/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "keystore" #include "auth_token_table.h" #include <assert.h> #include <time.h> #include <algorithm> #include <cutils/log.h> namespace keystore { template <typename IntType, uint32_t byteOrder> struct choose_hton; template <typename IntType> struct choose_hton<IntType, __ORDER_LITTLE_ENDIAN__> { inline static IntType hton(const IntType& value) { IntType result = 0; const unsigned char* inbytes = reinterpret_cast<const unsigned char*>(&value); unsigned char* outbytes = reinterpret_cast<unsigned char*>(&result); for (int i = sizeof(IntType) - 1; i >= 0; --i) { *(outbytes++) = inbytes[i]; } return result; } }; template <typename IntType> struct choose_hton<IntType, __ORDER_BIG_ENDIAN__> { inline static IntType hton(const IntType& value) { return value; } }; template <typename IntType> inline IntType hton(const IntType& value) { return choose_hton<IntType, __BYTE_ORDER__>::hton(value); } template <typename IntType> inline IntType ntoh(const IntType& value) { // same operation and hton return choose_hton<IntType, __BYTE_ORDER__>::hton(value); } // // Some trivial template wrappers around std algorithms, so they take containers not ranges. // template <typename Container, typename Predicate> typename Container::iterator find_if(Container& container, Predicate pred) { return std::find_if(container.begin(), container.end(), pred); } template <typename Container, typename Predicate> typename Container::iterator remove_if(Container& container, Predicate pred) { return std::remove_if(container.begin(), container.end(), pred); } template <typename Container> typename Container::iterator min_element(Container& container) { return std::min_element(container.begin(), container.end()); } time_t clock_gettime_raw() { struct timespec time; clock_gettime(CLOCK_MONOTONIC_RAW, &time); return time.tv_sec; } void AuthTokenTable::AddAuthenticationToken(HardwareAuthToken&& auth_token) { Entry new_entry(std::move(auth_token), clock_function_()); // STOPSHIP: debug only, to be removed ALOGD("AddAuthenticationToken: timestamp = %llu, time_received = %lld", static_cast<unsigned long long>(new_entry.token().timestamp), static_cast<long long>(new_entry.time_received())); RemoveEntriesSupersededBy(new_entry); if (entries_.size() >= max_entries_) { ALOGW("Auth token table filled up; replacing oldest entry"); *min_element(entries_) = std::move(new_entry); } else { entries_.push_back(std::move(new_entry)); } } inline bool is_secret_key_operation(Algorithm algorithm, KeyPurpose purpose) { if ((algorithm != Algorithm::RSA && algorithm != Algorithm::EC)) return true; if (purpose == KeyPurpose::SIGN || purpose == KeyPurpose::DECRYPT) return true; return false; } inline bool KeyRequiresAuthentication(const AuthorizationSet& key_info, KeyPurpose purpose) { auto algorithm = defaultOr(key_info.GetTagValue(TAG_ALGORITHM), Algorithm::AES); return is_secret_key_operation(algorithm, purpose) && key_info.find(Tag::NO_AUTH_REQUIRED) == -1; } inline bool KeyRequiresAuthPerOperation(const AuthorizationSet& key_info, KeyPurpose purpose) { auto algorithm = defaultOr(key_info.GetTagValue(TAG_ALGORITHM), Algorithm::AES); return is_secret_key_operation(algorithm, purpose) && key_info.find(Tag::AUTH_TIMEOUT) == -1; } AuthTokenTable::Error AuthTokenTable::FindAuthorization(const AuthorizationSet& key_info, KeyPurpose purpose, uint64_t op_handle, const HardwareAuthToken** found) { if (!KeyRequiresAuthentication(key_info, purpose)) return AUTH_NOT_REQUIRED; auto auth_type = defaultOr(key_info.GetTagValue(TAG_USER_AUTH_TYPE), HardwareAuthenticatorType::NONE); std::vector<uint64_t> key_sids; ExtractSids(key_info, &key_sids); if (KeyRequiresAuthPerOperation(key_info, purpose)) return FindAuthPerOpAuthorization(key_sids, auth_type, op_handle, found); else return FindTimedAuthorization(key_sids, auth_type, key_info, found); } AuthTokenTable::Error AuthTokenTable::FindAuthPerOpAuthorization(const std::vector<uint64_t>& sids, HardwareAuthenticatorType auth_type, uint64_t op_handle, const HardwareAuthToken** found) { if (op_handle == 0) return OP_HANDLE_REQUIRED; auto matching_op = find_if( entries_, [&](Entry& e) { return e.token().challenge == op_handle && !e.completed(); }); if (matching_op == entries_.end()) return AUTH_TOKEN_NOT_FOUND; if (!matching_op->SatisfiesAuth(sids, auth_type)) return AUTH_TOKEN_WRONG_SID; *found = &matching_op->token(); return OK; } AuthTokenTable::Error AuthTokenTable::FindTimedAuthorization(const std::vector<uint64_t>& sids, HardwareAuthenticatorType auth_type, const AuthorizationSet& key_info, const HardwareAuthToken** found) { Entry* newest_match = NULL; for (auto& entry : entries_) if (entry.SatisfiesAuth(sids, auth_type) && entry.is_newer_than(newest_match)) newest_match = &entry; if (!newest_match) return AUTH_TOKEN_NOT_FOUND; auto timeout = defaultOr(key_info.GetTagValue(TAG_AUTH_TIMEOUT), 0); time_t now = clock_function_(); if (static_cast<int64_t>(newest_match->time_received()) + timeout < static_cast<int64_t>(now)) return AUTH_TOKEN_EXPIRED; if (key_info.GetTagValue(TAG_ALLOW_WHILE_ON_BODY).isOk()) { if (static_cast<int64_t>(newest_match->time_received()) < static_cast<int64_t>(last_off_body_)) { return AUTH_TOKEN_EXPIRED; } } newest_match->UpdateLastUse(now); *found = &newest_match->token(); return OK; } void AuthTokenTable::ExtractSids(const AuthorizationSet& key_info, std::vector<uint64_t>* sids) { assert(sids); for (auto& param : key_info) if (param.tag == Tag::USER_SECURE_ID) sids->push_back(authorizationValue(TAG_USER_SECURE_ID, param).value()); } void AuthTokenTable::RemoveEntriesSupersededBy(const Entry& entry) { entries_.erase(remove_if(entries_, [&](Entry& e) { return entry.Supersedes(e); }), entries_.end()); } void AuthTokenTable::onDeviceOffBody() { last_off_body_ = clock_function_(); } void AuthTokenTable::Clear() { entries_.clear(); } bool AuthTokenTable::IsSupersededBySomeEntry(const Entry& entry) { return std::any_of(entries_.begin(), entries_.end(), [&](Entry& e) { return e.Supersedes(entry); }); } void AuthTokenTable::MarkCompleted(const uint64_t op_handle) { auto found = find_if(entries_, [&](Entry& e) { return e.token().challenge == op_handle; }); if (found == entries_.end()) return; assert(!IsSupersededBySomeEntry(*found)); found->mark_completed(); if (IsSupersededBySomeEntry(*found)) entries_.erase(found); } AuthTokenTable::Entry::Entry(HardwareAuthToken&& token, time_t current_time) : token_(std::move(token)), time_received_(current_time), last_use_(current_time), operation_completed_(token_.challenge == 0) {} bool AuthTokenTable::Entry::SatisfiesAuth(const std::vector<uint64_t>& sids, HardwareAuthenticatorType auth_type) { for (auto sid : sids) { if (SatisfiesAuth(sid, auth_type)) return true; } return false; } void AuthTokenTable::Entry::UpdateLastUse(time_t time) { this->last_use_ = time; } bool AuthTokenTable::Entry::Supersedes(const Entry& entry) const { if (!entry.completed()) return false; return (token_.userId == entry.token_.userId && token_.authenticatorType == entry.token_.authenticatorType && token_.authenticatorId == entry.token_.authenticatorId && is_newer_than(&entry)); } } // namespace keystore