// Inferno utils/5l/span.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package arm import ( "cmd/internal/obj" "cmd/internal/objabi" "fmt" "log" "math" "sort" ) // ctxt5 holds state while assembling a single function. // Each function gets a fresh ctxt5. // This allows for multiple functions to be safely concurrently assembled. type ctxt5 struct { ctxt *obj.Link newprog obj.ProgAlloc cursym *obj.LSym printp *obj.Prog blitrl *obj.Prog elitrl *obj.Prog autosize int64 instoffset int64 pc int64 pool struct { start uint32 size uint32 extra uint32 } } type Optab struct { as obj.As a1 uint8 a2 int8 a3 uint8 type_ uint8 size int8 param int16 flag int8 pcrelsiz uint8 scond uint8 // optional flags accepted by the instruction } type Opcross [32][2][32]uint8 const ( LFROM = 1 << 0 LTO = 1 << 1 LPOOL = 1 << 2 LPCREL = 1 << 3 ) var optab = []Optab{ /* struct Optab: OPCODE, from, prog->reg, to, type, size, param, flag, extra data size, optional suffix */ {obj.ATEXT, C_ADDR, C_NONE, C_TEXTSIZE, 0, 0, 0, 0, 0, 0}, {AADD, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {AADD, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {AAND, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {AAND, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {AORR, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {AORR, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {AMOVW, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {AMVN, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT}, {ACMP, C_REG, C_REG, C_NONE, 1, 4, 0, 0, 0, 0}, {AADD, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0, C_SBIT}, {AADD, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, C_SBIT}, {AAND, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0, C_SBIT}, {AAND, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, C_SBIT}, {AORR, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0, C_SBIT}, {AORR, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, C_SBIT}, {AMOVW, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, 0}, {AMVN, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, 0}, {ACMP, C_RCON, C_REG, C_NONE, 2, 4, 0, 0, 0, 0}, {AADD, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0, C_SBIT}, {AADD, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT}, {AAND, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0, C_SBIT}, {AAND, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT}, {AORR, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0, C_SBIT}, {AORR, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT}, {AMVN, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT}, {ACMP, C_SHIFT, C_REG, C_NONE, 3, 4, 0, 0, 0, 0}, {AMOVW, C_RACON, C_NONE, C_REG, 4, 4, REGSP, 0, 0, C_SBIT}, {AB, C_NONE, C_NONE, C_SBRA, 5, 4, 0, LPOOL, 0, 0}, {ABL, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, {ABX, C_NONE, C_NONE, C_SBRA, 74, 20, 0, 0, 0, 0}, {ABEQ, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, {ABEQ, C_RCON, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, // prediction hinted form, hint ignored {AB, C_NONE, C_NONE, C_ROREG, 6, 4, 0, LPOOL, 0, 0}, {ABL, C_NONE, C_NONE, C_ROREG, 7, 4, 0, 0, 0, 0}, {ABL, C_REG, C_NONE, C_ROREG, 7, 4, 0, 0, 0, 0}, {ABX, C_NONE, C_NONE, C_ROREG, 75, 12, 0, 0, 0, 0}, {ABXRET, C_NONE, C_NONE, C_ROREG, 76, 4, 0, 0, 0, 0}, {ASLL, C_RCON, C_REG, C_REG, 8, 4, 0, 0, 0, C_SBIT}, {ASLL, C_RCON, C_NONE, C_REG, 8, 4, 0, 0, 0, C_SBIT}, {ASLL, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0, C_SBIT}, {ASLL, C_REG, C_REG, C_REG, 9, 4, 0, 0, 0, C_SBIT}, {ASWI, C_NONE, C_NONE, C_NONE, 10, 4, 0, 0, 0, 0}, {ASWI, C_NONE, C_NONE, C_LCON, 10, 4, 0, 0, 0, 0}, {AWORD, C_NONE, C_NONE, C_LCON, 11, 4, 0, 0, 0, 0}, {AWORD, C_NONE, C_NONE, C_LCONADDR, 11, 4, 0, 0, 0, 0}, {AWORD, C_NONE, C_NONE, C_ADDR, 11, 4, 0, 0, 0, 0}, {AWORD, C_NONE, C_NONE, C_TLS_LE, 103, 4, 0, 0, 0, 0}, {AWORD, C_NONE, C_NONE, C_TLS_IE, 104, 4, 0, 0, 0, 0}, {AMOVW, C_NCON, C_NONE, C_REG, 12, 4, 0, 0, 0, 0}, {AMOVW, C_SCON, C_NONE, C_REG, 12, 4, 0, 0, 0, 0}, {AMOVW, C_LCON, C_NONE, C_REG, 12, 4, 0, LFROM, 0, 0}, {AMOVW, C_LCONADDR, C_NONE, C_REG, 12, 4, 0, LFROM | LPCREL, 4, 0}, {AMVN, C_NCON, C_NONE, C_REG, 12, 4, 0, 0, 0, 0}, {AADD, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AADD, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AAND, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AAND, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AORR, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AORR, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {ACMP, C_NCON, C_REG, C_NONE, 13, 8, 0, 0, 0, 0}, {AADD, C_SCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AADD, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AAND, C_SCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AAND, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AORR, C_SCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AORR, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT}, {AMVN, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, 0}, {ACMP, C_SCON, C_REG, C_NONE, 13, 8, 0, 0, 0, 0}, {AADD, C_RCON2A, C_REG, C_REG, 106, 8, 0, 0, 0, 0}, {AADD, C_RCON2A, C_NONE, C_REG, 106, 8, 0, 0, 0, 0}, {AORR, C_RCON2A, C_REG, C_REG, 106, 8, 0, 0, 0, 0}, {AORR, C_RCON2A, C_NONE, C_REG, 106, 8, 0, 0, 0, 0}, {AADD, C_RCON2S, C_REG, C_REG, 107, 8, 0, 0, 0, 0}, {AADD, C_RCON2S, C_NONE, C_REG, 107, 8, 0, 0, 0, 0}, {AADD, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0, C_SBIT}, {AADD, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, C_SBIT}, {AAND, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0, C_SBIT}, {AAND, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, C_SBIT}, {AORR, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0, C_SBIT}, {AORR, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, C_SBIT}, {AMVN, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, 0}, {ACMP, C_LCON, C_REG, C_NONE, 13, 8, 0, LFROM, 0, 0}, {AMOVB, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, 0}, {AMOVBS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0, 0}, {AMOVBU, C_REG, C_NONE, C_REG, 58, 4, 0, 0, 0, 0}, {AMOVH, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, 0}, {AMOVHS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0, 0}, {AMOVHU, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0, 0}, {AMUL, C_REG, C_REG, C_REG, 15, 4, 0, 0, 0, C_SBIT}, {AMUL, C_REG, C_NONE, C_REG, 15, 4, 0, 0, 0, C_SBIT}, {ADIV, C_REG, C_REG, C_REG, 16, 4, 0, 0, 0, 0}, {ADIV, C_REG, C_NONE, C_REG, 16, 4, 0, 0, 0, 0}, {ADIVHW, C_REG, C_REG, C_REG, 105, 4, 0, 0, 0, 0}, {ADIVHW, C_REG, C_NONE, C_REG, 105, 4, 0, 0, 0, 0}, {AMULL, C_REG, C_REG, C_REGREG, 17, 4, 0, 0, 0, C_SBIT}, {ABFX, C_LCON, C_REG, C_REG, 18, 4, 0, 0, 0, 0}, // width in From, LSB in From3 {ABFX, C_LCON, C_NONE, C_REG, 18, 4, 0, 0, 0, 0}, // width in From, LSB in From3 {AMOVW, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AXTAB, C_SHIFT, C_REG, C_REG, 22, 4, 0, 0, 0, 0}, {AXTAB, C_SHIFT, C_NONE, C_REG, 22, 4, 0, 0, 0, 0}, {AMOVW, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, C_SBIT}, {AMOVB, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0}, {AMOVBS, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0}, {AMOVBU, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0}, {AMOVH, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0}, {AMOVHS, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0}, {AMOVHU, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0}, {AMOVW, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_TLS_LE, C_NONE, C_REG, 101, 4, 0, LFROM, 0, 0}, {AMOVW, C_TLS_IE, C_NONE, C_REG, 102, 8, 0, LFROM, 0, 0}, {AMOVW, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_LACON, C_NONE, C_REG, 34, 8, REGSP, LFROM, 0, C_SBIT}, {AMOVW, C_PSR, C_NONE, C_REG, 35, 4, 0, 0, 0, 0}, {AMOVW, C_REG, C_NONE, C_PSR, 36, 4, 0, 0, 0, 0}, {AMOVW, C_RCON, C_NONE, C_PSR, 37, 4, 0, 0, 0, 0}, {AMOVM, C_REGLIST, C_NONE, C_SOREG, 38, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVM, C_SOREG, C_NONE, C_REGLIST, 39, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {ASWPW, C_SOREG, C_REG, C_REG, 40, 4, 0, 0, 0, 0}, {ARFE, C_NONE, C_NONE, C_NONE, 41, 4, 0, 0, 0, 0}, {AMOVF, C_FREG, C_NONE, C_FAUTO, 50, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_FREG, C_NONE, C_FOREG, 50, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_FAUTO, C_NONE, C_FREG, 51, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_FOREG, C_NONE, C_FREG, 51, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_FREG, C_NONE, C_LAUTO, 52, 12, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_FREG, C_NONE, C_LOREG, 52, 12, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_LAUTO, C_NONE, C_FREG, 53, 12, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_LOREG, C_NONE, C_FREG, 53, 12, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_FREG, C_NONE, C_ADDR, 68, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVF, C_ADDR, C_NONE, C_FREG, 69, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AADDF, C_FREG, C_NONE, C_FREG, 54, 4, 0, 