/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_HIDL_SUPPORT_H #define ANDROID_HIDL_SUPPORT_H #include <algorithm> #include <array> #include <iterator> #include <cutils/native_handle.h> #include <hidl/HidlInternal.h> #include <hidl/Status.h> #include <map> #include <sstream> #include <stddef.h> #include <tuple> #include <type_traits> #include <utils/Errors.h> #include <utils/RefBase.h> #include <utils/StrongPointer.h> #include <vector> namespace android { // this file is included by all hidl interface, so we must forward declare the // IMemory and IBase types. namespace hidl { namespace memory { namespace V1_0 { struct IMemory; }; // namespace V1_0 }; // namespace manager }; // namespace hidl namespace hidl { namespace base { namespace V1_0 { struct IBase; }; // namespace V1_0 }; // namespace base }; // namespace hidl namespace hardware { namespace details { // Return true on userdebug / eng builds and false on user builds. bool debuggable(); } // namespace details // hidl_death_recipient is a callback interfaced that can be used with // linkToDeath() / unlinkToDeath() struct hidl_death_recipient : public virtual RefBase { virtual void serviceDied(uint64_t cookie, const ::android::wp<::android::hidl::base::V1_0::IBase>& who) = 0; }; // hidl_handle wraps a pointer to a native_handle_t in a hidl_pointer, // so that it can safely be transferred between 32-bit and 64-bit processes. // The ownership semantics for this are: // 1) The conversion constructor and assignment operator taking a const native_handle_t* // do not take ownership of the handle; this is because these operations are usually // just done for IPC, and cloning by default is a waste of resources. If you want // a hidl_handle to take ownership, call setTo(handle, true /*shouldOwn*/); // 2) The copy constructor/assignment operator taking a hidl_handle *DO* take ownership; // that is because it's not intuitive that this class encapsulates a native_handle_t // which needs cloning to be valid; in particular, this allows constructs like this: // hidl_handle copy; // foo->someHidlCall([&](auto incoming_handle) { // copy = incoming_handle; // }); // // copy and its enclosed file descriptors will remain valid here. // 3) The move constructor does what you would expect; it only owns the handle if the // original did. struct hidl_handle { hidl_handle(); ~hidl_handle(); hidl_handle(const native_handle_t *handle); // copy constructor. hidl_handle(const hidl_handle &other); // move constructor. hidl_handle(hidl_handle &&other) noexcept; // assignment operators hidl_handle &operator=(const hidl_handle &other); hidl_handle &operator=(const native_handle_t *native_handle); hidl_handle &operator=(hidl_handle &&other) noexcept; void setTo(native_handle_t* handle, bool shouldOwn = false); const native_handle_t* operator->() const; // implicit conversion to const native_handle_t* operator const native_handle_t *() const; // explicit conversion const native_handle_t *getNativeHandle() const; private: void freeHandle(); details::hidl_pointer<const native_handle_t> mHandle __attribute__ ((aligned(8))); bool mOwnsHandle __attribute ((aligned(8))); }; struct hidl_string { hidl_string(); ~hidl_string(); // copy constructor. hidl_string(const hidl_string &); // copy from a C-style string. nullptr will create an empty string hidl_string(const char *); // copy the first length characters from a C-style string. hidl_string(const char *, size_t length); // copy from an std::string. hidl_string(const std::string &); // move constructor. hidl_string(hidl_string &&) noexcept; const char *c_str() const; size_t size() const; bool empty() const; // copy assignment operator. hidl_string &operator=(const hidl_string &); // copy from a C-style string. hidl_string &operator=(const char *s); // copy from an std::string. hidl_string &operator=(const std::string &); // move assignment operator. hidl_string &operator=(hidl_string &&other) noexcept; // cast to std::string. operator std::string() const; void clear(); // Reference an external char array. Ownership is _not_ transferred. // Caller is responsible for ensuring that underlying memory is valid // for the lifetime of this hidl_string. void setToExternal(const char *data, size_t