/*===---- bmiintrin.h - BMI intrinsics -------------------------------------===
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 *===-----------------------------------------------------------------------===
 */

#if !defined __X86INTRIN_H && !defined __IMMINTRIN_H
#error "Never use <bmiintrin.h> directly; include <x86intrin.h> instead."
#endif

#ifndef __BMIINTRIN_H
#define __BMIINTRIN_H

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned short _tzcnt_u16(unsigned short a);
/// \endcode
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param a
///    An unsigned 16-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 16-bit integer containing the number of trailing zero
///    bits in the operand.
#define _tzcnt_u16(a)     (__tzcnt_u16((a)))

/// \brief Performs a bitwise AND of the second operand with the one's
///    complement of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned int _andn_u32(unsigned int a, unsigned int b);
/// \endcode
///
/// This intrinsic corresponds to the \c ANDN instruction.
///
/// \param a
///    An unsigned integer containing one of the operands.
/// \param b
///    An unsigned integer containing one of the operands.
/// \returns An unsigned integer containing the bitwise AND of the second
///    operand with the one's complement of the first operand.
#define _andn_u32(a, b)   (__andn_u32((a), (b)))

/* _bextr_u32 != __bextr_u32 */
/// \brief Clears all bits in the source except for the least significant bit
///    containing a value of 1 and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned int _blsi_u32(unsigned int a);
/// \endcode
///
/// This intrinsic corresponds to the \c BLSI instruction.
///
/// \param a
///    An unsigned integer whose bits are to be cleared.
/// \returns An unsigned integer containing the result of clearing the bits from
///    the source operand.
#define _blsi_u32(a)      (__blsi_u32((a)))

/// \brief Creates a mask whose bits are set to 1, using bit 0 up to and
///    including the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned int _blsmsk_u32(unsigned int a);
/// \endcode
///
/// This intrinsic corresponds to the \c BLSMSK instruction.
///
/// \param a
///    An unsigned integer used to create the mask.
/// \returns An unsigned integer containing the newly created mask.
#define _blsmsk_u32(a)    (__blsmsk_u32((a)))

/// \brief Clears the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned int _blsr_u32(unsigned int a);
/// \endcode
///
/// This intrinsic corresponds to the \c BLSR instruction.
///
/// \param a
///    An unsigned integer containing the operand to be cleared.
/// \returns An unsigned integer containing the result of clearing the source
///    operand.
#define _blsr_u32(a)      (__blsr_u32((a)))

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned int _tzcnt_u32(unsigned int a);
/// \endcode
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param a
///    An unsigned 32-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 32-bit integer containing the number of trailing zero
///    bits in the operand.
#define _tzcnt_u32(a)     (__tzcnt_u32((a)))

/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("bmi")))

/* Allow using the tzcnt intrinsics even for non-BMI targets. Since the TZCNT
   instruction behaves as BSF on non-BMI targets, there is code that expects
   to use it as a potentially faster version of BSF. */
#define __RELAXED_FN_ATTRS __attribute__((__always_inline__, __nodebug__))

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param __X
///    An unsigned 16-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 16-bit integer containing the number of trailing zero
///    bits in the operand.
static __inline__ unsigned short __RELAXED_FN_ATTRS
__tzcnt_u16(unsigned short __X)
{
  return __X ? __builtin_ctzs(__X) : 16;
}

/// \brief Performs a bitwise AND of the second operand with the one's
///    complement of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c ANDN instruction.
///
/// \param __X
///    An unsigned integer containing one of the operands.
/// \param __Y
///    An unsigned integer containing one of the operands.
/// \returns An unsigned integer containing the bitwise AND of the second
///    operand with the one's complement of the first operand.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__andn_u32(unsigned int __X, unsigned int __Y)
{
  return ~__X & __Y;
}

/* AMD-specified, double-leading-underscore version of BEXTR */
/// \brief Extracts the specified bits from the first operand and returns them
///    in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BEXTR instruction.
///
/// \param __X
///    An unsigned integer whose bits are to be extracted.
/// \param __Y
///    An unsigned integer used to specify which bits are extracted. Bits [7:0]
///    specify the index of the least significant bit. Bits [15:8] specify the
///    number of bits to be extracted.
/// \returns An unsigned integer whose least significant bits contain the
///    extracted bits.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__bextr_u32(unsigned int __X, unsigned int __Y)
{
  return __builtin_ia32_bextr_u32(__X, __Y);
}

