/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "keystore" #include "keymaster_enforcement.h" #include <assert.h> #include <inttypes.h> #include <limits.h> #include <string.h> #include <openssl/evp.h> #include <cutils/log.h> #include <hardware/hw_auth_token.h> #include <list> #include <keystore/keystore_hidl_support.h> namespace keystore { class AccessTimeMap { public: explicit AccessTimeMap(uint32_t max_size) : max_size_(max_size) {} /* If the key is found, returns true and fills \p last_access_time. If not found returns * false. */ bool LastKeyAccessTime(km_id_t keyid, uint32_t* last_access_time) const; /* Updates the last key access time with the currentTime parameter. Adds the key if * needed, returning false if key cannot be added because list is full. */ bool UpdateKeyAccessTime(km_id_t keyid, uint32_t current_time, uint32_t timeout); private: struct AccessTime { km_id_t keyid; uint32_t access_time; uint32_t timeout; }; std::list<AccessTime> last_access_list_; const uint32_t max_size_; }; class AccessCountMap { public: explicit AccessCountMap(uint32_t max_size) : max_size_(max_size) {} /* If the key is found, returns true and fills \p count. If not found returns * false. */ bool KeyAccessCount(km_id_t keyid, uint32_t* count) const; /* Increments key access count, adding an entry if the key has never been used. Returns * false if the list has reached maximum size. */ bool IncrementKeyAccessCount(km_id_t keyid); private: struct AccessCount { km_id_t keyid; uint64_t access_count; }; std::list<AccessCount> access_count_list_; const uint32_t max_size_; }; bool is_public_key_algorithm(const AuthorizationSet& auth_set) { auto algorithm = auth_set.GetTagValue(TAG_ALGORITHM); return algorithm.isOk() && (algorithm.value() == Algorithm::RSA || algorithm.value() == Algorithm::EC); } static ErrorCode authorized_purpose(const KeyPurpose purpose, const AuthorizationSet& auth_set) { switch (purpose) { case KeyPurpose::VERIFY: case KeyPurpose::ENCRYPT: case KeyPurpose::SIGN: case KeyPurpose::DECRYPT: if (auth_set.Contains(TAG_PURPOSE, purpose)) return ErrorCode::OK; return ErrorCode::INCOMPATIBLE_PURPOSE; default: return ErrorCode::UNSUPPORTED_PURPOSE; } } inline bool is_origination_purpose(KeyPurpose purpose) { return purpose == KeyPurpose::ENCRYPT || purpose == KeyPurpose::SIGN; } inline bool is_usage_purpose(KeyPurpose purpose) { return purpose == KeyPurpose::DECRYPT || purpose == KeyPurpose::VERIFY; } KeymasterEnforcement::KeymasterEnforcement(uint32_t max_access_time_map_size, uint32_t max_access_count_map_size) : access_time_map_(new (std::nothrow) AccessTimeMap(max_access_time_map_size)), access_count_map_(new (std::nothrow) AccessCountMap(max_access_count_map_size)) {} KeymasterEnforcement::~KeymasterEnforcement() { delete access_time_map_; delete access_count_map_; } ErrorCode KeymasterEnforcement::AuthorizeOperation(const KeyPurpose purpose, const km_id_t keyid, const AuthorizationSet& auth_set, const AuthorizationSet& operation_params, const HardwareAuthToken& auth_token, uint64_t op_handle, bool is_begin_operation) { if (is_public_key_algorithm(auth_set)) { switch (purpose) { case KeyPurpose::ENCRYPT: case KeyPurpose::VERIFY: /* Public key operations are always authorized. */ return ErrorCode::OK; case KeyPurpose::DECRYPT: case KeyPurpose::SIGN: break; case KeyPurpose::WRAP_KEY: return ErrorCode::INCOMPATIBLE_PURPOSE; }; }; if (is_begin_operation) return AuthorizeBegin(purpose, keyid, auth_set, operation_params, auth_token); else return AuthorizeUpdateOrFinish(auth_set, auth_token, op_handle); } // For