size); // offsetof(hidl_string, mBuffer) exposed since mBuffer is private. static const size_t kOffsetOfBuffer; private: details::hidl_pointer<const char> mBuffer; uint32_t mSize; // NOT including the terminating '\0'. bool mOwnsBuffer; // if true then mBuffer is a mutable char * // copy from data with size. Assume that my memory is freed // (through clear(), for example) void copyFrom(const char *data, size_t size); // move from another hidl_string void moveFrom(hidl_string &&); }; // Use NOLINT to suppress missing parentheses warnings around OP. #define HIDL_STRING_OPERATOR(OP) \ inline bool operator OP(const hidl_string& hs1, const hidl_string& hs2) { \ return strcmp(hs1.c_str(), hs2.c_str()) OP 0; /* NOLINT */ \ } \ inline bool operator OP(const hidl_string& hs, const char* s) { \ return strcmp(hs.c_str(), s) OP 0; /* NOLINT */ \ } \ inline bool operator OP(const char* s, const hidl_string& hs) { \ return strcmp(s, hs.c_str()) OP 0; /* NOLINT */ \ } HIDL_STRING_OPERATOR(==) HIDL_STRING_OPERATOR(!=) HIDL_STRING_OPERATOR(<) HIDL_STRING_OPERATOR(<=) HIDL_STRING_OPERATOR(>) HIDL_STRING_OPERATOR(>=) #undef HIDL_STRING_OPERATOR // Send our content to the output stream std::ostream& operator<<(std::ostream& os, const hidl_string& str); // hidl_memory is a structure that can be used to transfer // pieces of shared memory between processes. The assumption // of this object is that the memory remains accessible as // long as the file descriptors in the enclosed mHandle // - as well as all of its cross-process dups() - remain opened. struct hidl_memory { hidl_memory() : mHandle(nullptr), mSize(0), mName("") { } /** * Creates a hidl_memory object whose handle has the same lifetime * as the handle moved into it. */ hidl_memory(const hidl_string& name, hidl_handle&& handle, size_t size) : mHandle(std::move(handle)), mSize(size), mName(name) {} /** * Creates a hidl_memory object, but doesn't take ownership of * the passed in native_handle_t; callers are responsible for * making sure the handle remains valid while this object is * used. */ hidl_memory(const hidl_string &name, const native_handle_t *handle, size_t size) : mHandle(handle), mSize(size), mName(name) {} // copy constructor hidl_memory(const hidl_memory& other) { *this = other; } // copy assignment hidl_memory &operator=(const hidl_memory &other) { if (this != &other) { mHandle = other.mHandle; mSize = other.mSize; mName = other.mName; } return *this; } // move constructor hidl_memory(hidl_memory&& other) noexcept { *this = std::move(other); } // move assignment hidl_memory &operator=(hidl_memory &&other) noexcept { if (this != &other) { mHandle = std::move(other.mHandle); mSize = other.mSize; mName = std::move(other.mName); other.mSize = 0; } return *this; } ~hidl_memory() { } const native_handle_t* handle() const { return mHandle; } const hidl_string &name() const { return mName; } uint64_t size() const { return mSize; } // @return true if it's valid inline bool valid() const { return handle() != nullptr; } // offsetof(hidl_memory, mHandle) exposed since mHandle is private. static const size_t kOffsetOfHandle; // offsetof(hidl_memory, mName) exposed since mHandle is private. static const size_t kOffsetOfName; private: hidl_handle mHandle __attribute__ ((aligned(8))); uint64_t mSize __attribute__ ((aligned(8))); hidl_string mName __attribute__ ((aligned(8))); }; // HidlMemory is a wrapper class to support sp<> for hidl_memory. It also // provides factory methods to create an instance from hidl_memory or // from a opened file descriptor. The number of factory methods can be increase // to support other type of hidl_memory without break the ABI. class HidlMemory : public virtual hidl_memory, public virtual ::android::RefBase { public: static sp<HidlMemory> getInstance(const hidl_memory& mem); static sp<HidlMemory> getInstance(hidl_memory&& mem); static sp<HidlMemory> getInstance(const hidl_string& name, hidl_handle&& handle, uint64_t size); // @param fd, shall be opened and points to the resource. // @note this method takes the ownership of the fd and will close it in // destructor // @return nullptr in failure with the fd closed static sp<HidlMemory> getInstance(const hidl_string& name, int fd, uint64_t size); virtual ~HidlMemory(); protected: HidlMemory(); HidlMemory(const hidl_string& name, hidl_handle&& handle, size_t size); }; //////////////////////////////////////////////////////////////////////////////// template<typename T> struct hidl_vec { hidl_vec() : mBuffer(nullptr), mSize(0), mOwnsBuffer(true) { static_assert(hidl_vec<T>::kOffsetOfBuffer == 0, "wrong offset"); } // Note, does not initialize primitive types. hidl_vec(size_t size) : hidl_vec() { resize(size); } hidl_vec(const hidl_vec<T> &other) : hidl_vec() { *this = other; } hidl_vec(hidl_vec<T> &&other) noexcept : mOwnsBuffer(false) { *this = std::move(other); } hidl_vec(const std::initializer_list<T> list) : mOwnsBuffer(true) { if (list.size() > UINT32_MAX) { details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements."); } mSize = static_cast<uint32_t>(list.size()); mBuffer = new T[mSize]; size_t idx = 0; for (auto it = list.begin(); it != list.end(); ++it) { mBuffer[idx++] = *it; } } hidl_vec(const std::vector<T> &other) : hidl_vec() { *this = other; } template <typename InputIterator, typename = typename std::enable_if<std::is_convertible< typename std::iterator_traits<InputIterator>::iterator_category, std::input_iterator_tag>::value>::type> hidl_vec(InputIterator first, InputIterator last) : mOwnsBuffer(true) { auto size = std::distance(first, last); if (size > static_cast<int64_t>(UINT32_MAX)) { details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements."); } if (size < 0) { details::logAlwaysFatal("size can't be negative."); } mSize = static_cast<uint32_t>(size); mBuffer = new T[mSize]; size_t idx = 0; for (; first != last; ++first) { mBuffer[idx++] = static_cast<T>(*first); } } ~hidl_vec() { if (mOwnsBuffer) { delete[] mBuffer; } mBuffer = nullptr; } // Reference an existing array, optionally taking ownership. It is the // caller's responsibility to ensure that the underlying memory stays // valid for the lifetime of this hidl_vec. void setToExternal(T *data, size_t size, bool shouldOwn = false) { if (mOwnsBuffer) { delete [] mBuffer; } mBuffer = data; if (size > UINT32_MAX) { details::logAlwaysFatal("external vector size exceeds 2^32 elements."); } mSize = static_cast<uint32_t>(size); mOwnsBuffer = shouldOwn; } T *data() { return mBuffer; } const T *data() const { return mBuffer; } T *releaseData() { if (!mOwnsBuffer && mSize > 0) { resize(mSize); } mOwnsBuffer = false; return mBuffer; } hidl_vec &operator=(hidl_vec &&other) noexcept { if (mOwnsBuffer) { delete[] mBuffer; } mBuffer = other.mBuffer; mSize = other.mSize; mOwnsBuffer = other.mOwnsBuffer; other.mOwnsBuffer = false; return *this; } hidl_vec &operator=(const hidl_vec &other) { if (this != &other) { if (mOwnsBuffer) { delete[] mBuffer; } copyFrom(other, other.mSize); } return *this; } // copy from an std::vector. hidl_vec &operator=(const std::vector<T> &other) { if (mOwnsBuffer) { delete[] mBuffer; } copyFrom(other, other.size()); return *this; } // cast to an std::vector. operator std::vector<T>() const { std::vector<T> v(mSize); for (size_t i = 0; i < mSize; ++i) { v[i] = mBuffer[i]; } return v; } // equality check, assuming that T::operator== is defined. bool operator==(const hidl_vec &other) const { if (mSize != other.size()) { return false; } for (size_t i = 0; i < mSize; ++i) { if (!(mBuffer[i] == other.mBuffer[i])) { return false; } } return true; } // inequality check, assuming that T::operator== is defined. inline bool operator!=(const hidl_vec &other) const { return !((*this) == other); } size_t size() const { return mSize; } T &operator[](size_t index) { return mBuffer[index]; } const T &operator[](size_t index) const { return mBuffer[index]; } // Does not initialize primitive types if new size > old size. void resize(size_t size) { if (size > UINT32_MAX) { details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements."); } T *newBuffer = new T[size]; for (size_t i = 0; i < std::min(static_cast<uint32_t>(size), mSize); ++i) { newBuffer[i] = mBuffer[i]; } if (mOwnsBuffer) { delete[] mBuffer; } mBuffer = newBuffer; mSize = static_cast<uint32_t>(size); mOwnsBuffer = true; } // offsetof(hidl_string, mBuffer) exposed since mBuffer is private. static const size_t kOffsetOfBuffer; private: // Define std interator