0, 0, 0}, {AADDF, C_FREG, C_FREG, C_FREG, 54, 4, 0, 0, 0, 0}, {AMOVF, C_FREG, C_NONE, C_FREG, 55, 4, 0, 0, 0, 0}, {ANEGF, C_FREG, C_NONE, C_FREG, 55, 4, 0, 0, 0, 0}, {AMOVW, C_REG, C_NONE, C_FCR, 56, 4, 0, 0, 0, 0}, {AMOVW, C_FCR, C_NONE, C_REG, 57, 4, 0, 0, 0, 0}, {AMOVW, C_SHIFTADDR, C_NONE, C_REG, 59, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_SHIFTADDR, C_NONE, C_REG, 59, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVW, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBU, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_REG, C_NONE, C_SHIFTADDR, 62, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_REG, C_NONE, C_SHIFTADDR, 62, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_REG, C_NONE, C_SHIFTADDR, 62, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVB, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVBS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVH, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT}, {AMOVHU, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT}, {ALDREX, C_SOREG, C_NONE, C_REG, 77, 4, 0, 0, 0, 0}, {ASTREX, C_SOREG, C_REG, C_REG, 78, 4, 0, 0, 0, 0}, {AMOVF, C_ZFCON, C_NONE, C_FREG, 80, 8, 0, 0, 0, 0}, {AMOVF, C_SFCON, C_NONE, C_FREG, 81, 4, 0, 0, 0, 0}, {ACMPF, C_FREG, C_FREG, C_NONE, 82, 8, 0, 0, 0, 0}, {ACMPF, C_FREG, C_NONE, C_NONE, 83, 8, 0, 0, 0, 0}, {AMOVFW, C_FREG, C_NONE, C_FREG, 84, 4, 0, 0, 0, C_UBIT}, {AMOVWF, C_FREG, C_NONE, C_FREG, 85, 4, 0, 0, 0, C_UBIT}, {AMOVFW, C_FREG, C_NONE, C_REG, 86, 8, 0, 0, 0, C_UBIT}, {AMOVWF, C_REG, C_NONE, C_FREG, 87, 8, 0, 0, 0, C_UBIT}, {AMOVW, C_REG, C_NONE, C_FREG, 88, 4, 0, 0, 0, 0}, {AMOVW, C_FREG, C_NONE, C_REG, 89, 4, 0, 0, 0, 0}, {ALDREXD, C_SOREG, C_NONE, C_REG, 91, 4, 0, 0, 0, 0}, {ASTREXD, C_SOREG, C_REG, C_REG, 92, 4, 0, 0, 0, 0}, {APLD, C_SOREG, C_NONE, C_NONE, 95, 4, 0, 0, 0, 0}, {obj.AUNDEF, C_NONE, C_NONE, C_NONE, 96, 4, 0, 0, 0, 0}, {ACLZ, C_REG, C_NONE, C_REG, 97, 4, 0, 0, 0, 0}, {AMULWT, C_REG, C_REG, C_REG, 98, 4, 0, 0, 0, 0}, {AMULA, C_REG, C_REG, C_REGREG2, 99, 4, 0, 0, 0, C_SBIT}, {AMULAWT, C_REG, C_REG, C_REGREG2, 99, 4, 0, 0, 0, 0}, {obj.APCDATA, C_LCON, C_NONE, C_LCON, 0, 0, 0, 0, 0, 0}, {obj.AFUNCDATA, C_LCON, C_NONE, C_ADDR, 0, 0, 0, 0, 0, 0}, {obj.ANOP, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0, 0}, {obj.ADUFFZERO, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, // same as ABL {obj.ADUFFCOPY, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, // same as ABL {ADATABUNDLE, C_NONE, C_NONE, C_NONE, 100, 4, 0, 0, 0, 0}, {ADATABUNDLEEND, C_NONE, C_NONE, C_NONE, 100, 0, 0, 0, 0, 0}, {obj.AXXX, C_NONE, C_NONE, C_NONE, 0, 4, 0, 0, 0, 0}, } var oprange [ALAST & obj.AMask][]Optab var xcmp [C_GOK + 1][C_GOK + 1]bool var ( deferreturn *obj.LSym symdiv *obj.LSym symdivu *obj.LSym symmod *obj.LSym symmodu *obj.LSym ) // Note about encoding: Prog.scond holds the condition encoding, // but XOR'ed with C_SCOND_XOR, so that C_SCOND_NONE == 0. // The code that shifts the value << 28 has the responsibility // for XORing with C_SCOND_XOR too. // asmoutnacl assembles the instruction p. It replaces asmout for NaCl. // It returns the total number of bytes put in out, and it can change // p->pc if extra padding is necessary. // In rare cases, asmoutnacl might split p into two instructions. // origPC is the PC for this Prog (no padding is taken into account). func (c *ctxt5) asmoutnacl(origPC int32, p *obj.Prog, o *Optab, out []uint32) int { size := int(o.size) // instruction specific switch p.As { default: if out != nil { c.asmout(p, o, out) } case ADATABUNDLE, // align to 16-byte boundary ADATABUNDLEEND: // zero width instruction, just to align next instruction to 16-byte boundary p.Pc = (p.Pc + 15) &^ 15 if out != nil { c.asmout(p, o, out) } case obj.AUNDEF, APLD: size = 4 if out != nil { switch p.As { case obj.AUNDEF: out[0] = 0xe7fedef0 // NACL_INSTR_ARM_ABORT_NOW (UDF #0xEDE0) case APLD: out[0] = 0xe1a01001 // (MOVW R1, R1) } } case AB, ABL: if p.To.Type != obj.TYPE_MEM { if out != nil { c.asmout(p, o, out) } } else { if p.To.Offset != 0 || size != 4 || p.To.Reg > REG_R15 || p.To.Reg < REG_R0 { c.ctxt.Diag("unsupported instruction: %v", p) } if p.Pc&15 == 12 { p.Pc += 4 } if out != nil { out[0] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03c0013f | (uint32(p.To.Reg)&15)<<12 | (uint32(p.To.Reg)&15)<<16 // BIC $0xc000000f, Rx if p.As == AB { out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff10 | (uint32(p.To.Reg)&15)<<0 // BX Rx } else { // ABL out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff30 | (uint32(p.To.Reg)&15)<<0 // BLX Rx } } size = 8 } // align the last instruction (the actual BL) to the last instruction in a bundle if p.As == ABL { if p.To.Sym == deferreturn { p.Pc = ((int64(origPC) + 15) &^ 15) + 16 - int64(size) } else { p.Pc += (16 - ((p.Pc + int64(size)) & 15)) & 15 } } case ALDREX, ALDREXD, AMOVB, AMOVBS, AMOVBU, AMOVD, AMOVF, AMOVH, AMOVHS, AMOVHU, AMOVM, AMOVW, ASTREX, ASTREXD: if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_R15 && p.From.Reg == REG_R13 { // MOVW.W x(R13), PC if out != nil { c.asmout(p, o, out) } if size == 4 { if out != nil { // Note: 5c and 5g reg.c know that DIV/MOD smashes R12 // so that this return instruction expansion is valid. out[0] = out[0] &^ 0x3000 // change PC to R12 out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03ccc13f // BIC $0xc000000f, R12 out[2] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff1c // BX R12 } size += 8 if (p.Pc+int64(size))&15 == 4 { p.Pc += 4 } break } else { // if the instruction used more than 4 bytes, then it must have used a very large // offset to update R13, so we need to additionally mask R13. if out != nil { out[size/4-1] &^= 0x3000 // change PC to R12 out[size/4] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03cdd103 // BIC $0xc0000000, R13 out[size/4+1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03ccc13f // BIC $0xc000000f, R12 out[size/4+2] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff1c // BX R12 } // p->pc+size is only ok at 4 or 12 mod 16. if (p.Pc+int64(size))%8 == 0 { p.Pc += 4 } size += 12 break } } if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_R15 { c.ctxt.Diag("unsupported instruction (move to another register and use indirect jump instead): %v", p) } if p.To.Type == obj.TYPE_MEM && p.To.Reg == REG_R13 && (p.Scond&C_WBIT != 0) && size > 4 { // function prolog with very large frame size: MOVW.W R14,-100004(R13) // split it into two instructions: // ADD $-100004, R13 // MOVW R14, 0(R13) q := c.newprog() p.Scond &^= C_WBIT *q = *p a := &p.To var a2 *obj.Addr if p.To.Type == obj.TYPE_MEM { a2 = &q.To } else { a2 = &q.From } nocache(q) nocache(p) // insert q after p q.Link = p.Link p.Link = q q.Pcond = nil // make p into ADD $X, R13 p.As = AADD p.From = *a p.From.Reg = 0 p.From.Type = obj.TYPE_CONST p.To = obj.Addr{} p.To.Type = obj.TYPE_REG p.To.Reg = REG_R13 // make q into p but load/store from 0(R13) q.Spadj = 0 *a2 = obj.Addr{} a2.Type = obj.TYPE_MEM a2.Reg = REG_R13 a2.Sym = nil a2.Offset = 0 size = int(c.oplook(p).size) break } if (p.To.Type == obj.TYPE_MEM && p.To.Reg != REG_R9) || // MOVW Rx, X(Ry), y != 9 (p.From.Type == obj.TYPE_MEM && p.From.Reg != REG_R9) { // MOVW X(Rx), Ry, x != 9 var a *obj.Addr if p.To.Type == obj.TYPE_MEM { a = &p.To } else { a = &p.From } reg := int(a.Reg) if size == 4 { // if addr.reg == 0, then it is probably load from x(FP) with small x, no need to modify. if reg == 0 { if out != nil { c.asmout(p, o, out) } } else { if out != nil { out[0] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03c00103 | (uint32(reg)&15)<<16 | (uint32(reg)&15)<<12 // BIC $0xc0000000, Rx } if p.Pc&15 == 12 { p.Pc += 4 } size += 4 if out != nil { c.asmout(p, o, out[1:]) } } break } else { // if a load/store instruction takes more than 1 word to implement, then // we need to separate the instruction into two: // 1. explicitly load the address into R11. // 2. load/store from R11. // This won't handle .W/.P, so we should reject such code. if p.Scond&(C_PBIT|C_WBIT) != 0 { c.ctxt.Diag("unsupported instruction (.P/.W): %v", p) } q := c.newprog() *q = *p var a2 *obj.Addr if p.To.Type == obj.TYPE_MEM { a2 = &q.To } else { a2 = &q.From } nocache(q) nocache(p) // insert q after p q.Link = p.Link p.Link = q q.Pcond = nil // make p into MOVW $X(R), R11 p.As = AMOVW p.From = *a p.From.Type = obj.TYPE_ADDR p.To = obj.Addr{} p.To.Type = obj.TYPE_REG p.To.Reg = REG_R11 // make q into p but load/store from 0(R11) *a2 = obj.Addr{} a2.Type = obj.TYPE_MEM a2.Reg = REG_R11 a2.Sym = nil a2.Offset = 0 size = int(c.oplook(p).size) break } } else if out != nil { c.asmout(p, o, out) } } // destination register specific if p.To.Type == obj.TYPE_REG { switch p.To.Reg { case REG_R9: c.ctxt.Diag("invalid instruction, cannot write to R9: %v", p) case REG_R13: if out != nil { out[size/4] = 0xe3cdd103 // BIC $0xc0000000, R13 } if (p.Pc+int64(size))&15 == 0 { p.Pc += 4 } size += 4 } } return size } func checkSuffix(c *ctxt5, p *obj.Prog, o *Optab) { if p.Scond&C_SBIT != 0 && o.scond&C_SBIT == 0 { c.ctxt.Diag("invalid .S suffix: %v", p) } if p.Scond&C_PBIT != 0 && o.scond&C_PBIT == 0 { c.ctxt.Diag("invalid .P suffix: %v", p) } if p.Scond&C_WBIT != 0 && o.scond&C_WBIT == 0 { c.ctxt.Diag("invalid .W suffix: %v", p) } if p.Scond&C_UBIT != 0 && o.scond&C_UBIT == 0 { c.ctxt.Diag("invalid .U suffix: %v", p) } } func span5(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { var p *obj.Prog var op *obj.Prog p = cursym.Func.Text if p == nil || p.Link == nil { // handle external functions and ELF section symbols return } if oprange[AAND&obj.AMask] == nil { ctxt.Diag("arm ops not initialized, call arm.buildop first") } c := ctxt5{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: p.To.Offset + 4} pc := int32(0) op = p p = p.Link var i int var m int var o *Optab for ; p != nil || c.blitrl != nil; op, p = p, p.Link { if p == nil { if c.checkpool(op, 0) { p = op continue } // can't happen: blitrl is not nil, but checkpool didn't flushpool ctxt.Diag("internal inconsistency") break } p.Pc = int64(pc) o = c.oplook(p) if ctxt.Headtype != objabi.Hnacl { m = int(o.size) } else { m = c.asmoutnacl(pc, p, o, nil) pc = int32(p.Pc) // asmoutnacl might change pc for alignment o = c.oplook(p) // asmoutnacl might change p in rare cases } if m%4 != 0 || p.Pc%4 != 0 { ctxt.Diag("!pc invalid: %v size=%d", p, m) } // must check literal pool here in case p generates many instructions if c.blitrl != nil { i = m if c.checkpool(op, i) { p = op continue } } if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != ADATABUNDLEEND && p.As != obj.ANOP) { ctxt.Diag("zero-width instruction\n%v", p) continue } switch o.flag & (LFROM | LTO | LPOOL) { case LFROM: c.addpool(p, &p.From) case LTO: c.addpool(p, &p.To) case LPOOL: if p.Scond&C_SCOND == C_SCOND_NONE { c.flushpool(p, 0, 0) } } if p.As == AMOVW && p.To.Type == obj.TYPE_REG && p.To.Reg == REGPC && p.Scond&C_SCOND == C_SCOND_NONE { c.flushpool(p, 0, 0) } pc += int32(m) } c.cursym.Size = int64(pc) /* * if any procedure is large enough to * generate a large SBRA branch, then * generate extra passes putting branches * around jmps to fix. this is rare. */ times := 0 var bflag int var opc int32 var out [6 + 3]uint32 for { bflag = 0 pc = 0 times++ c.cursym.Func.Text.Pc = 0 // force re-layout the code. for p = c.cursym.Func.Text; p != nil; p = p.Link { o = c.oplook(p) if int64(pc) > p.Pc { p.Pc = int64(pc) } /* very large branches if(o->type == 6 && p->pcond) { otxt = p->pcond->pc - c; if(otxt < 0) otxt = -otxt; if(otxt >= (1L<<17) - 10) { q = emallocz(sizeof(Prog)); q->link = p->link; p->link = q; q->as = AB; q->to.type = TYPE_BRANCH; q->pcond = p->pcond; p->pcond = q; q = emallocz(sizeof(Prog)); q->link = p->link; p->link = q; q->as = AB; q->to.type = TYPE_BRANCH; q->pcond = q->link->link; bflag = 1; } } */ opc = int32(p.Pc) if ctxt.Headtype != objabi.Hnacl { m = int(o.size) } else { m = c.asmoutnacl(pc, p, o, nil) } if p.Pc != int64(opc) { bflag = 1 } //print("%v pc changed %d to %d in iter. %d\n", p, opc, (int32)p->pc, times); pc = int32(p.Pc + int64(m)) if m%4 != 0 || p.Pc%4 != 0 { ctxt.Diag("pc invalid: %v size=%d", p, m) } if m/4 > len(out) { ctxt.Diag("instruction size too large: %d > %d", m/4, len(out)) } if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != ADATABUNDLEEND && p.As != obj.ANOP) { if p.As == obj.ATEXT { c.autosize = p.To.Offset + 4 continue } ctxt.Diag("zero-width instruction\n%v", p) continue } } c.cursym.Size = int64(pc) if bflag == 0 { break } } if pc%4 != 0 { ctxt.Diag("sym->size=%d, invalid", pc) } /* * lay out the code. all the pc-relative code references, * even cross-function, are resolved now; * only data references need to be relocated. * with more work we could leave cross-function * code references to be relocated too, and then * perhaps we'd be able to parallelize the span loop above. */ p = c.cursym.Func.Text c.autosize = p.To.Offset + 4 c.cursym.Grow(c.cursym.Size) bp := c.cursym.P pc = int32(p.Pc) // even p->link might need extra padding var v int for p = p.Link; p != nil; p = p.Link { c.pc = p.Pc o = c.oplook(p) opc = int32(p.Pc) if ctxt.Headtype != objabi.Hnacl { c.asmout(p, o, out[:]) m = int(o.size) } else { m = c.asmoutnacl(pc, p, o, out[:]) if int64(opc) != p.Pc { ctxt.Diag("asmoutnacl broken: pc changed (%d->%d) in last stage: %v", opc, int32(p.Pc), p) } } if m%4 != 0 || p.Pc%4 != 0 { ctxt.Diag("final stage: pc invalid: %v size=%d", p, m) } if int64(pc) > p.Pc { ctxt.Diag("PC padding invalid: want %#d, has %#d: %v", p.Pc, pc, p) } for int64(pc) != p.Pc { // emit 0xe1a00000 (MOVW R0, R0) bp[0] = 0x00 bp = bp[1:] bp[0] = 0x00 bp = bp[1:] bp[0] = 0xa0 bp = bp[1:] bp[0] = 0xe1 bp = bp[1:] pc += 4 } for i = 0; i < m/4; i++ { v = int(out[i]) bp[0] = byte(v) bp = bp[1:] bp[0] = byte(v >> 8) bp = bp[1:] bp[0] = byte(v >> 16) bp = bp[1:] bp[0] = byte(v >> 24) bp = bp[1:] } pc += int32(m) } } /* * when the first reference to the literal pool threatens * to go out of range of a 12-bit PC-relative offset, * drop the pool now, and branch round it. * this happens only in extended basic blocks that exceed 4k. */ func (c *ctxt5) checkpool(p *obj.Prog, sz int) bool { if c.pool.size >= 0xff0 || immaddr(int32((p.Pc+int64(sz)+4)+4+int64(12+c.pool.size)-int64(c.pool.start+8))) == 0 { return c.flushpool(p, 1, 0) } else if p.Link == nil { return c.flushpool(p, 2, 0) } return false } func (c *ctxt5) flushpool(p *obj.Prog, skip int, force int) bool { if c.blitrl != nil { if skip != 0 { if false && skip == 1 { fmt.Printf("note: flush literal pool at %x: len=%d ref=%x\n", uint64(p.Pc+4), c.pool.size, c.pool.start) } q := c.newprog() q.As = AB q.To.Type = obj.TYPE_BRANCH q.Pcond = p.Link q.Link = c.blitrl q.Pos = p.Pos c.blitrl = q } else if force == 0 && (p.Pc+int64(12+c.pool.size)-int64(c.pool.start) < 2048) { // 12 take into account the maximum nacl literal pool alignment padding size return false } if c.ctxt.Headtype == objabi.Hnacl && c.pool.size%16 != 0 { // if pool is not multiple of 16 bytes, add an alignment marker q := c.newprog() q.As = ADATABUNDLEEND c.elitrl.Link = q c.elitrl = q } // The line number for constant pool entries doesn't really matter. // We set it to the line number of the preceding instruction so that // there are no deltas to encode in the pc-line tables. for q := c.blitrl; q != nil; q = q.Link { q.Pos = p.Pos } c.elitrl.Link = p.Link p.Link = c.blitrl c.blitrl = nil /* BUG: should refer back to values until out-of-range */ c.elitrl = nil c.pool.size = 0 c.pool.start = 0 c.pool.extra = 0 return true } return false } func (c *ctxt5) addpool(p *obj.Prog, a *obj.Addr) { t := c.newprog() t.As = AWORD switch c.aclass(a) { default: t.To.Offset = a.Offset t.To.Sym = a.Sym t.To.Type = a.Type t.To.Name = a.Name if c.ctxt.Flag_shared && t.To.Sym != nil { t.Rel = p } case C_SROREG, C_LOREG, C_ROREG, C_FOREG, C_SOREG, C_HOREG, C_FAUTO, C_SAUTO, C_LAUTO, C_LACON: t.To.Type = obj.TYPE_CONST t.To.Offset = c.instoffset } if t.Rel == nil { for q := c.blitrl; q != nil; q = q.Link { /* could hash on t.t0.offset */ if q.Rel == nil && q.To == t.To { p.Pcond = q return } } } if c.ctxt.Headtype == objabi.Hnacl && c.pool.size%16 == 0 { // start a new data bundle q := c.newprog() q.As = ADATABUNDLE q.Pc = int64(c.pool.size) c.pool.size += 4 if c.blitrl == nil { c.blitrl = q c.pool.start = uint32(p.Pc) } else { c.elitrl.Link = q } c.elitrl = q } q := c.newprog() *q = *t q.Pc = int64(c.pool.size) if c.blitrl == nil { c.blitrl = q c.pool.start = uint32(p.Pc) } else { c.elitrl.Link = q } c.elitrl = q c.pool.size += 4 p.Pcond = q } func (c *ctxt5) regoff(a *obj.Addr) int32 { c.instoffset = 0 c.aclass(a) return int32(c.instoffset) } func immrot(v uint32) int32 { for i := 0; i < 16; i++ { if v&^0xff == 0 { return int32(uint32(int32(i)<<8) | v | 1<<25) } v = v<<2 | v>>30 } return 0 } // immrot2a returns bits encoding the immediate constant fields of two instructions, // such that the encoded constants x, y satisfy x|y==v, x&y==0. // Returns 0,0 if no such decomposition of v exists. func immrot2a(v uint32) (uint32, uint32) { for i := uint(1); i < 32; i++ { m := uint32(1<<i - 1) if x, y := immrot(v&m), immrot(v&^m); x != 0 && y != 0 { return uint32(x), uint32(y) } } // TODO: handle some more cases, like where // the wraparound from the rotate could help. return 0, 0 } // immrot2s returns bits encoding the immediate constant fields of two instructions, // such that the encoded constants y, x satisfy y-x==v, y&x==0. // Returns 0,0 if no such decomposition of v exists. func immrot2s(v uint32) (uint32, uint32) { if immrot(v) != 0 { return v, 0 } // suppose v in the form of {leading 00, upper effective bits, lower 8 effective bits, trailing 00} // omit trailing 00 var i uint32 for i = 2; i < 32; i += 2 { if v&(1<<i-1) != 0 { break } } // i must be <= 24, then adjust i just above lower 8 effective bits of v i += 6 // let x = {the complement of lower 8 effective bits, trailing 00}, y = x + v x := 1<<i - v&(1<<i-1) y := v + x if y, x = uint32(immrot(y)), uint32(immrot(x)); y != 0 && x != 0 { return y, x } return 0, 0 } func