// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package obj import "log" func addvarint(d *Pcdata, v uint32) { for ; v >= 0x80; v >>= 7 { d.P = append(d.P, uint8(v|0x80)) } d.P = append(d.P, uint8(v)) } // funcpctab writes to dst a pc-value table mapping the code in func to the values // returned by valfunc parameterized by arg. The invocation of valfunc to update the // current value is, for each p, // // val = valfunc(func, val, p, 0, arg); // record val as value at p->pc; // val = valfunc(func, val, p, 1, arg); // // where func is the function, val is the current value, p is the instruction being // considered, and arg can be used to further parameterize valfunc. func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) { dbg := desc == ctxt.Debugpcln dst.P = dst.P[:0] if dbg { ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc) } val := int32(-1) oldval := val if func_.Func.Text == nil { return } pc := func_.Func.Text.Pc if dbg { ctxt.Logf("%6x %6d %v\n", uint64(pc), val, func_.Func.Text) } started := false var delta uint32 for p := func_.Func.Text; p != nil; p = p.Link { // Update val. If it's not changing, keep going. val = valfunc(ctxt, func_, val, p, 0, arg) if val == oldval && started { val = valfunc(ctxt, func_, val, p, 1, arg) if dbg { ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) } continue } // If the pc of the next instruction is the same as the // pc of this instruction, this instruction is not a real // instruction. Keep going, so that we only emit a delta // for a true instruction boundary in the program. if p.Link != nil && p.Link.Pc == p.Pc { val = valfunc(ctxt, func_, val, p, 1, arg) if dbg { ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) } continue } // The table is a sequence of (value, pc) pairs, where each // pair states that the given value is in effect from the current position // up to the given pc, which becomes the new current position. // To generate the table as we scan over the program instructions, // we emit a "(value" when pc == func->value, and then // each time we observe a change in value we emit ", pc) (value". // When the scan is over, we emit the closing ", pc)". // // The table is delta-encoded. The value deltas are signed and // transmitted in zig-zag form, where a complement bit is placed in bit 0, // and the pc deltas are unsigned. Both kinds of deltas are sent // as variable-length little-endian base-128 integers, // where the 0x80 bit indicates that the integer continues. if dbg { ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p) } if started { addvarint(dst, uint32((p.Pc-pc)/int64(ctxt.Arch.MinLC))) pc = p.Pc } delta = uint32(val) - uint32(oldval) if delta>>31 != 0 { delta = 1 | ^(delta << 1) } else { delta <<= 1 } addvarint(dst, delta) oldval = val started = true val = valfunc(ctxt, func_, val, p, 1, arg) } if started { if dbg { ctxt.Logf("%6x done\n", uint64(func_.Func.Text.Pc+func_.Size)) } addvarint(dst, uint32((func_.Size-pc)/int64(ctxt.Arch.MinLC))) addvarint(dst, 0) // terminator } if dbg { ctxt.Logf("wrote %d bytes to %p\n", len(dst.P), dst) for i := 0; i < len(dst.P); i++ { ctxt.Logf(" %02x", dst.P[i]) } ctxt.Logf("\n") } } // pctofileline computes either the file number (arg == 0) // or the line number (arg == 1) to use at p. // Because p.Pos applies to p, phase == 0 (before p) // takes care of the update. func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 { return oldval } f, l := linkgetlineFromPos(ctxt, p.Pos) if arg == nil { return l } pcln := arg.(*Pcln) if f == pcln.Lastfile { return int32(pcln.Lastindex) } for i, file := range pcln.File { if file == f { pcln.Lastfile = f pcln.Lastindex = i return int32(i) } } i := len(pcln.File) pcln.File = append(pcln.File, f) pcln.Lastfile = f pcln.Lastindex = i return int32(i) } // pcinlineState holds the state used to create a function's inlining // tree and the PC-value table that maps PCs to nodes in that tree. type pcinlineState struct { globalToLocal map[int]int localTree InlTree } // addBranch adds a branch from the global inlining tree in ctxt to // the function's local inlining tree, returning the index in the local tree. func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int { if globalIndex < 0 { return -1 } localIndex, ok := s.globalToLocal[globalIndex] if ok { return