interface for walking the array contents template<bool is_const> class iter : public std::iterator< std::random_access_iterator_tag, /* Category */ T, ptrdiff_t, /* Distance */ typename std::conditional<is_const, const T *, T *>::type /* Pointer */, typename std::conditional<is_const, const T &, T &>::type /* Reference */> { using traits = std::iterator_traits<iter>; using ptr_type = typename traits::pointer; using ref_type = typename traits::reference; using diff_type = typename traits::difference_type; public: iter(ptr_type ptr) : mPtr(ptr) { } inline iter &operator++() { mPtr++; return *this; } inline iter operator++(int) { iter i = *this; mPtr++; return i; } inline iter &operator--() { mPtr--; return *this; } inline iter operator--(int) { iter i = *this; mPtr--; return i; } inline friend iter operator+(diff_type n, const iter &it) { return it.mPtr + n; } inline iter operator+(diff_type n) const { return mPtr + n; } inline iter operator-(diff_type n) const { return mPtr - n; } inline diff_type operator-(const iter &other) const { return mPtr - other.mPtr; } inline iter &operator+=(diff_type n) { mPtr += n; return *this; } inline iter &operator-=(diff_type n) { mPtr -= n; return *this; } inline ref_type operator*() const { return *mPtr; } inline ptr_type operator->() const { return mPtr; } inline bool operator==(const iter &rhs) const { return mPtr == rhs.mPtr; } inline bool operator!=(const iter &rhs) const { return mPtr != rhs.mPtr; } inline bool operator< (const iter &rhs) const { return mPtr < rhs.mPtr; } inline bool operator> (const iter &rhs) const { return mPtr > rhs.mPtr; } inline bool operator<=(const iter &rhs) const { return mPtr <= rhs.mPtr; } inline bool operator>=(const iter &rhs) const { return mPtr >= rhs.mPtr; } inline ref_type operator[](size_t n) const { return mPtr[n]; } private: ptr_type mPtr; }; public: using iterator = iter<false /* is_const */>; using const_iterator = iter<true /* is_const */>; iterator begin() { return data(); } iterator end() { return data()+mSize; } const_iterator begin() const { return data(); } const_iterator end() const { return data()+mSize; } private: details::hidl_pointer<T> mBuffer; uint32_t mSize; bool mOwnsBuffer; // copy from an array-like object, assuming my resources are freed. template <typename Array> void copyFrom(const Array &data, size_t size) { mSize = static_cast<uint32_t>(size); mOwnsBuffer = true; if (mSize > 0) { mBuffer = new T[size]; for (size_t i = 0; i < size; ++i) { mBuffer[i] = data[i]; } } else { mBuffer = nullptr; } } }; template <typename T> const size_t hidl_vec<T>::kOffsetOfBuffer = offsetof(hidl_vec<T>, mBuffer); //////////////////////////////////////////////////////////////////////////////// namespace details { template<size_t SIZE1, size_t... SIZES> struct product { static constexpr size_t value = SIZE1 * product<SIZES...>::value; }; template<size_t SIZE1> struct product<SIZE1> { static constexpr size_t value = SIZE1; }; template<typename T, size_t SIZE1, size_t... SIZES> struct std_array { using type = std::array<typename std_array<T, SIZES...>::type, SIZE1>; }; template<typename T, size_t SIZE1> struct std_array<T, SIZE1> { using type = std::array<T, SIZE1>; }; template<typename T, size_t SIZE1, size_t... SIZES> struct accessor { using std_array_type = typename std_array<T, SIZE1, SIZES...>::type; explicit accessor(T *base) : mBase(base) { } accessor<T, SIZES...> operator[](size_t index) { return accessor<T, SIZES...>( &mBase[index * product<SIZES...>::value]); } accessor &operator=(const std_array_type &other) { for (size_t i = 0; i < SIZE1; ++i) { (*this)[i] = other[i]; } return *this; } private: T *mBase; }; template<typename T, size_t SIZE1> struct accessor<T, SIZE1> { using std_array_type = typename std_array<T, SIZE1>::type; explicit accessor(T *base) : mBase(base) { } T &operator[](size_t index) { return mBase[index]; } accessor &operator=(const std_array_type &other) { for (size_t i = 0; i < SIZE1; ++i) { (*this)[i] = other[i]; } return *this; } private: T *mBase; }; template<typename T, size_t SIZE1, size_t... SIZES> struct const_accessor { using std_array_type = typename std_array<T, SIZE1, SIZES...>::type; explicit const_accessor(const T *base) : mBase(base) { } const_accessor<T, SIZES...