// Inferno utils/6l/pass.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/pass.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package x86 import ( "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/sys" "math" "strings" ) func CanUse1InsnTLS(ctxt *obj.Link) bool { if isAndroid { // For android, we use a disgusting hack that assumes // the thread-local storage slot for g is allocated // using pthread_key_create with a fixed offset // (see src/runtime/cgo/gcc_android_amd64.c). // This makes access to the TLS storage (for g) doable // with 1 instruction. return true } if ctxt.Arch.Family == sys.I386 { switch ctxt.Headtype { case objabi.Hlinux, objabi.Hnacl, objabi.Hplan9, objabi.Hwindows: return false } return true } switch ctxt.Headtype { case objabi.Hplan9, objabi.Hwindows: return false case objabi.Hlinux: return !ctxt.Flag_shared } return true } func progedit(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) { // Thread-local storage references use the TLS pseudo-register. // As a register, TLS refers to the thread-local storage base, and it // can only be loaded into another register: // // MOVQ TLS, AX // // An offset from the thread-local storage base is written off(reg)(TLS*1). // Semantically it is off(reg), but the (TLS*1) annotation marks this as // indexing from the loaded TLS base. This emits a relocation so that // if the linker needs to adjust the offset, it can. For example: // // MOVQ TLS, AX // MOVQ 0(AX)(TLS*1), CX // load g into CX // // On systems that support direct access to the TLS memory, this // pair of instructions can be reduced to a direct TLS memory reference: // // MOVQ 0(TLS), CX // load g into CX // // The 2-instruction and 1-instruction forms correspond to the two code // sequences for loading a TLS variable in the local exec model given in "ELF // Handling For Thread-Local Storage". // // We apply this rewrite on systems that support the 1-instruction form. // The decision is made using only the operating system and the -shared flag, // not the link mode. If some link modes on a particular operating system // require the 2-instruction form, then all builds for that operating system // will use the 2-instruction form, so that the link mode decision can be // delayed to link time. // // In this way, all supported systems use identical instructions to // access TLS, and they are rewritten appropriately first here in // liblink and then finally using relocations in the linker. // // When -shared is passed, we leave the code in the 2-instruction form but // assemble (and relocate) them in different ways to generate the initial // exec code sequence. It's a bit of a fluke that this is possible without // rewriting the instructions more comprehensively, and it only does because // we only support a single TLS variable (g). if CanUse1InsnTLS(ctxt) { // Reduce 2-instruction sequence to 1-instruction sequence. // Sequences like // MOVQ TLS, BX // ... off(BX)(TLS*1) ... // become // NOP // ... off(TLS) ... // // TODO(rsc): Remove the Hsolaris special case. It exists only to // guarantee we are producing byte-identical binaries as before this code. // But it should be unnecessary. if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_REG && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 && ctxt.Headtype != objabi.Hsolaris { obj.Nopout(p) } if p.From.Type == obj.TYPE_MEM && p.From.Index == REG_TLS && REG_AX <= p.From.Reg && p.From.Reg <= REG_R15 { p.From.Reg = REG_TLS p.From.Scale = 0 p.From.Index = REG_NONE } if p.To.Type == obj.TYPE_MEM && p.To.Index == REG_TLS && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { p.To.Reg = REG_TLS p.To.Scale = 0 p.To.Index = REG_NONE } } else { // load_g_cx, below, always inserts the 1-instruction sequence. Rewrite it // as the 2-instruction sequence if necessary. // MOVQ 0(TLS), BX // becomes // MOVQ TLS, BX // MOVQ 0(BX)(TLS*1), BX if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { q := obj.Appendp(p, newprog) q.As = p.As q.From = p.From q.From.Type = obj.TYPE_MEM q.From.Reg = p.To.Reg q.From.Index = REG_TLS q.From.Scale = 2 // TODO: use 1 q.To = p.To p.From.Type = obj.TYPE_REG p.From.Reg = REG_TLS p.From.Index = REG_NONE p.From.Offset = 0 } } // TODO: Remove. if ctxt.Headtype == objabi.Hwindows && ctxt.Arch.Family == sys.AMD64 || ctxt.Headtype == objabi.Hplan9 { if p.From.Scale == 1 && p.From.Index == REG_TLS { p.From.Scale = 2 } if p.To.Scale == 1 && p.To.Index == REG_TLS { p.To.Scale = 2 } } // Rewrite 0 to $0 in 3rd argument to CMPPS etc. // That's what the tables expect. switch p.As { case ACMPPD, ACMPPS, ACMPSD, ACMPSS: if p.To.Type == obj.TYPE_MEM && p.To.Name == obj.NAME_NONE && p.To.Reg == REG_NONE && p.To.Index == REG_NONE && p.To.Sym == nil { p.To.Type = obj.TYPE_CONST } } // Rewrite CALL/JMP/RET to symbol as TYPE_BRANCH. switch p.As { case obj.ACALL, obj.AJMP, obj.ARET: if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil { p.To.Type = obj.TYPE_BRANCH } } // Rewrite MOVL/MOVQ $XXX(FP/SP) as LEAL/LEAQ. if p.From.Type == obj.TYPE_ADDR && (ctxt.Arch.Family == sys.AMD64 || p.From.Name != obj.NAME_EXTERN && p.From.Name != obj.NAME_STATIC) { switch p.As { case AMOVL: p.As = ALEAL p.From.Type = obj.TYPE_MEM case AMOVQ: p.As = ALEAQ p.From.Type = obj.TYPE_MEM } } if ctxt.Headtype == objabi.Hnacl && ctxt.Arch.Family == sys.AMD64 { if p.GetFrom3() != nil { nacladdr(ctxt, p, p.GetFrom3()) } nacladdr(ctxt, p, &p.From) nacladdr(ctxt, p, &p.To) } // Rewrite float constants to values stored in memory. switch p.As { // Convert AMOVSS $(0), Xx to AXORPS Xx, Xx case AMOVSS: if p.From.Type == obj.TYPE_FCONST { // f == 0 can't be used here due to -0, so use Float64bits if f := p.From.Val.(float64); math.Float64bits(f) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVF, AFADDF, AFSUBF, AFSUBRF, AFMULF, AFDIVF, AFDIVRF, AFCOMF, AFCOMFP, AADDSS, ASUBSS, AMULSS, ADIVSS, ACOMISS, AUCOMISS: if p.From.Type == obj.TYPE_FCONST { f32 := float32(p.From.Val.(float64)) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = ctxt.Float32Sym(f32) p.From.Offset = 0 } case AMOVSD: // Convert AMOVSD $(0), Xx to AXORPS Xx, Xx if p.From.Type == obj.TYPE_FCONST { // f == 0 can't be used here due to -0, so use Float64bits if f := p.From.Val.(float64); math.Float64bits(f) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVD, AFADDD, AFSUBD, AFSUBRD, AFMULD, AFDIVD, AFDIVRD, AFCOMD, AFCOMDP, AADDSD, ASUBSD, AMULSD, ADIVSD, ACOMISD, AUCOMISD: if p.From.Type == obj.TYPE_FCONST { f64 := p.From.Val.(float64) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = ctxt.Float64Sym(f64) p.From.Offset = 0 } } if ctxt.Flag_dynlink { rewriteToUseGot(ctxt, p, newprog) } if ctxt.Flag_shared && ctxt.Arch.Family == sys.I386 { rewriteToPcrel(ctxt, p, newprog) } } // Rewrite p, if necessary, to access global data via the global offset table. func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) { var lea, mov obj.As var reg int16 if ctxt.Arch.Family == sys.AMD64 { lea = ALEAQ mov = AMOVQ reg = REG_R15 } else { lea = ALEAL mov = AMOVL reg = REG_CX if p.As == ALEAL && p.To.Reg != p.From.Reg && p.To.Reg != p.From.Index { // Special case: clobber the destination register with // the PC so we don't have to clobber CX. // The SSA backend depends on CX not being