immaddr(v int32) int32 { if v >= 0 && v <= 0xfff { return v&0xfff | 1<<24 | 1<<23 /* pre indexing */ /* pre indexing, up */ } if v >= -0xfff && v < 0 { return -v&0xfff | 1<<24 /* pre indexing */ } return 0 } func immfloat(v int32) bool { return v&0xC03 == 0 /* offset will fit in floating-point load/store */ } func immhalf(v int32) bool { if v >= 0 && v <= 0xff { return v|1<<24|1<<23 != 0 /* pre indexing */ /* pre indexing, up */ } if v >= -0xff && v < 0 { return -v&0xff|1<<24 != 0 /* pre indexing */ } return false } func (c *ctxt5) aclass(a *obj.Addr) int { switch a.Type { case obj.TYPE_NONE: return C_NONE case obj.TYPE_REG: c.instoffset = 0 if REG_R0 <= a.Reg && a.Reg <= REG_R15 { return C_REG } if REG_F0 <= a.Reg && a.Reg <= REG_F15 { return C_FREG } if a.Reg == REG_FPSR || a.Reg == REG_FPCR { return C_FCR } if a.Reg == REG_CPSR || a.Reg == REG_SPSR { return C_PSR } return C_GOK case obj.TYPE_REGREG: return C_REGREG case obj.TYPE_REGREG2: return C_REGREG2 case obj.TYPE_REGLIST: return C_REGLIST case obj.TYPE_SHIFT: if a.Reg == 0 { // register shift R>>i return C_SHIFT } else { // memory address with shifted offset R>>i(R) return C_SHIFTADDR } case obj.TYPE_MEM: switch a.Name { case obj.NAME_EXTERN, obj.NAME_GOTREF, obj.NAME_STATIC: if a.Sym == nil || a.Sym.Name == "" { fmt.Printf("null sym external\n") return C_GOK } c.instoffset = 0 // s.b. unused but just in case if a.Sym.Type == objabi.STLSBSS { if c.ctxt.Flag_shared { return C_TLS_IE } else { return C_TLS_LE } } return C_ADDR case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } c.instoffset = c.autosize + a.Offset if t := immaddr(int32(c.instoffset)); t != 0 { if immhalf(int32(c.instoffset)) { if immfloat(t) { return C_HFAUTO } return C_HAUTO } if immfloat(t) { return C_FAUTO } return C_SAUTO } return C_LAUTO case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = c.autosize + a.Offset + 4 if t := immaddr(int32(c.instoffset)); t != 0 { if immhalf(int32(c.instoffset)) { if immfloat(t) { return C_HFAUTO } return C_HAUTO } if immfloat(t) { return C_FAUTO } return C_SAUTO } return C_LAUTO case obj.NAME_NONE: c.instoffset = a.Offset if t := immaddr(int32(c.instoffset)); t != 0 { if immhalf(int32(c.instoffset)) { /* n.b. that it will also satisfy immrot */ if immfloat(t) { return C_HFOREG } return C_HOREG } if immfloat(t) { return C_FOREG /* n.b. that it will also satisfy immrot */ } if immrot(uint32(c.instoffset)) != 0 { return C_SROREG } if immhalf(int32(c.instoffset)) { return C_HOREG } return C_SOREG } if immrot(uint32(c.instoffset)) != 0 { return C_ROREG } return C_LOREG } return C_GOK case obj.TYPE_FCONST: if c.chipzero5(a.Val.(float64)) >= 0 { return C_ZFCON } if c.chipfloat5(a.Val.(float64)) >= 0 { return C_SFCON } return C_LFCON case obj.TYPE_TEXTSIZE: return C_TEXTSIZE case obj.TYPE_CONST, obj.TYPE_ADDR: switch a.Name { case obj.NAME_NONE: c.instoffset = a.Offset if a.Reg != 0 { return c.aconsize() } if immrot(uint32(c.instoffset)) != 0 { return C_RCON } if immrot(^uint32(c.instoffset)) != 0 { return C_NCON } if uint32(c.instoffset) <= 0xffff && objabi.GOARM == 7 { return C_SCON } if c.ctxt.Headtype != objabi.Hnacl { // Don't split instructions on NaCl. The validator is not // happy with it. See Issue 20595. if x, y := immrot2a(uint32(c.instoffset)); x != 0 && y != 0 { return C_RCON2A } if y, x := immrot2s(uint32(c.instoffset)); x != 0 && y != 0 { return C_RCON2S } } return C_LCON case obj.NAME_EXTERN, obj.NAME_GOTREF, obj.NAME_STATIC: s := a.Sym if s == nil { break } c.instoffset = 0 // s.b. unused but just in case return C_LCONADDR case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } c.instoffset = c.autosize + a.Offset return c.aconsize() case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = c.autosize + a.Offset + 4 return c.aconsize() } return C_GOK case obj.TYPE_BRANCH: return C_SBRA } return C_GOK } func (c *ctxt5) aconsize() int { if immrot(uint32(c.instoffset)) != 0 { return C_RACON } if immrot(uint32(-c.instoffset)) != 0 { return C_RACON } return C_LACON } func (c *ctxt5) oplook(p *obj.Prog) *Optab { a1 := int(p.Optab) if a1 != 0 { return &optab[a1-1] } a1 = int(p.From.Class) if a1 == 0 { a1 = c.aclass(&p.From) + 1 p.From.Class = int8(a1) } a1-- a3 := int(p.To.Class) if a3 == 0 { a3 = c.aclass(&p.To) + 1 p.To.Class = int8(a3) } a3-- a2 := C_NONE if p.Reg != 0 { switch { case REG_F0 <= p.Reg && p.Reg <= REG_F15: a2 = C_FREG case REG_R0 <= p.Reg && p.Reg <= REG_R15: a2 = C_REG default: c.ctxt.Diag("invalid register in %v", p) } } // check illegal base register switch a1 { case C_SOREG, C_LOREG, C_HOREG, C_FOREG, C_ROREG, C_HFOREG, C_SROREG, C_SHIFTADDR: if p.From.Reg < REG_R0 || REG_R15 < p.From.Reg { c.ctxt.Diag("illegal base register: %v", p) } default: } switch a3 { case C_SOREG, C_LOREG, C_HOREG, C_FOREG, C_ROREG, C_HFOREG, C_SROREG, C_SHIFTADDR: if p.To.Reg < REG_R0 || REG_R15 < p.To.Reg { c.ctxt.Diag("illegal base register: %v", p) } default: } // If current instruction has a .S suffix (flags update), // we must use the constant pool instead of splitting it. if (a1 == C_RCON2A || a1 == C_RCON2S) && p.Scond&C_SBIT != 0 { a1 = C_LCON } if (a3 == C_RCON2A || a3 == C_RCON2S) && p.Scond&C_SBIT != 0 { a3 = C_LCON } if false { /*debug['O']*/ fmt.Printf("oplook %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3)) fmt.Printf("\t\t%d %d\n", p.From.Type, p.To.Type) } ops := oprange[p.As&obj.AMask] c1 := &xcmp[a1] c3 := &xcmp[a3] for i := range ops { op := &ops[i] if int(op.a2) == a2 && c1[op.a1] && c3[op.a3] { p.Optab = uint16(cap(optab) - cap(ops) + i + 1) checkSuffix(c, p, op) return op } } c.ctxt.Diag("illegal combination %v; %v %v %v; from %d %d; to %d %d", p, DRconv(a1), DRconv(a2), DRconv(a3), p.From.Type, p.From.Name, p.To.Type, p.To.Name) if ops == nil { ops = optab } return &ops[0] } func cmp(a int, b int) bool { if a == b { return true } switch a { case C_LCON: if b == C_RCON || b == C_NCON || b == C_SCON || b == C_RCON2A || b == C_RCON2S { return true } case C_LACON: if b == C_RACON { return true } case C_LFCON: if b == C_ZFCON || b == C_SFCON { return true } case C_HFAUTO: return b == C_HAUTO || b == C_FAUTO case C_FAUTO, C_HAUTO: return b == C_HFAUTO case C_SAUTO: return cmp(C_HFAUTO, b) case C_LAUTO: return cmp(C_SAUTO, b) case C_HFOREG: return b == C_HOREG || b == C_FOREG case C_FOREG, C_HOREG: return b == C_HFOREG case C_SROREG: return cmp(C_SOREG, b) || cmp(C_ROREG, b) case C_SOREG, C_ROREG: return b == C_SROREG || cmp(C_HFOREG, b) case C_LOREG: return cmp(C_SROREG, b) case C_LBRA: if b == C_SBRA { return true } case C_HREG: return cmp(C_SP, b) || cmp(C_PC, b) } return false } type ocmp []Optab func (x ocmp) Len() int { return len(x) } func (x ocmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x ocmp) Less(i, j int) bool { p1 := &x[i] p2 := &x[j] n := int(p1.as) - int(p2.as) if n != 0 { return n < 0 } n = int(p1.a1) - int(p2.a1) if n != 0 { return n < 0 } n = int(p1.a2) - int(p2.a2) if n != 0 { return n < 0 } n = int(p1.a3) - int(p2.a3) if n != 0 { return n < 0 } return false } func opset(a, b0 obj.As) { oprange[a&obj.AMask] = oprange[b0] } func buildop(ctxt *obj.Link) { if oprange[AAND&obj.AMask] != nil { // Already initialized; stop now. // This happens in the cmd/asm tests, // each of which re-initializes the arch. return } deferreturn = ctxt.Lookup("runtime.deferreturn") symdiv = ctxt.Lookup("runtime._div") symdivu = ctxt.Lookup("runtime._divu") symmod = ctxt.Lookup("runtime._mod") symmodu = ctxt.Lookup("runtime._modu") var n int for i := 0; i < C_GOK; i++ { for n = 0; n < C_GOK; n++ { if cmp(n, i) { xcmp[i][n] = true } } } for n = 0; optab[n].as != obj.AXXX; n++ { if optab[n].flag&LPCREL != 0 { if ctxt.Flag_shared { optab[n].size += int8(optab[n].pcrelsiz) } else { optab[n].flag &^= LPCREL } } } sort.Sort(ocmp(optab[:n])) for i := 0; i < n; i++ { r := optab[i].as r0 := r & obj.AMask start := i for optab[i].as == r { i++ } oprange[r0] = optab[start:i] i-- switch r { default: ctxt.Diag("unknown op in build: %v", r) ctxt.DiagFlush() log.Fatalf("bad code") case AADD: opset(ASUB, r0) opset(ARSB, r0) opset(AADC, r0) opset(ASBC, r0) opset(ARSC, r0) case AORR: opset(AEOR, r0) opset(ABIC, r0) case ACMP: opset(ATEQ, r0) opset(ACMN, r0) opset(ATST, r0) case AMVN: break case ABEQ: opset(ABNE, r0) opset(ABCS, r0) opset(ABHS, r0) opset(ABCC, r0) opset(ABLO, r0) opset(ABMI, r0) opset(ABPL, r0) opset(ABVS, r0) opset(ABVC, r0) opset(ABHI, r0) opset(ABLS, r0) opset(ABGE, r0) opset(ABLT, r0) opset(ABGT, r0) opset(ABLE, r0) case ASLL: opset(ASRL, r0) opset(ASRA, r0) case AMUL: opset(AMULU, r0) case ADIV: opset(AMOD, r0) opset(AMODU, r0) opset(ADIVU, r0) case ADIVHW: opset(ADIVUHW, r0) case AMOVW, AMOVB, AMOVBS, AMOVBU, AMOVH, AMOVHS, AMOVHU: break case ASWPW: opset(ASWPBU, r0) case AB, ABL, ABX, ABXRET, obj.ADUFFZERO, obj.ADUFFCOPY, ASWI, AWORD, AMOVM, ARFE, obj.ATEXT: break case AADDF: opset(AADDD, r0) opset(ASUBF, r0) opset(ASUBD, r0) opset(AMULF, r0) opset(AMULD, r0) opset(ANMULF, r0) opset(ANMULD, r0) opset(AMULAF, r0) opset(AMULAD, r0) opset(AMULSF, r0) opset(AMULSD, r0) opset(ANMULAF, r0) opset(ANMULAD, r0) opset(ANMULSF, r0) opset(ANMULSD, r0) opset(AFMULAF, r0) opset(AFMULAD, r0) opset(AFMULSF, r0) opset(AFMULSD, r0) opset(AFNMULAF, r0) opset(AFNMULAD, r0) opset(AFNMULSF, r0) opset(AFNMULSD, r0) opset(ADIVF, r0) opset(ADIVD, r0) case ANEGF: opset(ANEGD, r0) opset(ASQRTF, r0) opset(ASQRTD, r0) opset(AMOVFD, r0) opset(AMOVDF, r0) opset(AABSF, r0) opset(AABSD, r0) case ACMPF: opset(ACMPD, r0) case AMOVF: opset(AMOVD, r0) case AMOVFW: opset(AMOVDW, r0) case AMOVWF: opset(AMOVWD, r0) case AMULL: opset(AMULAL, r0) opset(AMULLU, r0) opset(AMULALU, r0) case AMULWT: opset(AMULWB, r0) opset(AMULBB, r0) opset(AMMUL, r0) case AMULAWT: opset(AMULAWB, r0) opset(AMULABB, r0) opset(AMULS, r0) opset(AMMULA, r0) opset(AMMULS, r0) case ABFX: opset(ABFXU, r0) opset(ABFC, r0) opset(ABFI, r0) case ACLZ: opset(AREV, r0) opset(AREV16, r0) opset(AREVSH, r0) opset(ARBIT, r0) case AXTAB: opset(AXTAH, r0) opset(AXTABU, r0) opset(AXTAHU, r0) case ALDREX, ASTREX, ALDREXD, ASTREXD, APLD, AAND, AMULA, obj.AUNDEF, obj.AFUNCDATA, obj.APCDATA, obj.ANOP, ADATABUNDLE, ADATABUNDLEEND: break } } } func (c *ctxt5) asmout(p *obj.Prog, o *Optab, out []uint32) { c.printp = p o1 := uint32(0) o2 := uint32(0) o3 := uint32(0) o4 := uint32(0) o5 := uint32(0) o6 := uint32(0) if false { /*debug['P']*/ fmt.Printf("%x: %v\ttype %d\n", uint32(p.Pc), p, o.type_) } switch o.type_ { default: c.ctxt.Diag("%v: unknown asm %d", p, o.type_) case 0: /* pseudo ops */ if false { /*debug['G']*/ fmt.Printf("%x: %s: arm\n", uint32(p.Pc), p.From.Sym.Name) } case 1: /* op R,[R],R */ o1 = c.oprrr(p, p.As, int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } if p.As == AMOVB || p.As == AMOVH || p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = rt } o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 2: /* movbu $I,[R],R */ c.aclass(&p.From) o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= uint32(immrot(uint32(c.instoffset))) rt := int(p.To.Reg) r := int(p.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } if p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = rt } o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 106: /* op $I,R,R where I can be decomposed into 2 immediates */ c.aclass(&p.From) r := int(p.Reg) rt := int(p.To.Reg) if r == 0 { r = rt } x, y := immrot2a(uint32(c.instoffset)) var as2 obj.As switch p.As { case AADD, ASUB, AORR, AEOR, ABIC: as2 = p.As // ADD, SUB, ORR, EOR, BIC case ARSB: as2 = AADD // RSB -> RSB/ADD pair case AADC: as2 = AADD // ADC -> ADC/ADD pair case ASBC: as2 = ASUB // SBC -> SBC/SUB pair case ARSC: as2 = AADD // RSC -> RSC/ADD pair default: c.ctxt.Diag("unknown second op for %v", p) } o1 = c.oprrr(p, p.As, int(p.Scond)) o2 = c.oprrr(p, as2, int(p.Scond)) o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 o2 |= (uint32(rt)&15)<<16 | (uint32(rt)&15)<<12 o1 |= x o2 |= y case 107: /* op $I,R,R where I can be decomposed into 2 immediates */ c.aclass(&p.From) r := int(p.Reg) rt := int(p.To.Reg) if r == 0 { r = rt } y, x := immrot2s(uint32(c.instoffset)) var as2 obj.As switch p.As { case AADD: as2 = ASUB // ADD -> ADD/SUB pair case ASUB: as2 = AADD // SUB -> SUB/ADD pair case ARSB: as2 = ASUB // RSB -> RSB/SUB pair case AADC: as2 = ASUB // ADC -> ADC/SUB pair case ASBC: as2 = AADD // SBC -> SBC/ADD pair case ARSC: as2 = ASUB // RSC -> RSC/SUB pair default: c.ctxt.Diag("unknown second op for %v", p) } o1 = c.oprrr(p, p.As, int(p.Scond)) o2 = c.oprrr(p, as2, int(p.Scond)) o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 o2 |= (uint32(rt)&15)<<16 | (uint32(rt)&15)<<12 o1 |= y o2 |= x case 3: /* add R<<[IR],[R],R */ o1 = c.mov(p) case 4: /* MOVW $off(R), R -> add $off,[R],R */ c.aclass(&p.From) if c.instoffset < 0 { o1 = c.oprrr(p, ASUB, int(p.Scond)) o1 |= uint32(immrot(uint32(-c.instoffset))) } else { o1 = c.oprrr(p, AADD, int(p.Scond)) o1 |= uint32(immrot(uint32(c.instoffset))) } r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 |= (uint32(r) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 case 5: /* bra s */ o1 = c.opbra(p, p.As, int(p.Scond)) v := int32(-8) if p.To.Sym != nil { rel := obj.Addrel(c.cursym) rel.Off = int32(c.pc) rel.Siz = 4 rel.Sym = p.To.Sym v += int32(p.To.Offset) rel.Add = int64(o1) | (int64(v)>>2)&0xffffff rel.Type = objabi.R_CALLARM break } if p.Pcond != nil { v = int32((p.Pcond.Pc - c.pc) - 8) } o1 |= (uint32(v) >> 2) & 0xffffff case 6: /* b ,O(R) -> add $O,R,PC */ c.aclass(&p.To) o1 = c.oprrr(p, AADD, int(p.Scond)) o1 |= uint32(immrot(uint32(c.instoffset))) o1 |= (uint32(p.To.Reg) & 15) << 16 o1 |= (REGPC & 15) << 12 case 7: /* bl (R) -> blx R */ c.aclass(&p.To) if c.instoffset != 0 { c.ctxt.Diag("%v: doesn't support BL offset(REG) with non-zero offset %d", p, c.instoffset) } o1 = c.oprrr(p, ABL, int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 0 rel := obj.Addrel(c.cursym) rel.Off = int32(c.pc) rel.Siz = 0 rel.Type = objabi.R_CALLIND case 8: /* sll $c,[R],R -> mov (R<<$c),R */ c.aclass(&p.From) o1 = c.oprrr(p, p.As, int(p.Scond)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o1 |= (uint32(r) & 15) << 0 o1 |= uint32((c.instoffset & 31) << 7) o1 |= (uint32(p.To.Reg) & 15) << 12 case 9: /* sll R,[R],R -> mov (R<<R),R */ o1 = c.oprrr(p, p.As, int(p.Scond)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o1 |= (uint32(r) & 15) << 0 o1 |= (uint32(p.From.Reg)&15)<<8 | 1<<4 o1 |= (uint32(p.To.Reg) & 15) << 12 case 10: /* swi [$con] */ o1 = c.oprrr(p, p.As, int(p.Scond)) if p.To.Type != obj.TYPE_NONE { c.aclass(&p.To) o1 |= uint32(c.instoffset & 0xffffff) } case 11: /* word */ c.aclass(&p.To) o1 = uint32(c.instoffset) if p.To.Sym != nil { // This case happens with words generated // in the PC stream as part of the literal pool (c.pool). rel := obj.Addrel(c.cursym) rel.Off = int32(c.pc) rel.Siz = 4 rel.Sym = p.To.Sym rel.Add = p.To.Offset if c.ctxt.Flag_shared { if p.To.Name == obj.NAME_GOTREF { rel.Type = objabi.R_GOTPCREL } else { rel.Type = objabi.R_PCREL } rel.Add += c.pc - p.Rel.Pc - 8 } else { rel.Type = objabi.R_ADDR } o1 = 0 } case 12: /* movw $lcon, reg */ if o.a1 == C_SCON { o1 = c.omvs(p, &p.From, int(p.To.Reg)) } else if p.As == AMVN { o1 = c.omvr(p, &p.From, int(p.To.Reg)) } else { o1 = c.omvl(p, &p.From, int(p.To.Reg)) } if o.flag&LPCREL != 0 { o2 = c.oprrr(p, AADD, int(p.Scond)) | (uint32(p.To.Reg)&15)<<0 | (REGPC&15)<<16 | (uint32(p.To.Reg)&15)<<12 } case 13: /* op $lcon, [R], R */ if o.a1 == C_SCON { o1 = c.omvs(p, &p.From, REGTMP) } else { o1 = c.omvl(p, &p.From, REGTMP) } if o1 == 0 { break } o2 = c.oprrr(p, p.As, int(p.Scond)) o2 |= REGTMP & 15 r := int(p.Reg) if p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = int(p.To.Reg) } o2 |= (uint32(r) & 15) << 16 if p.To.Type != obj.TYPE_NONE { o2 |= (uint32(p.To.Reg) & 15) << 12 } case 14: /* movb/movbu/movh/movhu R,R */ o1 = c.oprrr(p, ASLL, int(p.Scond)) if p.As == AMOVBU || p.As == AMOVHU { o2 = c.oprrr(p, ASRL, int(p.Scond)) } else { o2 = c.oprrr(p, ASRA, int(p.Scond)) } r := int(p.To.Reg) o1 |= (uint32(p.From.Reg)&15)<<0 | (uint32(r)&15)<<12 o2 |= uint32(r)&15 | (uint32(r)&15)<<12 if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU { o1 |= 24 << 7 o2 |= 24 << 7 } else { o1 |= 16 << 7 o2 |= 16 << 7 } case 15: /* mul r,[r,]r */ o1 = c.oprrr(p, p.As, int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if r == 0 { r = rt } if rt == r { r = rf rf = rt } if false { if rt == r || rf == REGPC&15 || r == REGPC&15 || rt == REGPC&15 { c.ctxt.Diag("%v: bad registers in MUL", p) } } o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16 case 16: /* div r,[r,]r */ o1 = 0xf << 28 o2 = 0 case 17: o1 = c.oprrr(p, p.As, int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) rt2 := int(p.To.Offset) r := int(p.Reg) o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16 | (uint32(rt2)&15)<<12 case 18: /* BFX/BFXU/BFC/BFI */ o1 = c.oprrr(p, p.As, int(p.Scond)) rt := int(p.To.Reg) r := int(p.Reg) if r == 0 { r = rt } else if p.As == ABFC { // only "BFC $width, $lsb, Reg" is accepted, p.Reg must be 0 c.ctxt.Diag("illegal combination: %v", p) } if p.GetFrom3() == nil || p.GetFrom3().Type != obj.TYPE_CONST { c.ctxt.Diag("%v: missing or wrong LSB", p) break } lsb := p.GetFrom3().Offset width := p.From.Offset if lsb < 0 || lsb > 31 || width <= 0 || (lsb+width) > 32 { c.ctxt.Diag("%v: wrong width or LSB", p) } switch p.As { case ABFX, ABFXU: // (width-1) is encoded o1 |= (uint32(r)&15)<<0 | (uint32(rt)&15)<<12 | uint32(lsb)<<7 | uint32(width-1)<<16 case ABFC, ABFI: // MSB is encoded o1 |= (uint32(r)&15)<<0 | (uint32(rt)&15)<<12 | uint32(lsb)<<7 | uint32(lsb+width-1)<<16 default: c.ctxt.Diag("illegal combination: %v", p) } case 20: /* mov/movb/movbu R,O(R) */ c.aclass(&p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } o1 = c.osr(p.As, int(p.From.Reg), int32(c.instoffset), r, int(p.Scond)) case 21: /* mov/movbu O(R),R -> lr */ c.aclass(&p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 = c.olr(int32(c.instoffset), r, int(p.To.Reg), int(p.Scond)) if p.As != AMOVW { o1 |= 1 << 22 } case 22: /* XTAB R@>i, [R], R */ o1 = c.oprrr(p, p.As, int(p.Scond)) switch p.From.Offset &^ 0xf { // only 0/8/16/24 bits rotation is accepted case SHIFT_RR, SHIFT_RR | 8<<7, SHIFT_RR | 16<<7, SHIFT_RR | 24<<7: o1 |= uint32(p.From.Offset) & 0xc0f default: c.ctxt.Diag("illegal shift: %v", p) } rt := p.To.Reg r := p.Reg if r == 0 { r = rt } o1 |= (uint32(rt)&15)<<12 | (uint32(r)&15)<<16 case 23: /* MOVW/MOVB/MOVH R@>i, R */ switch p.As { case AMOVW: o1 = c.mov(p) case AMOVBU, AMOVBS, AMOVB, AMOVHU, AMOVHS, AMOVH: o1 = c.movxt(p) default: c.ctxt.Diag("illegal combination: %v", p) } case 30: /* mov/movb/movbu R,L(R) */ o1 = c.omvl(p, &p.To, REGTMP) if o1 == 0 { break } r := int(p.To.Reg) if r == 0 { r = int(o.param) } o2 = c.osrr(int(p.From.Reg), REGTMP&15, r, int(p.Scond)) if p.As != AMOVW { o2 |= 1 << 22 } case 31: /* mov/movbu L(R),R -> lr[b] */ o1 = c.omvl(p, &p.From, REGTMP) if o1 == 0 { break } r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 = c.olrr(REGTMP&15, r, int(p.To.Reg), int(p.Scond)) if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB { o2 |= 1 << 22 } case 34: /* mov $lacon,R */ o1 = c.omvl(p, &p.From, REGTMP) if o1 == 0 { break } o2 = c.oprrr(p, AADD, int(p.Scond)) o2 |= REGTMP & 15 r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 |= (uint32(r) & 15) << 16 if p.To.Type != obj.TYPE_NONE { o2 |= (uint32(p.To.Reg) & 15) << 12 } case 35: /* mov PSR,R */ o1 = 2<<23 | 0xf<<16 | 0<<0 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(p.From.Reg) & 1) << 22 o1 |= (uint32(p.To.Reg) & 15) << 12 case 36: /* mov R,PSR */ o1 = 2<<23 | 0x2cf<<12 | 0<<4 if p.Scond&C_FBIT != 0 { o1 ^= 0x010 << 12 } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(p.To.Reg) & 1) << 22 o1 |= (uint32(p.From.Reg) & 15) << 0 case 37: /* mov $con,PSR */ c.aclass(&p.From) o1 = 2<<23 | 0x2cf<<12 | 0<<4 if p.Scond&C_FBIT != 0 { o1 ^= 0x010 << 12 } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= uint32(immrot(uint32(c.instoffset))) o1 |= (uint32(p.To.Reg) & 1) << 22 o1 |= (uint32(p.From.Reg) & 15) << 0 case 38, 39: switch o.type_ { case 38: /* movm $con,oreg -> stm */ o1 = 0x4 << 25 o1 |= uint32(p.From.Offset & 0xffff) o1 |= (uint32(p.To.Reg) & 15) << 16 c.aclass(&p.To) case 39: /* movm oreg,$con -> ldm */ o1 = 0x4<<25 | 1<<20 o1 |= uint32(p.To.Offset & 0xffff) o1 |= (uint32(p.From.Reg) & 15) << 16 c.aclass(&p.From) } if c.instoffset != 0 { c.ctxt.Diag("offset must be zero in MOVM; %v", p) } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 if p.Scond&C_PBIT != 0 { o1 |= 1 << 24 } if p.Scond&C_UBIT != 0 { o1 |= 1 << 23 } if p.Scond&C_WBIT != 0 { o1 |= 1 << 21 } case 40: /* swp oreg,reg,reg */ c.aclass(&p.From) if c.instoffset != 0 { c.ctxt.Diag("offset must be zero in SWP") } o1 = 0x2<<23 | 0x9<<4 if p.As != ASWPW { o1 |= 1 << 22 } o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 41: /* rfe -> movm.s.w.u 0(r13),[r15] */ o1 = 0xe8fd8000 case 50: /* floating point store */ v := c.regoff(&p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } o1 = c.ofsr(p.As, int(p.From.Reg), v, r, int(p.Scond), p) case 51: /* floating point load */ v := c.regoff(&p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 = c.ofsr(p.As, int(p.To.Reg), v, r, int(p.Scond), p) | 1<<20 case 52: /* floating point store, int32 offset UGLY */ o1 = c.omvl(p, &p.To, REGTMP) if o1 == 0 { break } r := int(p.To.Reg) if r == 0 { r = int(o.param) } o2 = c.oprrr(p, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0 o3 = c.ofsr(p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond), p) case 53: /* floating point load, int32 offset UGLY */ o1 = c.omvl(p, &p.From, REGTMP) if o1 == 0 { break } r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 = c.oprrr(p, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0 o3 = c.ofsr(p.As, int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20 case 54: /* floating point arith */ o1 = c.oprrr(p, p.As, int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if r == 0 { switch p.As { case AMULAD, AMULAF, AMULSF, AMULSD, ANMULAF, ANMULAD, ANMULSF, ANMULSD, AFMULAD, AFMULAF, AFMULSF, AFMULSD, AFNMULAF, AFNMULAD, AFNMULSF, AFNMULSD: c.ctxt.Diag("illegal combination: %v", p) default: r = rt } } o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 55: /* negf freg, freg */ o1 = c.oprrr(p, p.As, int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) o1 |= (uint32(rf)&15)<<0 | (uint32(rt)&15)<<12 case 56: /* move to FP[CS]R */ o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xee1<<16 | 0xa1<<4 o1 |= (uint32(p.From.Reg) & 15) << 12 case 57: /* move from FP[CS]R */ o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xef1<<16 | 0xa1<<4 o1 |= (uint32(p.To.Reg) & 15) << 12 case 58: /* movbu R,R */ o1 = c.oprrr(p, AAND, int(p.Scond)) o1 |= uint32(immrot(0xff)) rt := int(p.To.Reg) r := int(p.From.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } if r == 0 { r = rt } o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 case 59: /* movw/bu R<<I(R),R -> ldr indexed */ if p.From.Reg == 0 { c.ctxt.Diag("source operand is not a memory address: %v", p) break } if p.From.Offset&(1<<4) != 0 { c.ctxt.Diag("bad shift in LDR") break } o1 = c.olrr(int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond)) if p.As == AMOVBU { o1 |= 1 << 22 } case 60: /* movb R(R),R -> ldrsb indexed */ if p.From.Reg == 0 { c.ctxt.Diag("source operand is not a memory address: %v", p) break } if p.From.Offset&(^0xf) != 0 { c.ctxt.Diag("bad shift: %v", p) break } o1 = c.olhrr(int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond)) switch p.As { case AMOVB, AMOVBS: o1 ^= 1<<5 | 1<<6 case AMOVH, AMOVHS: o1 ^= 1 << 6 default: } if p.Scond&C_UBIT != 0 { o1 &^= 1 << 23 } case 61: /* movw/b/bu R,R<<[IR](R) -> str indexed */ if p.To.Reg == 0 { c.ctxt.Diag("MOV to shifter operand") } o1 = c.osrr(int(p.From.Reg), int(p.To.Offset), int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU { o1 |= 1 << 22 } case 62: /* MOVH/MOVHS/MOVHU Reg, Reg<<0(Reg) -> strh */ if p.To.Reg == 0 { c.ctxt.Diag("MOV to shifter operand") } if p.To.Offset&(^0xf) != 0 { c.ctxt.Diag("bad shift: %v", p) } o1 = c.olhrr(int(p.To.Offset), int(p.To.Reg), int(p.From.Reg), int(p.Scond)) o1 ^= 1 << 20 if p.Scond&C_UBIT != 0 { o1 &^= 1 << 23 } /* reloc ops */ case 64: /* mov/movb/movbu R,addr */ o1 = c.omvl(p, &p.To, REGTMP) if o1 == 0 { break } o2 = c.osr(p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond)) if o.flag&LPCREL != 0 { o3 = o2 o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 65: /* mov/movbu addr,R */ o1 = c.omvl(p, &p.From, REGTMP) if o1 == 0 { break } o2 = c.olr(0, REGTMP, int(p.To.Reg), int(p.Scond)) if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB { o2 |= 1 << 22 } if o.flag&LPCREL != 0 { o3 = o2 o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 101: /* movw tlsvar,R, local exec*/ o1 = c.omvl(p, &p.From, int(p.To.Reg)) case 102: /* movw tlsvar,R, initial exec*/ o1 = c.omvl(p, &p.From, int(p.To.Reg)) o2 = c.olrr(int(p.To.Reg)&15, (REGPC & 15), int(p.To.Reg), int(p.Scond)) case 103: /* word tlsvar, local exec */ if p.To.Sym == nil { c.ctxt.Diag("nil sym in tls %v", p) } if p.To.Offset != 0 { c.ctxt.Diag("offset against tls var in %v", p) } // This case happens with words generated in the PC stream as part of // the literal c.pool. rel := obj.Addrel(c.cursym) rel.Off = int32(c.pc) rel.Siz = 4 rel.Sym = p.To.Sym rel.Type = objabi.R_TLS_LE o1 = 0 case 104: /* word tlsvar, initial exec */ if p.To.Sym == nil { c.ctxt.Diag("nil sym in tls %v", p) } if p.To.Offset != 0 { c.ctxt.Diag("offset against tls var in %v", p) } rel := obj.Addrel(c.cursym) rel.Off = int32(c.pc) rel.Siz = 4 rel.Sym = p.To.Sym rel.Type = objabi.R_TLS_IE rel.Add = c.pc - p.Rel.Pc - 8 - int64(rel.Siz) case 68: /* floating point store -> ADDR */ o1 = c.omvl(p, &p.To, REGTMP) if o1 == 0 { break } o2 = c.ofsr(p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond), p) if o.flag&LPCREL != 0 { o3 = o2 o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 69: /* floating point load <- ADDR */ o1 = c.omvl(p, &p.From, REGTMP) if o1 == 0 { break } o2 = c.ofsr(p.As, int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20 if o.flag&LPCREL != 0 { o3 = o2 o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } /* ArmV4 ops: */ case 70: /* movh/movhu R,O(R) -> strh */ c.aclass(&p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } o1 = c.oshr(int(p.From.Reg), int32(c.instoffset), r, int(p.Scond)) case 71: /* movb/movh/movhu O(R),R -> ldrsb/ldrsh/ldrh */ c.aclass(&p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 = c.olhr(int32(c.instoffset), r, int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS { o1 ^= 1<<5 | 1<<6 } else if p.As == AMOVH || p.As == AMOVHS { o1 ^= (1 << 6) } case 72: /* movh/movhu R,L(R) -> strh */ o1 = c.omvl(p, &p.To, REGTMP) if o1 == 0 { break } r := int(p.To.Reg) if r == 0 { r = int(o.param) } o2 = c.oshrr(int(p.From.Reg), REGTMP&15, r, int(p.Scond)) case 73: /* movb/movh/movhu L(R),R -> ldrsb/ldrsh/ldrh */ o1 = c.omvl(p, &p.From, REGTMP) if o1 == 0 { break } r := int(p.From.Reg) if r == 0 { r = int(o.param) } o2 = c.olhrr(REGTMP&15, r, int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS { o2 ^= 1<<5 | 1<<6 } else if p.As == AMOVH || p.As == AMOVHS { o2 ^= (1 << 6) } case 74: /* bx $I */ c.ctxt.Diag("ABX $I") case 75: /* bx O(R) */ c.aclass(&p.To) if c.instoffset != 0 { c.ctxt.Diag("non-zero offset in ABX") } /* o1 = c.oprrr(p, AADD, p->scond) | immrot(0) | ((REGPC&15)<<16) | ((REGLINK&15)<<12); // mov PC, LR o2 = (((p->scond&C_SCOND) ^ C_SCOND_XOR)<<28) | (0x12fff<<8) | (1<<4) | ((p->to.reg&15) << 0); // BX R */ // p->to.reg may be REGLINK o1 = c.oprrr(p, AADD, int(p.Scond)) o1 |= uint32(immrot(uint32(c.instoffset))) o1 |= (uint32(p.To.Reg) & 15) << 16 o1 |= (REGTMP & 15) << 12 o2 = c.oprrr(p, AADD, int(p.Scond)) | uint32(immrot(0)) | (REGPC&15)<<16 | (REGLINK&15)<<12 // mov PC, LR o3 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x12fff<<8 | 1<<4 | REGTMP&15 // BX Rtmp case 76: /* bx O(R) when returning from fn*/ c.ctxt.Diag("ABXRET") case 77: /* ldrex oreg,reg */ c.aclass(&p.From) if c.instoffset != 0 { c.ctxt.Diag("offset must be zero in LDREX") } o1 = 0x19<<20 | 0xf9f o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 78: /* strex reg,oreg,reg */ c.aclass(&p.From) if c.instoffset != 0 { c.ctxt.Diag("offset must be zero in STREX") } if p.To.Reg == p.From.Reg || p.To.Reg == p.Reg { c.ctxt.Diag("cannot use same register as both source and destination: %v", p) } o1 = 0x18<<20 | 0xf90 o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 80: /* fmov zfcon,freg */ if p.As == AMOVD { o1 = 0xeeb00b00 // VMOV imm 64 o2 = c.oprrr(p, ASUBD, int(p.Scond)) } else { o1 = 0x0eb00a00 // VMOV imm 32 o2 = c.oprrr(p, ASUBF, int(p.Scond)) } v := int32(0x70) // 1.0 r := (int(p.To.Reg) & 15) << 0 // movf $1.0, r o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(r) & 15) << 12 o1 |= (uint32(v) & 0xf) << 0 o1 |= (uint32(v) & 0xf0) << 12 // subf r,r,r o2 |= (uint32(r)&15)<<0 | (uint32(r)&15)<<16 | (uint32(r)&15)<<12 case 81: /* fmov sfcon,freg */ o1 = 0x0eb00a00 // VMOV imm 32 if p.As == AMOVD { o1 = 0xeeb00b00 // VMOV imm 64 } o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= (uint32(p.To.Reg) & 15) << 12 v := int32(c.chipfloat5(p.From.Val.(float64))) o1 |= (uint32(v) & 0xf) << 0 o1 |= (uint32(v) & 0xf0) << 12 case 82: /* fcmp freg,freg, */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.Reg)&15)<<12 | (uint32(p.From.Reg)&15)<<0 o2 = 0x0ef1fa10 // VMRS R15 o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 83: /* fcmp freg,, */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.From.Reg)&15)<<12 | 1<<16 o2 = 0x0ef1fa10 // VMRS R15 o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 84: /* movfw freg,freg - truncate float-to-fix */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 case 85: /* movwf freg,freg - fix-to-float */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 // macro for movfw freg,FTMP; movw FTMP,reg case 86: /* movfw freg,reg - truncate float-to-fix */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 0 o1 |= (FREGTMP & 15) << 12 o2 = c.oprrr(p, -AMOVFW, int(p.Scond)) o2 |= (FREGTMP & 15) << 16 o2 |= (uint32(p.To.Reg) & 15) << 12 // macro for movw reg,FTMP; movwf FTMP,freg case 87: /* movwf reg,freg - fix-to-float */ o1 = c.oprrr(p, -AMOVWF, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 12 o1 |= (FREGTMP & 15) << 16 o2 = c.oprrr(p, p.As, int(p.Scond)) o2 |= (FREGTMP & 15) << 0 o2 |= (uint32(p.To.Reg) & 15) << 12 case 88: /* movw reg,freg */ o1 = c.oprrr(p, -AMOVWF, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 12 o1 |= (uint32(p.To.Reg) & 15) << 16 case 89: /* movw freg,reg */ o1 = c.oprrr(p, -AMOVFW, int(p.Scond)) o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 case 91: /* ldrexd oreg,reg */ c.aclass(&p.From) if c.instoffset != 0 { c.ctxt.Diag("offset must be zero in LDREX") } o1 = 0x1b<<20 | 0xf9f o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 92: /* strexd reg,oreg,reg */ c.aclass(&p.From) if c.instoffset != 0 { c.ctxt.Diag("offset must be zero in STREX") } if p.Reg&1 != 0 { c.ctxt.Diag("source register must be even in STREXD: %v", p) } if p.To.Reg == p.From.Reg || p.To.Reg == p.Reg || p.To.Reg == p.Reg+1 { c.ctxt.Diag("cannot use same register as both source and destination: %v", p) } o1 = 0x1a<<20 | 0xf90 o1 |= (uint32(p.From.Reg) & 15) << 16 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 case 93: /* movb/movh/movhu addr,R -> ldrsb/ldrsh/ldrh */ o1 = c.omvl(p, &p.From, REGTMP) if o1 == 0 { break } o2 = c.olhr(0, REGTMP, int(p.To.Reg), int(p.Scond)) if p.As == AMOVB || p.As == AMOVBS { o2 ^= 1<<5 | 1<<6 } else if p.As == AMOVH || p.As == AMOVHS { o2 ^= (1 << 6) } if o.flag&LPCREL != 0 { o3 = o2 o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 94: /* movh/movhu R,addr -> strh */ o1 = c.omvl(p, &p.To, REGTMP) if o1 == 0 { break } o2 = c.oshr(int(p.From.Reg), 0, REGTMP, int(p.Scond)) if o.flag&LPCREL != 0 { o3 = o2 o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12 } case 95: /* PLD off(reg) */ o1 = 0xf5d0f000 o1 |= (uint32(p.From.Reg) & 15) << 16 if p.From.Offset < 0 { o1 &^= (1 << 23) o1 |= uint32((-p.From.Offset) & 0xfff) } else { o1 |= uint32(p.From.Offset & 0xfff) } // This is supposed to be something that stops execution. // It's not supposed to be reached, ever, but if it is, we'd // like to be able to tell how we got there. Assemble as // 0xf7fabcfd which is guaranteed to raise undefined instruction // exception. case 96: /* UNDEF */ o1 = 0xf7fabcfd case 97: /* CLZ Rm, Rd */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 12 o1 |= (uint32(p.From.Reg) & 15) << 0 case 98: /* MULW{T,B} Rs, Rm, Rd */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 16 o1 |= (uint32(p.From.Reg) & 15) << 8 o1 |= (uint32(p.Reg) & 15) << 0 case 99: /* MULAW{T,B} Rs, Rm, Rn, Rd */ o1 = c.oprrr(p, p.As, int(p.Scond)) o1 |= (uint32(p.To.Reg) & 15) << 16 o1 |= (uint32(p.From.Reg) & 15) << 8 o1 |= (uint32(p.Reg) & 15) << 0 o1 |= uint32((p.To.Offset & 15) << 12) // DATABUNDLE: BKPT $0x5be0, signify the start of NaCl data bundle; // DATABUNDLEEND: zero width alignment marker case 100: if p.As == ADATABUNDLE { o1 = 0xe125be70 } case 105: /* divhw r,[r,]r */ o1 = c.oprrr(p, p.As, int(p.Scond)) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if r == 0 { r = rt } o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16 } out[0] = o1 out[1] = o2 out[2] = o3 out[3] = o4 out[4] = o5 out[5] = o6 return } func (c *ctxt5) movxt(p *obj.Prog) uint32 { o1 := ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 switch p.As { case AMOVB, AMOVBS: o1 |= 0x6af<<16 | 0x7<<4 case AMOVH, AMOVHS: o1 |= 0x6bf<<16 | 0x7<<4 case AMOVBU: o1 |= 0x6ef<<16 | 0x7<<4 case AMOVHU: o1 |= 0x6ff<<16 | 0x7<<4 default: c.ctxt.Diag("illegal combination: %v", p) } switch p.From.Offset &^ 0xf { // only 0/8/16/24 bits rotation is accepted case SHIFT_RR, SHIFT_RR | 8<<7, SHIFT_RR | 16<<7, SHIFT_RR | 24<<7: o1 |= uint32(p.From.Offset) & 0xc0f default: c.ctxt.Diag("illegal shift: %v", p) } o1 |= (uint32(p.To.Reg) & 15) << 12 return o1 } func (c *ctxt5) mov(p *obj.Prog) uint32 { c.aclass(&p.From) o1 := c.oprrr(p, p.As, int(p.Scond)) o1 |= uint32(p.From.Offset) rt := int(p.To.Reg) if p.To.Type == obj.TYPE_NONE { rt = 0 } r := int(p.Reg) if p.As == AMOVW || p.As == AMVN { r = 0 } else if r == 0 { r = rt } o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12 return o1 } func (c *ctxt5) oprrr(p *obj.Prog, a obj.As, sc int) uint32 { o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_SBIT != 0 { o |= 1 << 20 } switch a { case ADIVHW: return o | 0x71<<20 | 0xf<<12 | 0x1<<4 case ADIVUHW: return o | 0x73<<20 | 0xf<<12 | 0x1<<4 case AMMUL: return o | 0x75<<20 | 0xf<<12 | 0x1<<4 case AMULS: return o | 0x6<<20 | 0x9<<4 case AMMULA: return o | 0x75<<20 | 0x1<<4 case AMMULS: return o | 0x75<<20 | 0xd<<4 case AMULU, AMUL: return o | 0x0<<21 | 0x9<<4 case AMULA: return o | 0x1<<21 | 0x9<<4 case AMULLU: return o | 0x4<<21 | 0x9<<4 case AMULL: return o | 0x6<<21 | 0x9<<4 case AMULALU: return o | 0x5<<21 | 0x9<<4 case AMULAL: return o | 0x7<<21 | 0x9<<4 case AAND: return o | 0x0<<21 case AEOR: return o | 0x1<<21 case ASUB: return o | 0x2<<21 case ARSB: return o | 0x3<<21 case AADD: return o | 0x4<<21 case AADC: return o | 0x5<<21 case ASBC: return o | 0x6<<21 case ARSC: return o | 0x7<<21 case ATST: return o | 0x8<<21 | 1<<20 case ATEQ: return o | 0x9<<21 | 1<<20 case ACMP: return o | 0xa<<21 | 1<<20 case ACMN: return o | 0xb<<21 | 1<<20 case AORR: return o | 0xc<<21 case AMOVB, AMOVH, AMOVW: if sc&(C_PBIT|C_WBIT) != 0 { c.ctxt.Diag("invalid .P/.W suffix: %v", p) } return o | 0xd<<21 case ABIC: return o | 0xe<<21 case AMVN: return o | 0xf<<21 case ASLL: return o | 0xd<<21 | 0<<5 case ASRL: return o | 0xd<<21 | 1<<5 case ASRA: return o | 0xd<<21 | 2<<5 case ASWI: return o | 0xf<<24 case AADDD: return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 0<<4 case AADDF: return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 0<<4 case ASUBD: return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 4<<4 case ASUBF: return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 