> operator[](size_t index) const { return const_accessor<T, SIZES...>( &mBase[index * product<SIZES...>::value]); } operator std_array_type() { std_array_type array; for (size_t i = 0; i < SIZE1; ++i) { array[i] = (*this)[i]; } return array; } private: const T *mBase; }; template<typename T, size_t SIZE1> struct const_accessor<T, SIZE1> { using std_array_type = typename std_array<T, SIZE1>::type; explicit const_accessor(const T *base) : mBase(base) { } const T &operator[](size_t index) const { return mBase[index]; } operator std_array_type() { std_array_type array; for (size_t i = 0; i < SIZE1; ++i) { array[i] = (*this)[i]; } return array; } private: const T *mBase; }; } // namespace details //////////////////////////////////////////////////////////////////////////////// // A multidimensional array of T's. Assumes that T::operator=(const T &) is defined. template<typename T, size_t SIZE1, size_t... SIZES> struct hidl_array { using std_array_type = typename details::std_array<T, SIZE1, SIZES...>::type; hidl_array() = default; // Copies the data from source, using T::operator=(const T &). hidl_array(const T *source) { for (size_t i = 0; i < elementCount(); ++i) { mBuffer[i] = source[i]; } } // Copies the data from the given std::array, using T::operator=(const T &). hidl_array(const std_array_type &array) { details::accessor<T, SIZE1, SIZES...> modifier(mBuffer); modifier = array; } T *data() { return mBuffer; } const T *data() const { return mBuffer; } details::accessor<T, SIZES...> operator[](size_t index) { return details::accessor<T, SIZES...>( &mBuffer[index * details::product<SIZES...>::value]); } details::const_accessor<T, SIZES...> operator[](size_t index) const { return details::const_accessor<T, SIZES...>( &mBuffer[index * details::product<SIZES...>::value]); } // equality check, assuming that T::operator== is defined. bool operator==(const hidl_array &other) const { for (size_t i = 0; i < elementCount(); ++i) { if (!(mBuffer[i] == other.mBuffer[i])) { return false; } } return true; } inline bool operator!=(const hidl_array &other) const { return !((*this) == other); } using size_tuple_type = std::tuple<decltype(SIZE1), decltype(SIZES)...>; static constexpr size_tuple_type size() { return std::make_tuple(SIZE1, SIZES...); } static constexpr size_t elementCount() { return details::product<SIZE1, SIZES...>::value; } operator std_array_type() const { return details::const_accessor<T, SIZE1, SIZES...>(mBuffer); } private: T mBuffer[elementCount()]; }; // An array of T's. Assumes that T::operator=(const T &) is defined. template<typename T, size_t SIZE1> struct hidl_array<T, SIZE1> { using std_array_type = typename details::std_array<T, SIZE1>::type; hidl_array() = default; // Copies the data from source, using T::operator=(const T &). hidl_array(const T *source) { for (size_t i = 0; i < elementCount(); ++i) { mBuffer[i] = source[i]; } } // Copies the data from the given std::array, using T::operator=(const T &). hidl_array(const std_array_type &array) : hidl_array(array.data()) {} T *data() { return mBuffer; } const T *data() const { return mBuffer; } T &operator[](size_t index) { return mBuffer[index]; } const T &operator[](size_t index) const { return mBuffer[index]; } // equality check, assuming that T::operator== is defined. bool operator==(const hidl_array &other) const { for (size_t i = 0; i < elementCount(); ++i) { if (!(mBuffer[i] == other.mBuffer[i])) { return false; } } return true; } inline bool operator!=(const hidl_array &other) const { return !((*this) == other); } static constexpr size_t size() { return SIZE1; } static constexpr size_t elementCount() { return SIZE1; } // Copies the data to an std::array, using T::operator=(T). operator std_array_type() const { std_array_type array; for (size_t i = 0; i < SIZE1; ++i) { array[i] = mBuffer[i]; } return array; } private: T mBuffer[SIZE1]; }; // ---------------------------------------------------------------------- // Version functions struct hidl_version { public: constexpr hidl_version(uint16_t major, uint16_t minor) : mMajor(major), mMinor(minor) {} bool operator==(const hidl_version& other) const { return (mMajor == other.get_major() && mMinor == other.get_minor()); } bool operator<(const hidl_version& other) const { return (mMajor < other.get_major() || (mMajor == other.get_major() && mMinor < other.get_minor())); } bool operator>(const hidl_version& other) const { return other < *this; } bool operator<=(const hidl_version& other) const { return !