update and finish the only thing to check is user authentication, and then only if it's not // timeout-based. ErrorCode KeymasterEnforcement::AuthorizeUpdateOrFinish(const AuthorizationSet& auth_set, const HardwareAuthToken& auth_token, uint64_t op_handle) { int auth_type_index = -1; for (size_t pos = 0; pos < auth_set.size(); ++pos) { switch (auth_set[pos].tag) { case Tag::NO_AUTH_REQUIRED: case Tag::AUTH_TIMEOUT: // If no auth is required or if auth is timeout-based, we have nothing to check. return ErrorCode::OK; case Tag::USER_AUTH_TYPE: auth_type_index = pos; break; default: break; } } // Note that at this point we should be able to assume that authentication is required, because // authentication is required if KM_TAG_NO_AUTH_REQUIRED is absent. However, there are legacy // keys which have no authentication-related tags, so we assume that absence is equivalent to // presence of KM_TAG_NO_AUTH_REQUIRED. // // So, if we found KM_TAG_USER_AUTH_TYPE or if we find KM_TAG_USER_SECURE_ID then authentication // is required. If we find neither, then we assume authentication is not required and return // success. bool authentication_required = (auth_type_index != -1); for (auto& param : auth_set) { auto user_secure_id = authorizationValue(TAG_USER_SECURE_ID, param); if (user_secure_id.isOk()) { authentication_required = true; int auth_timeout_index = -1; if (auth_token.mac.size() && AuthTokenMatches(auth_set, auth_token, user_secure_id.value(), auth_type_index, auth_timeout_index, op_handle, false /* is_begin_operation */)) return ErrorCode::OK; } } if (authentication_required) return ErrorCode::KEY_USER_NOT_AUTHENTICATED; return ErrorCode::OK; } ErrorCode KeymasterEnforcement::AuthorizeBegin(const KeyPurpose purpose, const km_id_t keyid, const AuthorizationSet& auth_set, const AuthorizationSet& operation_params, NullOr<const HardwareAuthToken&> auth_token) { // Find some entries that may be needed to handle KM_TAG_USER_SECURE_ID int auth_timeout_index = -1; int auth_type_index = -1; int no_auth_required_index = -1; for (size_t pos = 0; pos < auth_set.size(); ++pos) { switch (auth_set[pos].tag) { case Tag::AUTH_TIMEOUT: auth_timeout_index = pos; break; case Tag::USER_AUTH_TYPE: auth_type_index = pos; break; case Tag::NO_AUTH_REQUIRED: no_auth_required_index = pos; break; default: break; } } ErrorCode error = authorized_purpose(purpose, auth_set); if (error != ErrorCode::OK) return error; // If successful, and if key has a min time between ops, this will be set to the time limit uint32_t min_ops_timeout = UINT32_MAX; bool update_access_count = false; bool caller_nonce_authorized_by_key = false; bool authentication_required = false; bool auth_token_matched = false; bool unlocked_device_required = false; int32_t user_id = -1; for (auto& param : auth_set) { // KM_TAG_PADDING_OLD and KM_TAG_DIGEST_OLD aren't actually members of the enum, so we can't // switch on them. There's nothing to validate for them, though, so just ignore them. if (int32_t(param.tag) == KM_TAG_PADDING_OLD || int32_t(param.tag) == KM_TAG_DIGEST_OLD) continue; switch (param.tag) { case Tag::ACTIVE_DATETIME: { auto date = authorizationValue(TAG_ACTIVE_DATETIME, param); if (date.isOk() && !activation_date_valid(date.value())) return ErrorCode::KEY_NOT_YET_VALID; break; } case Tag::ORIGINATION_EXPIRE_DATETIME: { auto date = authorizationValue(TAG_ORIGINATION_EXPIRE_DATETIME, param); if (is_origination_purpose(purpose) && date.isOk() && expiration_date_passed(date.value())) return