4<<4 case AMULD: return o | 0xe<<24 | 0x2<<20 | 0xb<<8 | 0<<4 case AMULF: return o | 0xe<<24 | 0x2<<20 | 0xa<<8 | 0<<4 case ANMULD: return o | 0xe<<24 | 0x2<<20 | 0xb<<8 | 0x4<<4 case ANMULF: return o | 0xe<<24 | 0x2<<20 | 0xa<<8 | 0x4<<4 case AMULAD: return o | 0xe<<24 | 0xb<<8 case AMULAF: return o | 0xe<<24 | 0xa<<8 case AMULSD: return o | 0xe<<24 | 0xb<<8 | 0x4<<4 case AMULSF: return o | 0xe<<24 | 0xa<<8 | 0x4<<4 case ANMULAD: return o | 0xe<<24 | 0x1<<20 | 0xb<<8 | 0x4<<4 case ANMULAF: return o | 0xe<<24 | 0x1<<20 | 0xa<<8 | 0x4<<4 case ANMULSD: return o | 0xe<<24 | 0x1<<20 | 0xb<<8 case ANMULSF: return o | 0xe<<24 | 0x1<<20 | 0xa<<8 case AFMULAD: return o | 0xe<<24 | 0xa<<20 | 0xb<<8 case AFMULAF: return o | 0xe<<24 | 0xa<<20 | 0xa<<8 case AFMULSD: return o | 0xe<<24 | 0xa<<20 | 0xb<<8 | 0x4<<4 case AFMULSF: return o | 0xe<<24 | 0xa<<20 | 0xa<<8 | 0x4<<4 case AFNMULAD: return o | 0xe<<24 | 0x9<<20 | 0xb<<8 | 0x4<<4 case AFNMULAF: return o | 0xe<<24 | 0x9<<20 | 0xa<<8 | 0x4<<4 case AFNMULSD: return o | 0xe<<24 | 0x9<<20 | 0xb<<8 case AFNMULSF: return o | 0xe<<24 | 0x9<<20 | 0xa<<8 case ADIVD: return o | 0xe<<24 | 0x8<<20 | 0xb<<8 | 0<<4 case ADIVF: return o | 0xe<<24 | 0x8<<20 | 0xa<<8 | 0<<4 case ASQRTD: return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xb<<8 | 0xc<<4 case ASQRTF: return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xa<<8 | 0xc<<4 case AABSD: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 0xc<<4 case AABSF: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 0xc<<4 case ANEGD: return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xb<<8 | 0x4<<4 case ANEGF: return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xa<<8 | 0x4<<4 case ACMPD: return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xb<<8 | 0xc<<4 case ACMPF: return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xa<<8 | 0xc<<4 case AMOVF: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 4<<4 case AMOVD: return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 4<<4 case AMOVDF: return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 1<<8 // dtof case AMOVFD: return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 0<<8 // dtof case AMOVWF: if sc&C_UBIT == 0 { o |= 1 << 7 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 0<<8 // toint, double case AMOVWD: if sc&C_UBIT == 0 { o |= 1 << 7 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 1<<8 // toint, double case AMOVFW: if sc&C_UBIT == 0 { o |= 1 << 16 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 0<<8 | 1<<7 // toint, double, trunc case AMOVDW: if sc&C_UBIT == 0 { o |= 1 << 16 /* signed */ } return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 1<<8 | 1<<7 // toint, double, trunc case -AMOVWF: // copy WtoF return o | 0xe<<24 | 0x0<<20 | 0xb<<8 | 1<<4 case -AMOVFW: // copy FtoW return o | 0xe<<24 | 0x1<<20 | 0xb<<8 | 1<<4 case -ACMP: // cmp imm return o | 0x3<<24 | 0x5<<20 case ABFX: return o | 0x3d<<21 | 0x5<<4 case ABFXU: return o | 0x3f<<21 | 0x5<<4 case ABFC: return o | 0x3e<<21 | 0x1f case ABFI: return o | 0x3e<<21 | 0x1<<4 case AXTAB: return o | 0x6a<<20 | 0x7<<4 case AXTAH: return o | 0x6b<<20 | 0x7<<4 case AXTABU: return o | 0x6e<<20 | 0x7<<4 case AXTAHU: return o | 0x6f<<20 | 0x7<<4 // CLZ doesn't support .nil case ACLZ: return o&(0xf<<28) | 0x16f<<16 | 0xf1<<4 case AREV: return o&(0xf<<28) | 0x6bf<<16 | 0xf3<<4 case AREV16: return o&(0xf<<28) | 0x6bf<<16 | 0xfb<<4 case AREVSH: return o&(0xf<<28) | 0x6ff<<16 | 0xfb<<4 case ARBIT: return o&(0xf<<28) | 0x6ff<<16 | 0xf3<<4 case AMULWT: return o&(0xf<<28) | 0x12<<20 | 0xe<<4 case AMULWB: return o&(0xf<<28) | 0x12<<20 | 0xa<<4 case AMULBB: return o&(0xf<<28) | 0x16<<20 | 0x8<<4 case AMULAWT: return o&(0xf<<28) | 0x12<<20 | 0xc<<4 case AMULAWB: return o&(0xf<<28) | 0x12<<20 | 0x8<<4 case AMULABB: return o&(0xf<<28) | 0x10<<20 | 0x8<<4 case ABL: // BLX REG return o&(0xf<<28) | 0x12fff3<<4 } c.ctxt.Diag("%v: bad rrr %d", p, a) return 0 } func (c *ctxt5) opbra(p *obj.Prog, a obj.As, sc int) uint32 { sc &= C_SCOND sc ^= C_SCOND_XOR if a == ABL || a == obj.ADUFFZERO || a == obj.ADUFFCOPY { return uint32(sc)<<28 | 0x5<<25 | 0x1<<24 } if sc != 0xe { c.ctxt.Diag("%v: .COND on bcond instruction", p) } switch a { case ABEQ: return 0x0<<28 | 0x5<<25 case ABNE: return 0x1<<28 | 0x5<<25 case ABCS: return 0x2<<28 | 0x5<<25 case ABHS: return 0x2<<28 | 0x5<<25 case ABCC: return 0x3<<28 | 0x5<<25 case ABLO: return 0x3<<28 | 0x5<<25 case ABMI: return 0x4<<28 | 0x5<<25 case ABPL: return 0x5<<28 | 0x5<<25 case ABVS: return 0x6<<28 | 0x5<<25 case ABVC: return 0x7<<28 | 0x5<<25 case ABHI: return 0x8<<28 | 0x5<<25 case ABLS: return 0x9<<28 | 0x5<<25 case ABGE: return 0xa<<28 | 0x5<<25 case ABLT: return 0xb<<28 | 0x5<<25 case ABGT: return 0xc<<28 | 0x5<<25 case ABLE: return 0xd<<28 | 0x5<<25 case AB: return 0xe<<28 | 0x5<<25 } c.ctxt.Diag("%v: bad bra %v", p, a) return 0 } func (c *ctxt5) olr(v int32, b int, r int, sc int) uint32 { o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_PBIT == 0 { o |= 1 << 24 } if sc&C_UBIT == 0 { o |= 1 << 23 } if sc&C_WBIT != 0 { o |= 1 << 21 } o |= 1<<26 | 1<<20 if v < 0 { if sc&C_UBIT != 0 { c.ctxt.Diag(".U on neg offset") } v = -v o ^= 1 << 23 } if v >= 1<<12 || v < 0 { c.ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, c.printp) } o |= uint32(v) o |= (uint32(b) & 15) << 16 o |= (uint32(r) & 15) << 12 return o } func (c *ctxt5) olhr(v int32, b int, r int, sc int) uint32 { o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_PBIT == 0 { o |= 1 << 24 } if sc&C_WBIT != 0 { o |= 1 << 21 } o |= 1<<23 | 1<<20 | 0xb<<4 if v < 0 { v = -v o ^= 1 << 23 } if v >= 1<<8 || v < 0 { c.ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, c.printp) } o |= uint32(v)&0xf | (uint32(v)>>4)<<8 | 1<<22 o |= (uint32(b) & 15) << 16 o |= (uint32(r) & 15) << 12 return o } func (c *ctxt5) osr(a obj.As, r int, v int32, b int, sc int) uint32 { o := c.olr(v, b, r, sc) ^ (1 << 20) if a != AMOVW { o |= 1 << 22 } return o } func (c *ctxt5) oshr(r int, v int32, b int, sc int) uint32 { o := c.olhr(v, b, r, sc) ^ (1 << 20) return o } func (c *ctxt5) osrr(r int, i int, b int, sc int) uint32 { return c.olr(int32(i), b, r, sc) ^ (1<<25 | 1<<20) } func (c *ctxt5) oshrr(r int, i int, b int, sc int) uint32 { return c.olhr(int32(i), b, r, sc) ^ (1<<22 | 1<<20) } func (c *ctxt5) olrr(i int, b int, r int, sc int) uint32 { return c.olr(int32(i), b, r, sc) ^ (1 << 25) } func (c *ctxt5) olhrr(i int, b int, r int, sc int) uint32 { return c.olhr(int32(i), b, r, sc) ^ (1 << 22) } func (c *ctxt5) ofsr(a obj.As, r int, v int32, b int, sc int, p *obj.Prog) uint32 { o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28 if sc&C_PBIT == 0 { o |= 1 << 24 } if sc&C_WBIT != 0 { o |= 1 << 21 } o |= 6<<25 | 1<<24 | 1<<23 | 10<<8 if v < 0 { v = -v o ^= 1 << 23 } if v&3 != 0 { c.ctxt.Diag("odd offset for floating point op: %d\n%v", v, p) } else if v >= 1<<10 || v < 0 { c.ctxt.Diag("literal span too large: %d\n%v", v, p) } o |= (uint32(v) >> 2) & 0xFF o |= (uint32(b) & 15) << 16 o |= (uint32(r) & 15) << 12 switch a { default: c.ctxt.Diag("bad fst %v", a) fallthrough case AMOVD: o |= 1 << 8 fallthrough case AMOVF: break } return o } // MOVW $"lower 16-bit", Reg func (c *ctxt5) omvs(p *obj.Prog, a *obj.Addr, dr int) uint32 { var o1 uint32 o1 = ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28 o1 |= 0x30 << 20 o1 |= (uint32(dr) & 15) << 12 o1 |= uint32(a.Offset) & 0x0fff o1 |= (uint32(a.Offset) & 0xf000) << 4 return o1 } // MVN $C_NCON, Reg -> MOVW $C_RCON, Reg func (c *ctxt5) omvr(p *obj.Prog, a *obj.Addr, dr int) uint32 { o1 := c.oprrr(p, AMOVW, int(p.Scond)) o1 |= (uint32(dr) & 15) << 12 v := immrot(^uint32(a.Offset)) if v == 0 { c.ctxt.Diag("%v: missing literal", p) return 0 } o1 |= uint32(v) return o1 } func (c *ctxt5) omvl(p *obj.Prog, a *obj.Addr, dr int) uint32 { var o1 uint32 if p.Pcond == nil { c.aclass(a) v := immrot(^uint32(c.instoffset)) if v == 0 { c.ctxt.Diag("%v: missing literal", p) return 0 } o1 = c.oprrr(p, AMVN, int(p.Scond)&C_SCOND) o1 |= uint32(v) o1 |= (uint32(dr) & 15) << 12 } else { v := int32(p.Pcond.Pc - p.Pc - 8) o1 = c.olr(v, REGPC, dr, int(p.Scond)&C_SCOND) } return o1 } func (c *ctxt5) chipzero5(e float64) int { // We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions. if objabi.GOARM < 7 || math.Float64bits(e) != 0 { return -1 } return 0 } func (c *ctxt5) chipfloat5(e float64) int { // We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions. if objabi.GOARM < 7 { return -1 } ei := math.Float64bits(e) l := uint32(ei) h := uint32(ei >> 32) if l != 0 || h&0xffff != 0 { return -1 } h1 := h & 0x7fc00000 if h1 != 0x40000000 && h1 != 0x3fc00000 { return -1 } n := 0 // sign bit (a) if h&0x80000000 != 0 { n |= 1 << 7 } // exp sign bit (b) if h1 == 0x3fc00000 { n |= 1 << 6 } // rest of exp and mantissa (cd-efgh) n |= int((h >> 16) & 0x3f) //print("match %.8lux %.8lux %d\n", l, h, n); return n } func nocache(p *obj.Prog) { p.Optab = 0 p.From.Class = 0 if p.GetFrom3() != nil { p.GetFrom3().Class = 0 } p.To.Class = 0 }