localIndex } // Since tracebacks don't include column information, we could // use one node for multiple calls of the same function on the // same line (e.g., f(x) + f(y)). For now, we use one node for // each inlined call. call := ctxt.InlTree.nodes[globalIndex] call.Parent = s.addBranch(ctxt, call.Parent) localIndex = len(s.localTree.nodes) s.localTree.nodes = append(s.localTree.nodes, call) s.globalToLocal[globalIndex] = localIndex return localIndex } // pctoinline computes the index into the local inlining tree to use at p. // If p is not the result of inlining, pctoinline returns -1. Because p.Pos // applies to p, phase == 0 (before p) takes care of the update. func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if phase == 1 { return oldval } posBase := ctxt.PosTable.Pos(p.Pos).Base() if posBase == nil { return -1 } globalIndex := posBase.InliningIndex() if globalIndex < 0 { return -1 } if s.globalToLocal == nil { s.globalToLocal = make(map[int]int) } return int32(s.addBranch(ctxt, globalIndex)) } // pctospadj computes the sp adjustment in effect. // It is oldval plus any adjustment made by p itself. // The adjustment by p takes effect only after p, so we // apply the change during phase == 1. func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if oldval == -1 { // starting oldval = 0 } if phase == 0 { return oldval } if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 { ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj) ctxt.DiagFlush() log.Fatalf("bad code") } return oldval + p.Spadj } // pctopcdata computes the pcdata value in effect at p. // A PCDATA instruction sets the value in effect at future // non-PCDATA instructions. // Since PCDATA instructions have no width in the final code, // it does not matter which phase we use for the update. func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) { return oldval } if int64(int32(p.To.Offset)) != p.To.Offset { ctxt.Diag("overflow in PCDATA instruction: %v", p) ctxt.DiagFlush() log.Fatalf("bad code") } return int32(p.To.Offset) } func linkpcln(ctxt *Link, cursym *LSym) { pcln := &cursym.Func.Pcln npcdata := 0 nfuncdata := 0 for p := cursym.Func.Text; p != nil; p = p.Link { // Find the highest ID of any used PCDATA table. This ignores PCDATA table // that consist entirely of "-1", since that's the assumed default value. // From.Offset is table ID // To.Offset is data if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed npcdata = int(p.From.Offset + 1) } // Find the highest ID of any FUNCDATA table. // From.Offset is table ID if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) { nfuncdata = int(p.From.Offset + 1) } } pcln.Pcdata = make([]Pcdata, npcdata) pcln.Pcdata = pcln.Pcdata[:npcdata] pcln.Funcdata = make([]*LSym, nfuncdata) pcln.Funcdataoff = make([]int64, nfuncdata) pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata] funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil) funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln) funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil) pcinlineState := new(pcinlineState) funcpctab(ctxt, &pcln.Pcinline, cursym, "pctoinline", pcinlineState.pctoinline, nil) pcln.InlTree = pcinlineState.localTree if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 { ctxt.Logf("-- inlining tree for %s:\n", cursym) dumpInlTree(ctxt, pcln.InlTree) ctxt.Logf("--\n") } // tabulate which pc and func data we have. havepc := make([]uint32, (npcdata+31)/32) havefunc := make([]uint32, (nfuncdata+31)/32) for p := cursym.Func.Text; p != nil; p = p.Link { if p.As == AFUNCDATA { if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 { ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset) } havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) } if p.As == APCDATA && p.To.Offset != -1 { havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) } } // pcdata. for i := 0; i < npcdata; i++ { if (havepc[i/32]>>uint(i%32))&1 == 0 { continue } funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i))) } // funcdata if nfuncdata > 0 { var i int for p := cursym.Func.Text; p != nil; p = p.Link { if p.As == AFUNCDATA { i = int(p.From.Offset) pcln.Funcdataoff[i] = p.To.Offset if p.To.Type != TYPE_CONST { // TODO: Dedup. //funcdata_bytes += p->to.sym->size; pcln.Funcdata[i] = p.To.Sym } } } } }