ErrorCode::KEY_EXPIRED; break; } case Tag::USAGE_EXPIRE_DATETIME: { auto date = authorizationValue(TAG_USAGE_EXPIRE_DATETIME, param); if (is_usage_purpose(purpose) && date.isOk() && expiration_date_passed(date.value())) return ErrorCode::KEY_EXPIRED; break; } case Tag::MIN_SECONDS_BETWEEN_OPS: { auto min_ops_timeout = authorizationValue(TAG_MIN_SECONDS_BETWEEN_OPS, param); if (min_ops_timeout.isOk() && !MinTimeBetweenOpsPassed(min_ops_timeout.value(), keyid)) return ErrorCode::KEY_RATE_LIMIT_EXCEEDED; break; } case Tag::MAX_USES_PER_BOOT: { auto max_users = authorizationValue(TAG_MAX_USES_PER_BOOT, param); update_access_count = true; if (max_users.isOk() && !MaxUsesPerBootNotExceeded(keyid, max_users.value())) return ErrorCode::KEY_MAX_OPS_EXCEEDED; break; } case Tag::USER_SECURE_ID: if (no_auth_required_index != -1) { // Key has both KM_TAG_USER_SECURE_ID and KM_TAG_NO_AUTH_REQUIRED return ErrorCode::INVALID_KEY_BLOB; } if (auth_timeout_index != -1) { auto secure_id = authorizationValue(TAG_USER_SECURE_ID, param); authentication_required = true; if (secure_id.isOk() && auth_token.isOk() && AuthTokenMatches(auth_set, auth_token.value(), secure_id.value(), auth_type_index, auth_timeout_index, 0 /* op_handle */, true /* is_begin_operation */)) auth_token_matched = true; } break; case Tag::USER_ID: user_id = authorizationValue(TAG_USER_ID, param).value(); break; case Tag::CALLER_NONCE: caller_nonce_authorized_by_key = true; break; case Tag::UNLOCKED_DEVICE_REQUIRED: unlocked_device_required = true; break; /* Tags should never be in key auths. */ case Tag::INVALID: case Tag::ROOT_OF_TRUST: case Tag::APPLICATION_DATA: case Tag::ATTESTATION_CHALLENGE: case Tag::ATTESTATION_APPLICATION_ID: case Tag::ATTESTATION_ID_BRAND: case Tag::ATTESTATION_ID_DEVICE: case Tag::ATTESTATION_ID_PRODUCT: case Tag::ATTESTATION_ID_SERIAL: case Tag::ATTESTATION_ID_IMEI: case Tag::ATTESTATION_ID_MEID: case Tag::ATTESTATION_ID_MANUFACTURER: case Tag::ATTESTATION_ID_MODEL: return ErrorCode::INVALID_KEY_BLOB; /* Tags used for cryptographic parameters in keygen. Nothing to enforce. */ case Tag::PURPOSE: case Tag::ALGORITHM: case Tag::KEY_SIZE: case Tag::BLOCK_MODE: case Tag::DIGEST: case Tag::MAC_LENGTH: case Tag::PADDING: case Tag::NONCE: case Tag::MIN_MAC_LENGTH: case Tag::EC_CURVE: /* Tags not used for operations. */ case Tag::BLOB_USAGE_REQUIREMENTS: /* Algorithm specific parameters not used for access control. */ case Tag::RSA_PUBLIC_EXPONENT: /* Informational tags. */ case Tag::CREATION_DATETIME: case Tag::ORIGIN: case Tag::ROLLBACK_RESISTANCE: /* Tags handled when KM_TAG_USER_SECURE_ID is handled */ case Tag::NO_AUTH_REQUIRED: case Tag::USER_AUTH_TYPE: case Tag::AUTH_TIMEOUT: /* Tag to provide data to operations. */ case Tag::ASSOCIATED_DATA: /* Tags that are implicitly verified by secure side */ case Tag::APPLICATION_ID: case Tag::BOOT_PATCHLEVEL: case Tag::OS_PATCHLEVEL: case Tag::OS_VERSION: case Tag::TRUSTED_USER_PRESENCE_REQUIRED: case Tag::VENDOR_PATCHLEVEL: /* TODO(swillden): Handle these */ case Tag::INCLUDE_UNIQUE_ID: case Tag::UNIQUE_ID: case Tag::RESET_SINCE_ID_ROTATION: case Tag::ALLOW_WHILE_ON_BODY: case Tag::HARDWARE_TYPE: case Tag::TRUSTED_CONFIRMATION_REQUIRED: case Tag::CONFIRMATION_TOKEN: break; case Tag::BOOTLOADER_ONLY: return ErrorCode::INVALID_KEY_BLOB; } } if (unlocked_device_required && is_device_locked(user_id)) { switch (purpose) { case KeyPurpose::ENCRYPT: case KeyPurpose::VERIFY: /* These are okay */ break; case KeyPurpose::DECRYPT: case KeyPurpose::SIGN: case KeyPurpose::WRAP_KEY: return