clobbered across LEAL. // See cmd/compile/internal/ssa/gen/386.rules (search for Flag_shared). reg = p.To.Reg } } if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO { // ADUFFxxx $offset // becomes // $MOV runtime.duffxxx@GOT, $reg // $LEA $offset($reg), $reg // CALL $reg // (we use LEAx rather than ADDx because ADDx clobbers // flags and duffzero on 386 does not otherwise do so). var sym *obj.LSym if p.As == obj.ADUFFZERO { sym = ctxt.Lookup("runtime.duffzero") } else { sym = ctxt.Lookup("runtime.duffcopy") } offset := p.To.Offset p.As = mov p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF p.From.Sym = sym p.To.Type = obj.TYPE_REG p.To.Reg = reg p.To.Offset = 0 p.To.Sym = nil p1 := obj.Appendp(p, newprog) p1.As = lea p1.From.Type = obj.TYPE_MEM p1.From.Offset = offset p1.From.Reg = reg p1.To.Type = obj.TYPE_REG p1.To.Reg = reg p2 := obj.Appendp(p1, newprog) p2.As = obj.ACALL p2.To.Type = obj.TYPE_REG p2.To.Reg = reg } // We only care about global data: NAME_EXTERN means a global // symbol in the Go sense, and p.Sym.Local is true for a few // internally defined symbols. if p.As == lea && p.From.Type == obj.TYPE_MEM && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() { // $LEA sym, Rx becomes $MOV $sym, Rx which will be rewritten below p.As = mov p.From.Type = obj.TYPE_ADDR } if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() { // $MOV $sym, Rx becomes $MOV sym@GOT, Rx // $MOV $sym+<off>, Rx becomes $MOV sym@GOT, Rx; $LEA <off>(Rx), Rx // On 386 only, more complicated things like PUSHL $sym become $MOV sym@GOT, CX; PUSHL CX cmplxdest := false pAs := p.As var dest obj.Addr if p.To.Type != obj.TYPE_REG || pAs != mov { if ctxt.Arch.Family == sys.AMD64 { ctxt.Diag("do not know how to handle LEA-type insn to non-register in %v with -dynlink", p) } cmplxdest = true dest = p.To p.As = mov p.To.Type = obj.TYPE_REG p.To.Reg = reg p.To.Sym = nil p.To.Name = obj.NAME_NONE } p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF q := p if p.From.Offset != 0 { q = obj.Appendp(p, newprog) q.As = lea q.From.Type = obj.TYPE_MEM q.From.Reg = p.To.Reg q.From.Offset = p.From.Offset q.To = p.To p.From.Offset = 0 } if cmplxdest { q = obj.Appendp(q, newprog) q.As = pAs q.To = dest q.From.Type = obj.TYPE_REG q.From.Reg = reg } } if p.GetFrom3() != nil && p.GetFrom3().Name == obj.NAME_EXTERN { ctxt.Diag("don't know how to handle %v with -dynlink", p) } var source *obj.Addr // MOVx sym, Ry becomes $MOV sym@GOT, R15; MOVx (R15), Ry // MOVx Ry, sym becomes $MOV sym@GOT, R15; MOVx Ry, (R15) // An addition may be inserted between the two MOVs if there is an offset. if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() { if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local() { ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p) } source = &p.From } else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local() { source = &p.To } else { return } if p.As == obj.ACALL { // When dynlinking on 386, almost any call might end up being a call // to a PLT, so make sure the GOT pointer is loaded into BX. // RegTo2 is set on the replacement call insn to stop it being // processed when it is in turn passed to progedit. if ctxt.Arch.Family == sys.AMD64 || (p.To.Sym != nil && p.To.Sym.Local()) || p.RegTo2 != 0 { return } p1 := obj.Appendp(p, newprog) p2 := obj.Appendp(p1, newprog) p1.As = ALEAL p1.From.Type = obj.TYPE_MEM p1.From.Name = obj.NAME_STATIC p1.From.Sym = ctxt.Lookup("_GLOBAL_OFFSET_TABLE_") p1.To.Type = obj.TYPE_REG p1.To.Reg = REG_BX p2.As = p.As p2.Scond = p.Scond p2.From = p.From if p.RestArgs != nil { p2.RestArgs = append(p2.RestArgs, p.RestArgs...) } p2.Reg = p.Reg p2.To = p.To // p.To.Type was set to TYPE_BRANCH above, but that makes checkaddr // in ../pass.go complain, so set it back to TYPE_MEM here, until p2 // itself gets passed to progedit. p2.To.Type = obj.TYPE_MEM p2.RegTo2 = 1 obj.Nopout(p) return } if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ARET || p.As == obj.AJMP { return } if source.Type != obj.TYPE_MEM { ctxt.Diag("don't know how to handle %v with -dynlink", p) } p1 := obj.Appendp(p, newprog) p2 := obj.Appendp(p1, newprog) p1.As = mov p1.From.Type = obj.TYPE_MEM p1.From.Sym = source.Sym p1.From.Name = obj.NAME_GOTREF p1.To.Type = obj.TYPE_REG p1.To.Reg = reg p2.As = p.As p2.From = p.From p2.To = p.To if p.From.Name == obj.NAME_EXTERN { p2.From.Reg = reg p2.From.Name = obj.NAME_NONE p2.From.Sym = nil } else if p.To.Name == obj.NAME_EXTERN { p2.To.Reg = reg p2.To.Name = obj.NAME_NONE p2.To.Sym = nil } else { return } obj.Nopout(p) } func rewriteToPcrel(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) { // RegTo2 is set on the instructions we insert here so they don't get // processed twice. if p.RegTo2 != 0 { return } if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP { return } // Any Prog (aside from the above special cases) with an Addr with Name == // NAME_EXTERN, NAME_STATIC or NAME_GOTREF has a CALL __x86.get_pc_thunk.XX // inserted before it. isName := func(a *obj.Addr) bool { if a.Sym == nil || (a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR) || a.Reg != 0 { return false } if a.Sym.Type == objabi.STLSBSS { return false } return a.Name == obj.NAME_EXTERN || a.Name == obj.NAME_STATIC || a.Name == obj.NAME_GOTREF } if isName(&p.From) && p.From.Type == obj.TYPE_ADDR { // Handle things like "MOVL $sym, (SP)" or "PUSHL $sym" by rewriting // to "MOVL $sym, CX; MOVL CX, (SP)" or "MOVL $sym, CX; PUSHL CX" // respectively. if p.To.Type != obj.TYPE_REG { q := obj.Appendp(p, newprog) q.As = p.As q.From.Type = obj.TYPE_REG q.From.Reg = REG_CX q.To = p.To p.As = AMOVL p.To.Type = obj.TYPE_REG p.To.Reg = REG_CX p.To.Sym = nil p.To.Name = obj.NAME_NONE } } if !isName(&p.From) && !isName(&p.To) && (p.GetFrom3() == nil || !isName(p.GetFrom3())) { return } var dst int16 = REG_CX if (p.As == ALEAL || p.As == AMOVL) && p.To.Reg != p.From.Reg && p.To.Reg != p.From.Index { dst = p.To.Reg // Why? See the comment near the top of rewriteToUseGot above. // AMOVLs might be introduced by the GOT rewrites. } q := obj.Appendp(p, newprog) q.RegTo2 = 1 r := obj.Appendp(q, newprog) r.RegTo2 = 1 q.As = obj.ACALL thunkname := "__x86.get_pc_thunk." + strings.ToLower(rconv(int(dst))) q.To.Sym = ctxt.LookupInit(thunkname, func(s *obj.LSym) { s.Set(obj.AttrLocal, true) }) q.To.Type = obj.TYPE_MEM q.To.Name = obj.NAME_EXTERN r.As = p.As r.Scond = p.Scond r.From = p.From r.RestArgs = p.RestArgs r.Reg = p.Reg r.To = p.To if isName(&p.From) { r.From.Reg = dst } if isName(&p.To) { r.To.Reg = dst } if p.GetFrom3() != nil && isName(p.GetFrom3()) { r.GetFrom3().Reg = dst } obj.Nopout(p) } func nacladdr(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { if p.As == ALEAL || p.As == ALEAQ { return } if a.Reg == REG_BP { ctxt.Diag("invalid address: %v", p) return } if a.Reg == REG_TLS { a.Reg = REG_BP } if a.Type == obj.TYPE_MEM && a.Name == obj.NAME_NONE { switch a.Reg { // all ok case REG_BP, REG_SP, REG_R15: break default: if a.Index != REG_NONE { ctxt.Diag("invalid address %v", p) } a.Index = a.Reg if a.Index != REG_NONE { a.Scale = 1 } a.Reg = REG_R15 } } } func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { if cursym.Func.Text == nil || cursym.Func.Text.Link == nil { return } p := cursym.Func.Text autoffset := int32(p.To.Offset) if autoffset < 0 { autoffset = 0 } hasCall := false for q := p; q != nil; q = q.Link { if q.As == obj.ACALL || q.As == obj.ADUFFCOPY || q.As == obj.ADUFFZERO { hasCall = true break } } var bpsize int if ctxt.Arch.Family == sys.AMD64 && ctxt.Framepointer_enabled && !p.From.Sym.NoFrame() && // (1) below !