -> (FlagGT_UGT) // Other known comparisons. (CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) -> (FlagLT_ULT) (CMPLconst (ANDLconst _ [m]) [n]) && 0 <= int32(m) && int32(m) < int32(n) -> (FlagLT_ULT) (CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < int16(n) -> (FlagLT_ULT) (CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < int8(n) -> (FlagLT_ULT) // TODO: DIVxU also. // Absorb flag constants into SBB ops. (SBBLcarrymask (FlagEQ)) -> (MOVLconst [0]) (SBBLcarrymask (FlagLT_ULT)) -> (MOVLconst [-1]) (SBBLcarrymask (FlagLT_UGT)) -> (MOVLconst [0]) (SBBLcarrymask (FlagGT_ULT)) -> (MOVLconst [-1]) (SBBLcarrymask (FlagGT_UGT)) -> (MOVLconst [0]) // Absorb flag constants into branches. (EQ (FlagEQ) yes no) -> (First nil yes no) (EQ (FlagLT_ULT) yes no) -> (First nil no yes) (EQ (FlagLT_UGT) yes no) -> (First nil no yes) (EQ (FlagGT_ULT) yes no) -> (First nil no yes) (EQ (FlagGT_UGT) yes no) -> (First nil no yes) (NE (FlagEQ) yes no) -> (First nil no yes) (NE (FlagLT_ULT) yes no) -> (First nil yes no) (NE (FlagLT_UGT) yes no) -> (First nil yes no) (NE (FlagGT_ULT) yes no) -> (First nil yes no) (NE (FlagGT_UGT) yes no) -> (First nil yes no) (LT (FlagEQ) yes no) -> (First nil no yes) (LT (FlagLT_ULT) yes no) -> (First nil yes no) (LT (FlagLT_UGT) yes no) -> (First nil yes no) (LT (FlagGT_ULT) yes no) -> (First nil no yes) (LT (FlagGT_UGT) yes no) -> (First nil no yes) (LE (FlagEQ) yes no) -> (First nil yes no) (LE (FlagLT_ULT) yes no) -> (First nil yes no) (LE (FlagLT_UGT) yes no) -> (First nil yes no) (LE (FlagGT_ULT) yes no) -> (First nil no yes) (LE (FlagGT_UGT) yes no) -> (First nil no yes) (GT (FlagEQ) yes no) -> (First nil no yes) (GT (FlagLT_ULT) yes no) -> (First nil no yes) (GT (FlagLT_UGT) yes no) -> (First nil no yes) (GT (FlagGT_ULT) yes no) -> (First nil yes no) (GT (FlagGT_UGT) yes no) -> (First nil yes no) (GE (FlagEQ) yes no) -> (First nil yes no) (GE (FlagLT_ULT) yes no) -> (First nil no yes) (GE (FlagLT_UGT) yes no) -> (First nil no yes) (GE (FlagGT_ULT) yes no) -> (First nil yes no) (GE (FlagGT_UGT) yes no) -> (First nil yes no) (ULT (FlagEQ) yes no) -> (First nil no yes) (ULT (FlagLT_ULT) yes no) -> (First nil yes no) (ULT (FlagLT_UGT) yes no) -> (First nil no yes) (ULT (FlagGT_ULT) yes no) -> (First nil yes no) (ULT (FlagGT_UGT) yes no) -> (First nil no yes) (ULE (FlagEQ) yes no) -> (First nil yes no) (ULE (FlagLT_ULT) yes no) -> (First nil yes no) (ULE (FlagLT_UGT) yes no) -> (First nil no yes) (ULE (FlagGT_ULT) yes no) -> (First nil yes no) (ULE (FlagGT_UGT) yes no) -> (First nil no yes) (UGT (FlagEQ) yes no) -> (First nil no yes) (UGT (FlagLT_ULT) yes no) -> (First nil no yes) (UGT (FlagLT_UGT) yes no) -> (First nil yes no) (UGT (FlagGT_ULT) yes no) -> (First nil no yes) (UGT (FlagGT_UGT) yes no) -> (First nil yes no) (UGE (FlagEQ) yes no) -> (First nil yes no) (UGE (FlagLT_ULT) yes no) -> (First nil no yes) (UGE (FlagLT_UGT) yes no) -> (First nil yes no) (UGE (FlagGT_ULT) yes no) -> (First nil no yes) (UGE (FlagGT_UGT) yes no) -> (First nil yes no) // Absorb flag constants into SETxx ops. (SETEQ (FlagEQ)) -> (MOVLconst [1]) (SETEQ (FlagLT_ULT)) -> (MOVLconst [0]) (SETEQ (FlagLT_UGT)) -> (MOVLconst [0]) (SETEQ (FlagGT_ULT)) -> (MOVLconst [0]) (SETEQ (FlagGT_UGT)) -> (MOVLconst [0]) (SETNE (FlagEQ)) -> (MOVLconst [0]) (SETNE (FlagLT_ULT)) -> (MOVLconst [1]) (SETNE (FlagLT_UGT)) -> (MOVLconst [1]) (SETNE (FlagGT_ULT)) -> (MOVLconst [1]) (SETNE (FlagGT_UGT)) -> (MOVLconst [1]) (SETL (FlagEQ)) -> (MOVLconst [0]) (SETL (FlagLT_ULT)) -> (MOVLconst [1]) (SETL (FlagLT_UGT)) -> (MOVLconst [1]) (SETL (FlagGT_ULT)) -> (MOVLconst [0]) (SETL (FlagGT_UGT)) -> (MOVLconst [0]) (SETLE (FlagEQ)) -> (MOVLconst [1]) (SETLE (FlagLT_ULT)) -> (MOVLconst [1]) (SETLE (FlagLT_UGT)) -> (MOVLconst [1]) (SETLE (FlagGT_ULT)) -> (MOVLconst [0]) (SETLE (FlagGT_UGT)) -> (MOVLconst [0]) (SETG (FlagEQ)) -> (MOVLconst [0]) (SETG (FlagLT_ULT)) -> (MOVLconst [0]) (SETG (FlagLT_UGT)) -> (MOVLconst [0]) (SETG (FlagGT_ULT)) -> (MOVLconst [1]) (SETG (FlagGT_UGT)) -> (MOVLconst [1]) (SETGE (FlagEQ)) -> (MOVLconst [1]) (SETGE (FlagLT_ULT)) -> (MOVLconst [0]) (SETGE (FlagLT_UGT)) -> (MOVLconst [0]) (SETGE (FlagGT_ULT)) -> (MOVLconst [1]) (SETGE (FlagGT_UGT)) -> (MOVLconst [1]) (SETB (FlagEQ)) -> (MOVLconst [0]) (SETB (FlagLT_ULT)) -> (MOVLconst [1]) (SETB (FlagLT_UGT)) -> (MOVLconst [0]) (SETB (FlagGT_ULT)) -> (MOVLconst [1]) (SETB (FlagGT_UGT)) -> (MOVLconst [0]) (SETBE (FlagEQ)) -> (MOVLconst [1]) (SETBE (FlagLT_ULT)) -> (MOVLconst [1]) (SETBE (FlagLT_UGT)) -> (MOVLconst [0]) (SETBE (FlagGT_ULT)) -> (MOVLconst [1]) (SETBE (FlagGT_UGT)) -> (MOVLconst [0]) (SETA (FlagEQ)) -> (MOVLconst [0]) (SETA (FlagLT_ULT)) -> (MOVLconst [0]) (SETA (FlagLT_UGT)) -> (MOVLconst [1]) (SETA (FlagGT_ULT)) -> (MOVLconst [0]) (SETA (FlagGT_UGT)) -> (MOVLconst [1]) (SETAE (FlagEQ)) -> (MOVLconst [1]) (SETAE (FlagLT_ULT)) -> (MOVLconst [0]) (SETAE (FlagLT_UGT)) -> (MOVLconst [1]) (SETAE (FlagGT_ULT)) -> (MOVLconst [0]) (SETAE (FlagGT_UGT)) -> (MOVLconst [1]) // Remove redundant *const ops (ADDLconst [c] x) && int32(c)==0 -> x (SUBLconst [c] x) && int32(c) == 0 -> x (ANDLconst [c] _) && int32(c)==0 -> (MOVLconst [0]) (ANDLconst [c] x) && int32(c)==-1 -> x (ORLconst [c] x) && int32(c)==0 -> x (ORLconst [c] _) && int32(c)==-1 -> (MOVLconst [-1]) (XORLconst [c] x) && int32(c)==0 -> x // TODO: since we got rid of the W/B versions, we might miss // things like (ANDLconst [0x100] x) which were formerly // (ANDBconst [0] x). Probably doesn't happen very often. // If we cared, we might do: // (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 -> (MOVLconst [0]) // Convert constant subtracts to constant adds (SUBLconst [c] x) -> (ADDLconst [int64(int32(-c))] x) // generic constant folding // TODO: more of this (ADDLconst [c] (MOVLconst [d])) -> (MOVLconst [int64(int32(c+d))]) (ADDLconst [c] (ADDLconst [d] x)) -> (ADDLconst [int64(int32(c+d))] x) (SARLconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)]) (SARWconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)]) (SARBconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)]) (NEGL (MOVLconst [c])) -> (MOVLconst [int64(int32(-c))]) (MULLconst [c] (MOVLconst [d])) -> (MOVLconst [int64(int32(c*d))]) (ANDLconst [c] (MOVLconst [d])) -> (MOVLconst [c&d]) (ORLconst [c] (MOVLconst [d])) -> (MOVLconst [c|d]) (XORLconst [c] (MOVLconst [d])) -> (MOVLconst [c^d]) (NOTL (MOVLconst [c])) -> (MOVLconst [^c]) // generic simplifications // TODO: more of this (ADDL x (NEGL y)) -> (SUBL x y) (SUBL x x) -> (MOVLconst [0]) (ANDL x x) -> x (ORL x x) -> x (XORL x x) -> (MOVLconst [0]) // checking AND against 0. (CMPLconst (ANDL x y) [0]) -> (TESTL x y) (CMPWconst (ANDL x y) [0]) -> (TESTW x y) (CMPBconst (ANDL x y) [0]) -> (TESTB x y) (CMPLconst (ANDLconst [c] x) [0]) -> (TESTLconst [c] x) (CMPWconst (ANDLconst [c] x) [0]) -> (TESTWconst [int64(int16(c))] x) (CMPBconst (ANDLconst [c] x) [0]) -> (TESTBconst [int64(int8(c))] x) // TEST %reg,%reg is shorter than CMP (CMPLconst x [0]) -> (TESTL x x) (CMPWconst x [0]) -> (TESTW x x) (CMPBconst x [0]) -> (TESTB x x) // Combining byte loads into larger (unaligned) loads. // There are many ways these combinations could occur. This is // designed to match the way encoding/binary.LittleEndian does it. (ORL x0:(MOVBload [i0] {s} p mem) s0:(SHLLconst [8] x1:(MOVBload [i1] {s} p mem))) && i1 == i0+1 && x0.Uses == 1 && x1.Uses == 1 && s0.Uses == 1 && mergePoint(b,x0,x1) != nil && clobber(x0) && clobber(x1) && clobber(s0) -> @mergePoint(b,x0,x1) (MOVWload [i0] {s} p mem) (ORL o0:(ORL x0:(MOVWload [i0] {s} p mem) s0:(SHLLconst [16] x1:(MOVBload [i2] {s} p mem))) s1:(SHLLconst [24] x2:(MOVBload [i3] {s} p mem))) && i2 == i0+2 && i3 == i0+3 && x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && s0.Uses == 1 && s1.Uses == 1 && o0.Uses == 1 && mergePoint(b,x0,x1,x2) != nil && clobber(x0) && clobber(x1) && clobber(x2) && clobber(s0) && clobber(s1) && clobber(o0) -> @mergePoint(b,x0,x1,x2) (MOVLload [i0] {s} p mem) (ORL x0:(MOVBloadidx1 [i0] {s} p idx mem) s0:(SHLLconst [8] x1:(MOVBloadidx1 [i1] {s} p idx mem))) && i1==i0+1 && x0.Uses == 1 && x1.Uses == 1 && s0.Uses == 1 && mergePoint(b,x0,x1) != nil && clobber(x0) && clobber(x1) && clobber(s0) -> @mergePoint(b,x0,x1) (MOVWloadidx1 <v.Type> [i0] {s} p idx mem) (ORL o0:(ORL x0:(MOVWloadidx1 [i0] {s} p idx mem) s0:(SHLLconst [16] x1:(MOVBloadidx1 [i2] {s} p idx mem))) s1:(SHLLconst [24] x2:(MOVBloadidx1 [i3] {s} p idx mem))) && i2 == i0+2 && i3 == i0+3 && x0.Uses == 1 && x1.Uses == 1 && x2.Uses == 1 && s0.Uses == 1 && s1.Uses == 1 && o0.Uses == 1 && mergePoint(b,x0,x1,x2) != nil && clobber(x0) && clobber(x1) && clobber(x2) && clobber(s0) && clobber(s1) && clobber(o0) -> @mergePoint(b,x0,x1,x2) (MOVLloadidx1 <v.Type> [i0] {s} p idx mem) // Combine constant stores into larger (unaligned) stores. (MOVBstoreconst [c] {s} p x:(MOVBstoreconst [a] {s} p mem)) && x.Uses == 1 && ValAndOff(a).Off() + 1 == ValAndOff(c).Off() && clobber(x) -> (MOVWstoreconst [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p mem) (MOVWstoreconst [c] {s} p x:(MOVWstoreconst [a] {s} p mem)) && x.Uses == 1 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() && clobber(x) -> (MOVLstoreconst [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p mem) (MOVBstoreconstidx1 [c] {s} p i x:(MOVBstoreconstidx1 [a] {s} p i mem)) && x.Uses == 1 && ValAndOff(a).Off() + 1 == ValAndOff(c).Off() && clobber(x) -> (MOVWstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p i mem) (MOVWstoreconstidx1 [c] {s} p i x:(MOVWstoreconstidx1 [a] {s} p i mem)) && x.Uses == 1 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() && clobber(x) -> (MOVLstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p i mem) (MOVWstoreconstidx2 [c] {s} p i x:(MOVWstoreconstidx2 [a] {s} p i mem)) && x.Uses == 1 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() && clobber(x) -> (MOVLstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p (SHLLconst <i.Type> [1] i) mem) // Combine stores into larger (unaligned) stores. (MOVBstore [i] {s} p (SHRLconst [8] w) x:(MOVBstore [i-1] {s} p w mem)) && x.Uses == 1 && clobber(x) -> (MOVWstore [i-1] {s} p w mem) (MOVBstore [i] {s} p (SHRLconst [j] w) x:(MOVBstore [i-1] {s} p w0:(SHRLconst [j-8] w) mem)) && x.Uses == 1 && clobber(x) -> (MOVWstore [i-1] {s} p w0 mem) (MOVWstore [i] {s} p (SHRLconst [16] w) x:(MOVWstore [i-2] {s} p w mem)) && x.Uses == 1 && clobber(x) -> (MOVLstore [i-2] {s} p w mem) (MOVWstore [i] {s} p (SHRLconst [j] w) x:(MOVWstore [i-2] {s} p w0:(SHRLconst [j-16] w) mem)) && x.Uses == 1 && clobber(x) -> (MOVLstore [i-2] {s} p w0 mem) (MOVBstoreidx1 [i] {s} p idx (SHRLconst [8] w) x:(MOVBstoreidx1 [i-1] {s} p idx w mem)) && x.Uses == 1 && clobber(x) -> (MOVWstoreidx1 [i-1] {s} p idx w mem) (MOVBstoreidx1 [i] {s} p idx (SHRLconst [j] w) x:(MOVBstoreidx1 [i-1] {s} p idx w0:(SHRLconst [j-8] w) mem)) && x.Uses == 1 && clobber(x) -> (MOVWstoreidx1 [i-1] {s} p idx w0 mem) (MOVWstoreidx1 [i] {s} p idx (SHRLconst [16] w) x:(MOVWstoreidx1 [i-2] {s} p idx w mem)) && x.Uses == 1 && clobber(x) -> (MOVLstoreidx1 [i-2] {s} p idx w mem) (MOVWstoreidx1 [i] {s} p idx (SHRLconst [j] w) x:(MOVWstoreidx1 [i-2] {s} p idx w0:(SHRLconst [j-16] w) mem)) && x.Uses == 1 && clobber(x) -> (MOVLstoreidx1 [i-2] {s} p idx w0 mem) (MOVWstoreidx2 [i] {s} p idx (SHRLconst [16] w) x:(MOVWstoreidx2 [i-2] {s} p idx w mem)) && x.Uses == 1 && clobber(x) -> (MOVLstoreidx1 [i-2] {s} p (SHLLconst <idx.Type> [1] idx) w mem) (MOVWstoreidx2 [i] {s} p idx (SHRLconst [j] w) x:(MOVWstoreidx2 [i-2] {s} p idx w0:(SHRLconst [j-16] w) mem)) && x.Uses == 1 && clobber(x) -> (MOVLstoreidx1 [i-2] {s} p (SHLLconst <idx.Type> [1] idx) w0 mem) // For PIC, break floating-point constant loading into two instructions so we have // a register to use for holding the address of the constant pool entry. (MOVSSconst [c]) && config.ctxt.Flag_shared -> (MOVSSconst2 (MOVSSconst1 [c])) (MOVSDconst [c]) && config.ctxt.Flag_shared -> (MOVSDconst2 (MOVSDconst1 [c]))