ErrorCode::DEVICE_LOCKED; }; } if (authentication_required && !auth_token_matched) { ALOGE("Auth required but no matching auth token found"); return ErrorCode::KEY_USER_NOT_AUTHENTICATED; } if (!caller_nonce_authorized_by_key && is_origination_purpose(purpose) && operation_params.Contains(Tag::NONCE)) return ErrorCode::CALLER_NONCE_PROHIBITED; if (min_ops_timeout != UINT32_MAX) { if (!access_time_map_) { ALOGE("Rate-limited keys table not allocated. Rate-limited keys disabled"); return ErrorCode::MEMORY_ALLOCATION_FAILED; } if (!access_time_map_->UpdateKeyAccessTime(keyid, get_current_time(), min_ops_timeout)) { ALOGE("Rate-limited keys table full. Entries will time out."); return ErrorCode::TOO_MANY_OPERATIONS; } } if (update_access_count) { if (!access_count_map_) { ALOGE("Usage-count limited keys tabel not allocated. Count-limited keys disabled"); return ErrorCode::MEMORY_ALLOCATION_FAILED; } if (!access_count_map_->IncrementKeyAccessCount(keyid)) { ALOGE("Usage count-limited keys table full, until reboot."); return ErrorCode::TOO_MANY_OPERATIONS; } } return ErrorCode::OK; } class EvpMdCtx { public: EvpMdCtx() { EVP_MD_CTX_init(&ctx_); } ~EvpMdCtx() { EVP_MD_CTX_cleanup(&ctx_); } EVP_MD_CTX* get() { return &ctx_; } private: EVP_MD_CTX ctx_; }; /* static */ bool KeymasterEnforcement::CreateKeyId(const hidl_vec<uint8_t>& key_blob, km_id_t* keyid) { EvpMdCtx ctx; uint8_t hash[EVP_MAX_MD_SIZE]; unsigned int hash_len; if (EVP_DigestInit_ex(ctx.get(), EVP_sha256(), nullptr /* ENGINE */) && EVP_DigestUpdate(ctx.get(), &key_blob[0], key_blob.size()) && EVP_DigestFinal_ex(ctx.get(), hash, &hash_len)) { assert(hash_len >= sizeof(*keyid)); memcpy(keyid, hash, sizeof(*keyid)); return true; } return false; } bool KeymasterEnforcement::MinTimeBetweenOpsPassed(uint32_t min_time_between, const km_id_t keyid) { if (!access_time_map_) return false; uint32_t last_access_time; if (!access_time_map_->LastKeyAccessTime(keyid, &last_access_time)) return true; return min_time_between <= static_cast<int64_t>(get_current_time()) - last_access_time; } bool KeymasterEnforcement::MaxUsesPerBootNotExceeded(const km_id_t keyid, uint32_t max_uses) { if (!access_count_map_) return false; uint32_t key_access_count; if (!access_count_map_->KeyAccessCount(keyid, &key_access_count)) return true; return key_access_count < max_uses; } template <typename IntType, uint32_t byteOrder> struct choose_hton; template <typename IntType> struct choose_hton<IntType, __ORDER_LITTLE_ENDIAN__> { inline static IntType hton(const IntType& value) { IntType result = 0; const unsigned char* inbytes = reinterpret_cast<const unsigned char*>(&value); unsigned char* outbytes = reinterpret_cast<unsigned char*>(&result); for (int i = sizeof(IntType) - 1; i >= 0; --i) { *(outbytes++) = inbytes[i]; } return result; } }; template <typename IntType> struct choose_hton<IntType, __ORDER_BIG_ENDIAN__> { inline static IntType hton(const IntType& value) { return value; } }; template <typename IntType> inline IntType hton(const IntType& value) { return choose_hton<IntType, __BYTE_ORDER__>::hton(value); } template <typename IntType> inline IntType ntoh(const IntType& value) { // same operation and hton return choose_hton<IntType, __BYTE_ORDER__>::hton(value); } bool KeymasterEnforcement::AuthTokenMatches(const AuthorizationSet& auth_set, const HardwareAuthToken& auth_token, const uint64_t user_secure_id, const int auth_type_index, const int auth_timeout_index, const uint64_t op_handle, bool is_begin_operation) const { assert(auth_type_index < static_cast<int>(auth_set.size())); assert(auth_timeout_index < static_cast<int>(auth_set.size())); if (!ValidateTokenSignature(auth_token)) { ALOGE("Auth token signature invalid"); return false; } if (auth_timeout_index == -1 && op_handle && op_handle != auth_token.challenge) { ALOGE("Auth token has the challenge %" PRIu64 ", need %" PRIu64, auth_token.challenge, op_handle); return false; } if (user_secure_id != auth_token.userId && user_secure_id != auth_token.authenticatorId) { ALOGI("Auth token SIDs %" PRIu64 " and %" PRIu64 " do not match key SID %" PRIu64, auth_token.userId, auth_token.authenticatorId, user_secure_id); return false; } if (auth_type_index < 0 || auth_type_index > static_cast<int>(auth_set.size())) { ALOGE("Auth required but no auth type found"); return false; } assert(auth_set[auth_type_index].tag == TAG_USER_AUTH_TYPE); auto key_auth_type_mask = authorizationValue(TAG_USER_AUTH_TYPE, auth_set[auth_type_index]); if (!key_auth_type_mask.isOk()) return false; if ((uint32_t(key_auth_type_mask.value()) & auth_token.authenticatorType) == 0) { ALOGE("Key requires match of auth type mask 0%uo, but token contained 0%uo", key_auth_type_mask.value(), auth_token.authenticatorType); return false; } if (auth_timeout_index != -1 && is_begin_operation) { assert(auth_set[auth_timeout_index].tag == TAG_AUTH_TIMEOUT); auto auth_token_timeout = authorizationValue(TAG_AUTH_TIMEOUT, auth_set[auth_timeout_index]); if (!auth_token_timeout.isOk()) return false; if (auth_token_timed_out(auth_token, auth_token_timeout.value())) { ALOGE("Auth token has timed out"); return false; } } // Survived the whole gauntlet. We have authentage! return true; } bool AccessTimeMap::LastKeyAccessTime(km_id_t keyid, uint32_t* last_access_time) const { for (auto& entry : last_access_list_) if (entry.keyid == keyid) { *last_access_time = entry.access_time; return true; } return false; } bool AccessTimeMap::UpdateKeyAccessTime(km_id_t keyid, uint32_t current_time, uint32_t timeout) { for (auto iter = last_access_list_.begin(); iter != last_access_list_.end();) { if (iter->keyid == keyid) { iter->access_time = current_time; return true; } // Expire entry if possible. assert(current_time >= iter->access_time); if (current_time - iter->access_time >= iter->timeout) iter = last_access_list_.erase(iter); else ++iter; } if (last_access_list_.size() >= max_size_) return false; AccessTime new_entry; new_entry.keyid = keyid; new_entry.access_time = current_time; new_entry.timeout = timeout; last_access_list_.push_front(new_entry); return true; } bool AccessCountMap::KeyAccessCount(km_id_t keyid, uint32_t* count) const { for (auto& entry : access_count_list_) if (entry.keyid == keyid) { *count = entry.access_count; return true; } return false; } bool AccessCountMap::IncrementKeyAccessCount(km_id_t keyid) { for (auto& entry : access_count_list_) if (entry.keyid == keyid) { // Note that the 'if' below will always be true because KM_TAG_MAX_USES_PER_BOOT is a // uint32_t, and as soon as entry.access_count reaches the specified maximum value // operation requests will be rejected and access_count won't be incremented any more. // And, besides, UINT64_MAX is huge. But we ensure that it doesn't wrap anyway, out of // an abundance of caution. if (entry.access_count < UINT64_MAX) ++entry.access_count; return true; } if (access_count_list_.size() >= max_size_) return false; AccessCount new_entry; new_entry.keyid = keyid; new_entry.access_count = 1; access_count_list_.push_front(new_entry); return true; } }; /* namespace keystore */