(autoffset == 0 && p.From.Sym.NoSplit()) && // (2) below !(autoffset == 0 && !hasCall) { // (3) below // Make room to save a base pointer. // There are 2 cases we must avoid: // 1) If noframe is set (which we do for functions which tail call). // 2) Scary runtime internals which would be all messed up by frame pointers. // We detect these using a heuristic: frameless nosplit functions. // TODO: Maybe someday we label them all with NOFRAME and get rid of this heuristic. // For performance, we also want to avoid: // 3) Frameless leaf functions bpsize = ctxt.Arch.PtrSize autoffset += int32(bpsize) p.To.Offset += int64(bpsize) } else { bpsize = 0 } textarg := int64(p.To.Val.(int32)) cursym.Func.Args = int32(textarg) cursym.Func.Locals = int32(p.To.Offset) // TODO(rsc): Remove. if ctxt.Arch.Family == sys.I386 && cursym.Func.Locals < 0 { cursym.Func.Locals = 0 } // TODO(rsc): Remove 'ctxt.Arch.Family == sys.AMD64 &&'. if ctxt.Arch.Family == sys.AMD64 && autoffset < objabi.StackSmall && !p.From.Sym.NoSplit() { leaf := true LeafSearch: for q := p; q != nil; q = q.Link { switch q.As { case obj.ACALL: // Treat common runtime calls that take no arguments // the same as duffcopy and duffzero. if !isZeroArgRuntimeCall(q.To.Sym) { leaf = false break LeafSearch } fallthrough case obj.ADUFFCOPY, obj.ADUFFZERO: if autoffset >= objabi.StackSmall-8 { leaf = false break LeafSearch } } } if leaf { p.From.Sym.Set(obj.AttrNoSplit, true) } } if !p.From.Sym.NoSplit() || p.From.Sym.Wrapper() { p = obj.Appendp(p, newprog) p = load_g_cx(ctxt, p, newprog) // load g into CX } if !cursym.Func.Text.From.Sym.NoSplit() { p = stacksplit(ctxt, cursym, p, newprog, autoffset, int32(textarg)) // emit split check } if autoffset != 0 { if autoffset%int32(ctxt.Arch.RegSize) != 0 { ctxt.Diag("unaligned stack size %d", autoffset) } p = obj.Appendp(p, newprog) p.As = AADJSP p.From.Type = obj.TYPE_CONST p.From.Offset = int64(autoffset) p.Spadj = autoffset } deltasp := autoffset if bpsize > 0 { // Save caller's BP p = obj.Appendp(p, newprog) p.As = AMOVQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_BP p.To.Type = obj.TYPE_MEM p.To.Reg = REG_SP p.To.Scale = 1 p.To.Offset = int64(autoffset) - int64(bpsize) // Move current frame to BP p = obj.Appendp(p, newprog) p.As = ALEAQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Scale = 1 p.From.Offset = int64(autoffset) - int64(bpsize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_BP } if cursym.Func.Text.From.Sym.Wrapper() { // if g._panic != nil && g._panic.argp == FP { // g._panic.argp = bottom-of-frame // } // // MOVQ g_panic(CX), BX // TESTQ BX, BX // JNE checkargp // end: // NOP // ... rest of function ... // checkargp: // LEAQ (autoffset+8)(SP), DI // CMPQ panic_argp(BX), DI // JNE end // MOVQ SP, panic_argp(BX) // JMP end // // The NOP is needed to give the jumps somewhere to land. // It is a liblink NOP, not an x86 NOP: it encodes to 0 instruction bytes. // // The layout is chosen to help static branch prediction: // Both conditional jumps are unlikely, so they are arranged to be forward jumps. // MOVQ g_panic(CX), BX p = obj.Appendp(p, newprog) p.As = AMOVQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_CX p.From.Offset = 4 * int64(ctxt.Arch.PtrSize) // g_panic p.To.Type = obj.TYPE_REG p.To.Reg = REG_BX if ctxt.Headtype == objabi.Hnacl && ctxt.Arch.Family == sys.AMD64 { p.As = AMOVL p.From.Type = obj.TYPE_MEM p.From.Reg = REG_R15 p.From.Scale = 1 p.From.Index = REG_CX } if ctxt.Arch.Family == sys.I386 { p.As = AMOVL } // TESTQ BX, BX p = obj.Appendp(p, newprog) p.As = ATESTQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_BX p.To.Type = obj.TYPE_REG p.To.Reg = REG_BX if ctxt.Headtype == objabi.Hnacl || ctxt.Arch.Family == sys.I386 { p.As = ATESTL } // JNE checkargp (checkargp to be resolved later) jne := obj.Appendp(p, newprog) jne.As = AJNE jne.To.Type = obj.TYPE_BRANCH // end: // NOP end := obj.Appendp(jne, newprog) end.As = obj.ANOP // Fast forward to end of function. var last *obj.Prog for last = end; last.Link != nil; last = last.Link { } // LEAQ (autoffset+8)(SP), DI p = obj.Appendp(last, newprog) p.As = ALEAQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = int64(autoffset) + int64(ctxt.Arch.RegSize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_DI if ctxt.Headtype == objabi.Hnacl || ctxt.Arch.Family == sys.I386 { p.As = ALEAL } // Set jne branch target. jne.Pcond = p // CMPQ panic_argp(BX), DI p = obj.Appendp(p, newprog) p.As = ACMPQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_BX p.From.Offset = 0 // Panic.argp p.To.Type = obj.TYPE_REG p.To.Reg = REG_DI if ctxt.Headtype == objabi.Hnacl && ctxt.Arch.Family == sys.AMD64 { p.As = ACMPL p.From.Type = obj.TYPE_MEM p.From.Reg = REG_R15 p.From.Scale = 1 p.From.Index = REG_BX } if ctxt.Arch.Family == sys.I386 { p.As = ACMPL } // JNE end p = obj.Appendp(p, newprog) p.As = AJNE p.To.Type = obj.TYPE_BRANCH p.Pcond = end // MOVQ SP, panic_argp(BX) p = obj.Appendp(p, newprog) p.As = AMOVQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_SP p.To.Type = obj.TYPE_MEM p.To.Reg = REG_BX p.To.Offset = 0 // Panic.argp if ctxt.Headtype == objabi.Hnacl && ctxt.Arch.Family == sys.AMD64 { p.As = AMOVL p.To.Type = obj.TYPE_MEM p.To.Reg = REG_R15 p.To.Scale = 1 p.To.Index = REG_BX } if ctxt.Arch.Family == sys.I386 { p.As = AMOVL } // JMP end p = obj.Appendp(p, newprog) p.As = obj.AJMP p.To.Type = obj.TYPE_BRANCH p.Pcond = end // Reset p for following code. p = end } for ; p != nil; p = p.Link { pcsize := ctxt.Arch.RegSize switch p.From.Name { case obj.NAME_AUTO: p.From.Offset += int64(deltasp) - int64(bpsize) case obj.NAME_PARAM: p.From.Offset += int64(deltasp) + int64(pcsize) } if p.GetFrom3() != nil { switch p.GetFrom3().Name { case obj.NAME_AUTO: p.GetFrom3().Offset += int64(deltasp) - int64(bpsize) case obj.NAME_PARAM: p.GetFrom3().Offset += int64(deltasp) + int64(pcsize) } } switch p.To.Name { case obj.NAME_AUTO: p.To.Offset += int64(deltasp) - int64(bpsize) case obj.NAME_PARAM: p.To.Offset += int64(deltasp) + int64(pcsize) } switch p.As { default: continue case APUSHL, APUSHFL: deltasp += 4 p.Spadj = 4 continue case APUSHQ, APUSHFQ: deltasp += 8 p.Spadj = 8 continue case APUSHW, APUSHFW: deltasp += 2 p.Spadj = 2 continue case APOPL, APOPFL: deltasp -= 4 p.Spadj = -4 continue case APOPQ, APOPFQ: deltasp -= 8 p.Spadj = -8 continue case APOPW, APOPFW: deltasp -= 2 p.Spadj = -2 continue case obj.ARET: // do nothing } if autoffset != deltasp { ctxt.Diag("unbalanced PUSH/POP") } if autoffset != 0 { if bpsize > 0 { // Restore caller's BP p.As = AMOVQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Scale = 1 p.From.Offset = int64(autoffset) - int64(bpsize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_BP p = obj.Appendp(p, newprog) } p.As = AADJSP p.From.Type = obj.TYPE_CONST p.From.Offset = int64(-autoffset) p.Spadj = -autoffset p = obj.Appendp(p, newprog) p.As = obj.ARET // If there