/* Intel-specified, single-leading-underscore version of BEXTR */
/// \brief Extracts the specified bits from the first operand and returns them
///    in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BEXTR instruction.
///
/// \param __X
///    An unsigned integer whose bits are to be extracted.
/// \param __Y
///    An unsigned integer used to specify the index of the least significant
///    bit for the bits to be extracted. Bits [7:0] specify the index.
/// \param __Z
///    An unsigned integer used to specify the number of bits to be extracted.
///    Bits [7:0] specify the number of bits.
/// \returns An unsigned integer whose least significant bits contain the
///    extracted bits.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_bextr_u32(unsigned int __X, unsigned int __Y, unsigned int __Z)
{
  return __builtin_ia32_bextr_u32 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8)));
}

/// \brief Clears all bits in the source except for the least significant bit
///    containing a value of 1 and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BLSI instruction.
///
/// \param __X
///    An unsigned integer whose bits are to be cleared.
/// \returns An unsigned integer containing the result of clearing the bits from
///    the source operand.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__blsi_u32(unsigned int __X)
{
  return __X & -__X;
}

/// \brief Creates a mask whose bits are set to 1, using bit 0 up to and
///    including the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BLSMSK instruction.
///
/// \param __X
///    An unsigned integer used to create the mask.
/// \returns An unsigned integer containing the newly created mask.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__blsmsk_u32(unsigned int __X)
{
  return __X ^ (__X - 1);
}

/// \brief Clears the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BLSR instruction.
///
/// \param __X
///    An unsigned integer containing the operand to be cleared.
/// \returns An unsigned integer containing the result of clearing the source
///    operand.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__blsr_u32(unsigned int __X)
{
  return __X & (__X - 1);
}

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param __X
///    An unsigned 32-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 32-bit integer containing the number of trailing zero
///    bits in the operand.
static __inline__ unsigned int __RELAXED_FN_ATTRS
__tzcnt_u32(unsigned int __X)
{
  return __X ? __builtin_ctz(__X) : 32;
}

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param __X
///    An unsigned 32-bit integer whose trailing zeros are to be counted.
/// \returns An 32-bit integer containing the number of trailing zero
///    bits in the operand.
static __inline__ int __RELAXED_FN_ATTRS
_mm_tzcnt_32(unsigned int __X)
{
  return __X ? __builtin_ctz(__X) : 32;
}

#ifdef __x86_64__

/// \brief Performs a bitwise AND of the second operand with the one's
///    complement of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned long long _andn_u64 (unsigned long long a, unsigned long long b);
/// \endcode
///
/// This intrinsic corresponds to the \c ANDN instruction.
///
/// \param a
///    An unsigned 64-bit integer containing one of the operands.
/// \param b
///    An unsigned 64-bit integer containing one of the operands.
/// \returns An unsigned 64-bit integer containing the bitwise AND of the second
///    operand with the one's complement of the first operand.
#define _andn_u64(a, b)   (__andn_u64((a), (b)))

/* _bextr_u64 != __bextr_u64 */
/// \brief Clears all bits in the source except for the least significant bit
///    containing a value of 1 and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned long long _blsi_u64(unsigned long long a);
/// \endcode
///
/// This intrinsic corresponds to the \c BLSI instruction.
///
/// \param a
///    An unsigned 64-bit integer whose bits are to be cleared.
/// \returns An unsigned 64-bit integer containing the result of clearing the
///    bits from the source operand.
#define _blsi_u64(a)      (__blsi_u64((a)))

/// \brief Creates a mask whose bits are set to 1, using bit 0 up to and
///    including the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned long long _blsmsk_u64(unsigned long long a);
/// \endcode
///
/// This intrinsic corresponds to the \c BLSMSK instruction.
///
/// \param a
///    An unsigned 64-bit integer used to create the mask.
/// \returns A unsigned 64-bit integer containing the newly created mask.
#define _blsmsk_u64(a)    (__blsmsk_u64((a)))

/// \brief Clears the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned long long _blsr_u64(unsigned long long a);
/// \endcode
///
/// This intrinsic corresponds to the \c BLSR instruction.
///
/// \param a
///    An unsigned 64-bit integer containing the operand to be cleared.
/// \returns An unsigned 64-bit integer containing the result of clearing the
///    source operand.
#define _blsr_u64(a)      (__blsr_u64((a)))