(*this > other); } bool operator>=(const hidl_version& other) const { return !(*this < other); } constexpr uint16_t get_major() const { return mMajor; } constexpr uint16_t get_minor() const { return mMinor; } private: uint16_t mMajor; uint16_t mMinor; }; inline android::hardware::hidl_version make_hidl_version(uint16_t major, uint16_t minor) { return hidl_version(major,minor); } ///////////////////// toString functions std::string toString(const void *t); // toString alias for numeric types template<typename T, typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type> inline std::string toString(T t) { return std::to_string(t); } namespace details { template<typename T, typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type> inline std::string toHexString(T t, bool prefix = true) { std::ostringstream os; if (prefix) { os << std::showbase; } os << std::hex << t; return os.str(); } template<> inline std::string toHexString(uint8_t t, bool prefix) { return toHexString(static_cast<int32_t>(t), prefix); } template<> inline std::string toHexString(int8_t t, bool prefix) { return toHexString(static_cast<int32_t>(t), prefix); } template<typename Array> std::string arrayToString(const Array &a, size_t size); template<size_t SIZE1> std::string arraySizeToString() { return std::string{"["} + toString(SIZE1) + "]"; } template<size_t SIZE1, size_t SIZE2, size_t... SIZES> std::string arraySizeToString() { return std::string{"["} + toString(SIZE1) + "]" + arraySizeToString<SIZE2, SIZES...>(); } template<typename T, size_t SIZE1> std::string toString(details::const_accessor<T, SIZE1> a) { return arrayToString(a, SIZE1); } template<typename Array> std::string arrayToString(const Array &a, size_t size) { using android::hardware::toString; std::string os; os += "{"; for (size_t i = 0; i < size; ++i) { if (i > 0) { os += ", "; } os += toString(a[i]); } os += "}"; return os; } template<typename T, size_t SIZE1, size_t SIZE2, size_t... SIZES> std::string toString(details::const_accessor<T, SIZE1, SIZE2, SIZES...> a) { return arrayToString(a, SIZE1); } } //namespace details inline std::string toString(const void *t) { return details::toHexString(reinterpret_cast<uintptr_t>(t)); } // debug string dump. There will be quotes around the string! inline std::string toString(const hidl_string &hs) { return std::string{"\""} + hs.c_str() + "\""; } // debug string dump inline std::string toString(const hidl_handle &hs) { return toString(hs.getNativeHandle()); } inline std::string toString(const hidl_memory &mem) { return std::string{"memory {.name = "} + toString(mem.name()) + ", .size = " + toString(mem.size()) + ", .handle = " + toString(mem.handle()) + "}"; } inline std::string toString(const sp<hidl_death_recipient> &dr) { return std::string{"death_recipient@"} + toString(dr.get()); } // debug string dump, assuming that toString(T) is defined. template<typename T> std::string toString(const hidl_vec<T> &a) { std::string os; os += "[" + toString(a.size()) + "]"; os += details::arrayToString(a, a.size()); return os; } template<typename T, size_t SIZE1> std::string toString(const hidl_array<T, SIZE1> &a) { return details::arraySizeToString<SIZE1>() + details::toString(details::const_accessor<T, SIZE1>(a.data())); } template<typename T, size_t SIZE1, size_t SIZE2, size_t... SIZES> std::string toString(const hidl_array<T, SIZE1, SIZE2, SIZES...> &a) { return details::arraySizeToString<SIZE1, SIZE2, SIZES...>() + details::toString(details::const_accessor<T, SIZE1, SIZE2, SIZES...>(a.data())); } /** * Every HIDL generated enum generates an implementation of this function. * E.x.: for(const auto v : hidl_enum_iterator<Enum>) { ... } */ template <typename> struct hidl_enum_iterator; /** * Bitfields in HIDL are the underlying type of the enumeration. */ template <typename Enum> using hidl_bitfield = typename std::underlying_type<Enum>::type; } // namespace hardware } // namespace android #endif // ANDROID_HIDL_SUPPORT_H