are instructions following // this ARET, they come from a branch // with the same stackframe, so undo // the cleanup. p.Spadj = +autoffset } if p.To.Sym != nil { // retjmp p.As = obj.AJMP } } } func isZeroArgRuntimeCall(s *obj.LSym) bool { if s == nil { return false } switch s.Name { case "runtime.panicindex", "runtime.panicslice", "runtime.panicdivide", "runtime.panicwrap": return true } return false } func indir_cx(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { if ctxt.Headtype == objabi.Hnacl && ctxt.Arch.Family == sys.AMD64 { a.Type = obj.TYPE_MEM a.Reg = REG_R15 a.Index = REG_CX a.Scale = 1 return } a.Type = obj.TYPE_MEM a.Reg = REG_CX } // Append code to p to load g into cx. // Overwrites p with the first instruction (no first appendp). // Overwriting p is unusual but it lets use this in both the // prologue (caller must call appendp first) and in the epilogue. // Returns last new instruction. func load_g_cx(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) *obj.Prog { p.As = AMOVQ if ctxt.Arch.PtrSize == 4 { p.As = AMOVL } p.From.Type = obj.TYPE_MEM p.From.Reg = REG_TLS p.From.Offset = 0 p.To.Type = obj.TYPE_REG p.To.Reg = REG_CX next := p.Link progedit(ctxt, p, newprog) for p.Link != next { p = p.Link } if p.From.Index == REG_TLS { p.From.Scale = 2 } return p } // Append code to p to check for stack split. // Appends to (does not overwrite) p. // Assumes g is in CX. // Returns last new instruction. func stacksplit(ctxt *obj.Link, cursym *obj.LSym, p *obj.Prog, newprog obj.ProgAlloc, framesize int32, textarg int32) *obj.Prog { cmp := ACMPQ lea := ALEAQ mov := AMOVQ sub := ASUBQ if ctxt.Headtype == objabi.Hnacl || ctxt.Arch.Family == sys.I386 { cmp = ACMPL lea = ALEAL mov = AMOVL sub = ASUBL } var q1 *obj.Prog if framesize <= objabi.StackSmall { // small stack: SP <= stackguard // CMPQ SP, stackguard p = obj.Appendp(p, newprog) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_SP indir_cx(ctxt, p, &p.To) p.To.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0 if cursym.CFunc() { p.To.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1 } } else if framesize <= objabi.StackBig { // large stack: SP-framesize <= stackguard-StackSmall // LEAQ -xxx(SP), AX // CMPQ AX, stackguard p = obj.Appendp(p, newprog) p.As = lea p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = -(int64(framesize) - objabi.StackSmall) p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(p, newprog) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_AX indir_cx(ctxt, p, &p.To) p.To.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0 if cursym.CFunc() { p.To.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1 } } else { // Such a large stack we need to protect against wraparound. // If SP is close to zero: // SP-stackguard+StackGuard <= framesize + (StackGuard-StackSmall) // The +StackGuard on both sides is required to keep the left side positive: // SP is allowed to be slightly below stackguard. See stack.h. // // Preemption sets stackguard to StackPreempt, a very large value. // That breaks the math above, so we have to check for that explicitly. // MOVQ stackguard, CX // CMPQ CX, $StackPreempt // JEQ label-of-call-to-morestack // LEAQ StackGuard(SP), AX // SUBQ CX, AX // CMPQ AX, $(framesize+(StackGuard-StackSmall)) p = obj.Appendp(p, newprog) p.As = mov indir_cx(ctxt, p, &p.From) p.From.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0 if cursym.CFunc() { p.From.