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned long long _tzcnt_u64(unsigned long long a);
/// \endcode
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param a
///    An unsigned 64-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 64-bit integer containing the number of trailing zero
///    bits in the operand.
#define _tzcnt_u64(a)     (__tzcnt_u64((a)))

/// \brief Performs a bitwise AND of the second operand with the one's
///    complement of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c ANDN instruction.
///
/// \param __X
///    An unsigned 64-bit integer containing one of the operands.
/// \param __Y
///    An unsigned 64-bit integer containing one of the operands.
/// \returns An unsigned 64-bit integer containing the bitwise AND of the second
///    operand with the one's complement of the first operand.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__andn_u64 (unsigned long long __X, unsigned long long __Y)
{
  return ~__X & __Y;
}

/* AMD-specified, double-leading-underscore version of BEXTR */
/// \brief Extracts the specified bits from the first operand and returns them
///    in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BEXTR instruction.
///
/// \param __X
///    An unsigned 64-bit integer whose bits are to be extracted.
/// \param __Y
///    An unsigned 64-bit integer used to specify which bits are extracted. Bits
///    [7:0] specify the index of the least significant bit. Bits [15:8] specify
///    the number of bits to be extracted.
/// \returns An unsigned 64-bit integer whose least significant bits contain the
///    extracted bits.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__bextr_u64(unsigned long long __X, unsigned long long __Y)
{
  return __builtin_ia32_bextr_u64(__X, __Y);
}

/* Intel-specified, single-leading-underscore version of BEXTR */
/// \brief Extracts the specified bits from the first operand and returns them
///     in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BEXTR instruction.
///
/// \param __X
///    An unsigned 64-bit integer whose bits are to be extracted.
/// \param __Y
///    An unsigned integer used to specify the index of the least significant
///    bit for the bits to be extracted. Bits [7:0] specify the index.
/// \param __Z
///    An unsigned integer used to specify the number of bits to be extracted.
///    Bits [7:0] specify the number of bits.
/// \returns An unsigned 64-bit integer whose least significant bits contain the
///    extracted bits.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_bextr_u64(unsigned long long __X, unsigned int __Y, unsigned int __Z)
{
  return __builtin_ia32_bextr_u64 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8)));
}

/// \brief Clears all bits in the source except for the least significant bit
///    containing a value of 1 and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BLSI instruction.
///
/// \param __X
///    An unsigned 64-bit integer whose bits are to be cleared.
/// \returns An unsigned 64-bit integer containing the result of clearing the
///    bits from the source operand.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__blsi_u64(unsigned long long __X)
{
  return __X & -__X;
}

/// \brief Creates a mask whose bits are set to 1, using bit 0 up to and
///    including the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BLSMSK instruction.
///
/// \param __X
///    An unsigned 64-bit integer used to create the mask.
/// \returns A unsigned 64-bit integer containing the newly created mask.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__blsmsk_u64(unsigned long long __X)
{
  return __X ^ (__X - 1);
}

/// \brief Clears the least siginificant bit that is set to 1 in the source
///    operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c BLSR instruction.
///
/// \param __X
///    An unsigned 64-bit integer containing the operand to be cleared.
/// \returns An unsigned 64-bit integer containing the result of clearing the
///    source operand.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__blsr_u64(unsigned long long __X)
{
  return __X & (__X - 1);
}

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param __X
///    An unsigned 64-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 64-bit integer containing the number of trailing zero
///    bits in the operand.
static __inline__ unsigned long long __RELAXED_FN_ATTRS
__tzcnt_u64(unsigned long long __X)
{
  return __X ? __builtin_ctzll(__X) : 64;
}

/// \brief Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c TZCNT instruction.
///
/// \param __X
///    An unsigned 64-bit integer whose trailing zeros are to be counted.
/// \returns An 64-bit integer containing the number of trailing zero
///    bits in the operand.
static __inline__ long long __RELAXED_FN_ATTRS
_mm_tzcnt_64(unsigned long long __X)
{
  return __X ? __builtin_ctzll(__X) : 64;
}

#endif /* __x86_64__ */

#undef __DEFAULT_FN_ATTRS
#undef __RELAXED_FN_ATTRS

#endif /* __BMIINTRIN_H */