/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <algorithm> #include "chre/core/sensor_request.h" #include "chre/platform/assert.h" #include "chre/platform/fatal_error.h" namespace chre { namespace { Nanoseconds getBatchInterval(const SensorRequest& request) { // With capping in SensorRequest constructor, interval + latency < UINT64_MAX. // When the return value is default, request latency (instead of batch // interval) will be used to compute the merged latency. if (request.getInterval() == Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT) || request.getLatency() == Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) { return Nanoseconds(CHRE_SENSOR_BATCH_INTERVAL_DEFAULT); } else { return request.getInterval() + request.getLatency(); } } } // namespace SensorRequest::SensorRequest() : SensorRequest(SensorMode::Off, Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT), Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) {} SensorRequest::SensorRequest(SensorMode mode, Nanoseconds interval, Nanoseconds latency) : SensorRequest(nullptr /* nanoapp */, mode, interval, latency) {} SensorRequest::SensorRequest(Nanoapp *nanoapp, SensorMode mode, Nanoseconds interval, Nanoseconds latency) : mNanoapp(nanoapp), mInterval(interval), mLatency(latency), mMode(mode) { // cap non-default interval/latency to ensure no overflow in CHRE internal // operations. if (interval != Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT)) { mInterval = std::min(interval, Nanoseconds(kMaxIntervalLatencyNs)); } if (latency != Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) { mLatency = std::min(latency, Nanoseconds(kMaxIntervalLatencyNs)); } } bool SensorRequest::isEquivalentTo(const SensorRequest& request) const { return (mMode == request.mMode && mInterval == request.mInterval && mLatency == request.mLatency); } bool SensorRequest::mergeWith(const SensorRequest& request) { bool attributesChanged = false; if (request.mMode != SensorMode::Off) { // Calculate minimum batch interval before mInterval is modified. Nanoseconds batchInterval = std::min(getBatchInterval(*this), getBatchInterval(request)); if (request.mInterval < mInterval) { mInterval = request.mInterval; attributesChanged = true; } if (batchInterval == Nanoseconds(CHRE_SENSOR_BATCH_INTERVAL_DEFAULT)) { // If batchInterval is default, it can't be effectively calculated. // Use request.mLatency for more aggressive latency merging in this case. Nanoseconds latency = request.mLatency; if (latency < mLatency) { mLatency = latency; attributesChanged = true; } } else { Nanoseconds latency = (batchInterval - mInterval); // Note that while batchInterval can only shrink after merging, latency // can grow if the merged interval is lower. // Also, it's guaranteed that latency <= kMaxIntervalLatencyNs. if (latency != mLatency) { mLatency = latency; attributesChanged = true; } } // Compute the highest priority mode. Active continuous is the highest // priority and passive one-shot is the lowest. SensorMode maximalSensorMode = SensorMode::Off; if (mMode == SensorMode::ActiveContinuous || request.mMode == SensorMode::ActiveContinuous) { maximalSensorMode = SensorMode::ActiveContinuous; } else if (mMode == SensorMode::ActiveOneShot || request.mMode == SensorMode::ActiveOneShot) { maximalSensorMode = SensorMode::ActiveOneShot; } else if (mMode == SensorMode::PassiveContinuous || request.mMode == SensorMode::PassiveContinuous) { maximalSensorMode = SensorMode::PassiveContinuous; } else if (mMode == SensorMode::PassiveOneShot || request.mMode == SensorMode::PassiveOneShot) { maximalSensorMode = SensorMode::PassiveOneShot; } else { CHRE_ASSERT(false); } if (mMode != maximalSensorMode) { mMode = maximalSensorMode; attributesChanged = true; } } return attributesChanged; } } // namespace chre