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1 } p.To.Type = obj.TYPE_REG p.To.Reg = REG_SI p = obj.Appendp(p, newprog) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_SI p.To.Type = obj.TYPE_CONST p.To.Offset = objabi.StackPreempt if ctxt.Arch.Family == sys.I386 { p.To.Offset = int64(uint32(objabi.StackPreempt & (1<<32 - 1))) } p = obj.Appendp(p, newprog) p.As = AJEQ p.To.Type = obj.TYPE_BRANCH q1 = p p = obj.Appendp(p, newprog) p.As = lea p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = objabi.StackGuard p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(p, newprog) p.As = sub p.From.Type = obj.TYPE_REG p.From.Reg = REG_SI p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(p, newprog) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_AX p.To.Type = obj.TYPE_CONST p.To.Offset = int64(framesize) + (objabi.StackGuard - objabi.StackSmall) } // common jls := obj.Appendp(p, newprog) jls.As = AJLS jls.To.Type = obj.TYPE_BRANCH var last *obj.Prog for last = cursym.Func.Text; last.Link != nil; last = last.Link { } // Now we are at the end of the function, but logically // we are still in function prologue. We need to fix the // SP data and PCDATA. spfix := obj.Appendp(last, newprog) spfix.As = obj.ANOP spfix.Spadj = -framesize pcdata := obj.Appendp(spfix, newprog) pcdata.Pos = cursym.Func.Text.Pos pcdata.As = obj.APCDATA pcdata.From.Type = obj.TYPE_CONST pcdata.From.Offset = objabi.PCDATA_StackMapIndex pcdata.To.Type = obj.TYPE_CONST pcdata.To.Offset = -1 // pcdata starts at -1 at function entry call := obj.Appendp(pcdata, newprog) call.Pos = cursym.Func.Text.Pos call.As = obj.ACALL call.To.Type = obj.TYPE_BRANCH call.To.Name = obj.NAME_EXTERN morestack := "runtime.morestack" switch { case cursym.CFunc(): morestack = "runtime.morestackc" case !cursym.Func.Text.From.Sym.NeedCtxt(): morestack = "runtime.morestack_noctxt" } call.To.Sym = ctxt.Lookup(morestack) // When compiling 386 code for dynamic linking, the call needs to be adjusted // to follow PIC rules. This in turn can insert more instructions, so we need // to keep track of the start of the call (where the jump will be to) and the // end (which following instructions are appended to). callend := call progedit(ctxt, callend, newprog) for ; callend.Link != nil; callend = callend.Link { progedit(ctxt, callend.Link, newprog) } jmp := obj.Appendp(callend, newprog) jmp.As = obj.AJMP jmp.To.Type = obj.TYPE_BRANCH jmp.Pcond = cursym.Func.Text.Link jmp.Spadj = +framesize jls.Pcond = call if q1 != nil { q1.Pcond = call } return jls } var unaryDst = map[obj.As]bool{ ABSWAPL: true, ABSWAPQ: true, ACLFLUSH: true, ACMPXCHG8B: true, ADECB: true, ADECL: true, ADECQ: true, ADECW: true, AINCB: true, AINCL: true, AINCQ: true, AINCW: true, ANEGB: true, ANEGL: true, ANEGQ: true, ANEGW: true, ANOTB: true, ANOTL: true, ANOTQ: true, ANOTW: true, APOPL: true, APOPQ: true, APOPW: true, ASETCC: true, ASETCS: true, ASETEQ: true, ASETGE: true, ASETGT: true, ASETHI: true, ASETLE: true, ASETLS: true, ASETLT: true, ASETMI: true, ASETNE: true, ASETOC: true, ASETOS: true, ASETPC: true, ASETPL: true, ASETPS: true, AFFREE: true, AFLDENV: true, AFSAVE: true, AFSTCW: true, AFSTENV: true, AFSTSW: true, AFXSAVE: true, AFXSAVE64: true, ASTMXCSR: true, } var Linkamd64 = obj.LinkArch{ Arch: sys.ArchAMD64, Init: instinit, Preprocess: preprocess, Assemble: span6, Progedit: progedit, UnaryDst: unaryDst, DWARFRegisters: AMD64DWARFRegisters, } var Linkamd64p32 = obj.LinkArch{ Arch: sys.ArchAMD64P32, Init: instinit, Preprocess: preprocess, Assemble: span6, Progedit: progedit, UnaryDst: unaryDst, DWARFRegisters: AMD64DWARFRegisters, } var Link386 = obj.LinkArch{ Arch: sys.Arch386, Init: instinit, Preprocess: preprocess, Assemble: span6, Progedit: progedit, UnaryDst: unaryDst, DWARFRegisters: X86DWARFRegisters, }